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Abstract

In the representation theory of finite groups, there is a well-known and important conjecture, due to
Broué’, saying that for any prime p, if a p-block A of a finite group G has an abelian defect group
P , then A and its Brauer corresponding block B of the normaliser NG(P ) of P in G are derived
equivalent. We prove in this paper, that Broué’s abelian defect group conjecture, and even Rickard’s
splendid equivalence conjecture are true for the faithful 3-block A with an elementary abelian defect
group P of order 9 of the double cover 2.HS of the Higman-Sims sporadic simple group. It then turns
out that both conjectures hold for all primes p and for all p-blocks of 2.HS.
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1. Introduction and notation

In the representation theory of finite groups, one of the most important and interesting problems
is to give an affirmative answer to a conjecture which was introduced by Broué around 1988
[5]. He actually conjectures the following, where the various notions of equivalences used are
recalled more precisely in 1.8:

Conjecture 1.1 (Broué’s Abelian Defect Group Conjecture [5]). Let (K,O, k) be a splitting
p-modular system, where p is a prime, for all subgroups of a finite group G. Assume that A is
a block algebra of OG with a defect group P and that AN is a block algebra of ONG(P ) such
that AN is the Brauer correspondent of A, where NG(P ) is the normaliser of P in G. Then A
and AN should be derived equivalent provided P is abelian.

In fact, a stronger conclusion than 1.1 is expected:

Conjecture 1.2 (Rickard’s Splendid Equivalence Conjecture [48, 49]). Keeping the notation,
we suppose that P is abelian as in 1.1. Then there should be a splendid derived equivalence
between the block algebras A of OG and AN of ONG(P ).
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There are several cases where Conjectures 1.1 and 1.2 have been verified, albeit the general
conjecture is widely open; for an overview, containing suitable references, see [7]. As for general
results concerning blocks with a fixed defect group, by [29, 47, 51, 52] Conjectures 1.1 and 1.2
are proved for blocks with cyclic defect groups in arbitrary characteristic.

Moreover, in [18, (0.2)Theorem] it is shown that 1.1 and 1.2 are true for the principal block
algebra of an arbitrary finite group when the defect group is elementary abelian of order 9. In
view of the strategy used in [18], and of a possible future theory reducing 1.1 and 1.2 to the
quasi-simple groups, it seems worthwhile to proceed with this class of groups, as far as non-
principal 3-blocks with elementary abelian defect group of order 9 are concerned. Indeed, for
these cases there are partial results already known, see [14, 21, 22, 23, 25, 27, 39] for instance.
The present paper is another step in that programme, our main result being the following:

Theorem 1.3. Let G be the double cover 2.HS of the Higman-Sims sporadic simple group,
and let (K,O, k) be a splitting 3-modular system for all subgroups of G. Suppose that A is the
faithful block algebra of OG with elementary abelian defect group P = C3 × C3 of order 9, and
that B is the block algebra of ONG(P ) such that B is the Brauer correspondent of A. Then, A
and B are splendidly derived equivalent, hence Conjectures 1.1 and 1.2 of Broué and Rickard
hold.

As an immediate corollary we get:

Corollary 1.4. Broué’s abelian defect group conjecture 1.1, and even Rickard’s splendid equiv-
alence conjecture 1.2 are true for all primes p and for all block algebras of OG.

Our strategy to prove 1.3 is similar to the ones pursued, for example, for the Janko sporadic
simple group J4 in [23, 1.6.Theorem] or the Harada-Norton sporadic simple group HN in [25,
1.3.Theorem]. Our starting point was actually to realise that the 3-decomposition matrix of A
coincides (up to a suitable order of rows and columns) with the 3-decomposition matrix of the
principal 3-block A′ of the alternating group A8 on eight letters:

A A′

176 1 1 . . . .
176∗ 7 . 1 . . .
616 14 1 . 1 . .
616∗ 20 . 1 1 . .
56 28 . . . 1 .

1000 35 . . . . 1
1792 56 1 1 1 . 1
1232 64 1 . . 1 1
1232∗ 70 . 1 . 1 1

Here, we indicate ordinary irreducible characters just by their degrees, and complex conjugation
by ∗. Therefore, it is quite natural to suspect that the block algebras A and A′ are Morita
equivalent, or even Puig equivalent. If this were true, then since Conjectures 1.1 and 1.2 have
been solved for A′ in [42, 43], this would immediately entail their validity for A as well. Indeed,
we are able to prove:

Theorem 1.5. We keep the notation and the assumptions as in 1.3, and let G′ = A8 be the
alternating group on eight letters. Then, the block algebra A of OG and the principal block
algebra A′ of OG′ are Puig equivalent.

Remark 1.6. A few remarks on 1.5 are appropriate:
(a) In order to prove 1.5 in its full strength, the detailed local analysis leads to a problem

similar to the one already encountered in [23, 6.14.Question]: Viewing G and G′ as (unrelated)
abstract groups would only allow to prove that the block algebras A and A′ are Morita equiva-
lent, but not necessarily Puig equivalent. In its consequence this would mean that we were only
able to verify Broué’s conjecture 1.1, but not Rickard’s conjecture 1.2 for G. To remedy this,
and to circumvent [23, 6.14.Question], we use the fact that G′ can be embedded as a subgroup
into G, leading to an explicit configuration of groups allowing for compatible local analysis.
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(b) Note that complex conjugation induces a non-trivial permutation both on the irreducible
ordinary and Brauer characters of A; in terms of columns of the decomposition matrix this
amounts to interchanging the first two columns. But all ordinary and Brauer characters of A′

are real-valued. Hence the Puig equivalence asserted by 1.5 does not commute with the self-
equivalences of the module categories of A and A′ induced by taking contragredient modules.

Actually, our proof of 1.5 provides two distinct Puig equivalences, one inducing the bijection
between the simple A- and A′-modules as indicated in the decomposition matrix above, the
other one inducing the bijection obtained by interchanging its first two columns.

(c) As far as we have experienced, it looks that most of all non-principal 3-blocks with
elementary abelian defect group P of order 9 are just Morita equivalent to certain principal
3-blocks with defect group P , see [21, 22, 23, 25], for instance. One might be tempted to
say that these non-principal blocks are pseudo-principal. So, the non-principal block algebra
A considered here is even pseudo-principal in two ways, each leading to a different ‘trivial’
character; and the principal block algebra A′ is also pseudo-principal with a different ‘trivial’
character.

However, there are non-principal 3-blocks of finite groups with defect group P which are not
pseudo-principal in the above sense, that is they are not Morita equivalent to any principal
3-block: For example, it has been already noted in [17, Remark 4.4] that the non-principal
3-block with defect group P of the Higman-Sims sporadic simple group HS has this property,
and the faithful 3-blocks of 4.M22 described in [39] have as well.

Contents 1.7. This paper is organised as follows: In §2 we recall a few of the most important
ingredients of our proofs. In §3 we present the local data related to G′ = A8. In §4 we present
the local data related to G = 2.HS, and relate the groups G′ and G; in particular we comment
on how the explicit embedding is achieved in a computational setting. In §5 we proceed to give
a stable equivalence for A and its Brauer correspondent. In §6 we determine the images of the
simple A-modules with respect to this stable equivalence. In §7 we finally complete the proofs
of 1.3, 1.4 and 1.5, and we also give details on the phenomena in 1.6(a) and 1.6(b).

A further comment on the computational contents of the present paper is in order: The general
paradigm of course being to proceed towards theoretical insights, the presentation of our results
is based as much as possible on general principles. Still, computations are an important and
non-trivial part of the picture, either by paving a way for subsequent theoretical analysis, or
by setting in as soon as theoretical principles fail.

As tools, we use the computer algebra system GAP [10], to calculate with permutation groups
as well as with ordinary and Brauer characters. We also make use of the data library [4], in
particular allowing for easy access to the data compiled in [8, 13, 58], and of the interface [57]
to the data library [59]. Moreover, we use the computer algebra system MeatAxe [50] to handle
matrix representations over finite fields, as well as its extensions to compute submodule lattices
[33, 38], radical and socle series [36], and homomorphism spaces, endomorphism rings and direct
sum decompositions [34, 35].

In order to facilitate explicit computations, we use ‘small’ finite fields, but we always make
sure, silently, that these are chosen such that the computational results thus obtained remain
valid without change after scalar extension to the fixed field of positive characteristic which is
‘large enough’ in the sense of 1.8 below.

Notation/Definition 1.8. Throughout this paper, we use the standard notation and termi-
nology as is used in [8, 40, 54]. We recall a few for convenience:

If A and B are finite dimensional k-algebras, where k is a field, we denote by mod-A,
A-mod and A-mod-B the categories of finitely generated right A-modules, left A-modules and
(A,B)-bimodules, respectively. We write MA, AM and AMB when M is a right A-module, a
left A-module and an (A,B)-bimodule. A module always refers to a finitely generated right
module, unless stated otherwise. We let M∨ = HomA(MA, AA) be the A-dual of the A-module
M , so that M∨ becomes a left A-module via (aφ)(m) = a·φ(m) for a ∈ A, φ ∈M∨ and m ∈M .
We denote by soc(M) and rad(M) the socle and the radical of M , respectively. For simple A-
modules S1, · · · , Sn, and positive integers a1, · · · , an, we write that ‘M = a1×S1+· · ·+an×Sn,
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as composition factors’ when the set of all composition factors are a1 times S1, · · · , an times

Sn. For another A-module L, we write M
∣∣∣L when M is isomorphic to a direct summand of L as

an A-module. If A is self-injective, the stable module category mod-A is the quotient category
of mod-A with respect to the projective A-homomorphisms, that is those factoring through a
projective module.

By G we always denote a finite group, and we fix a prime number p. Assume that (K,O, k)
is a splitting p-modular system for all subgroups of G, that is to say, O is a complete discrete
valuation ring of rank one such that its quotient field K is of characteristic zero, and its residue
field k = O/rad(O) is of characteristic p, and that K and k are splitting fields for all subgroups
of G. We denote by kG the trivial kG-module. If X is a kG-module, then we write X∗ =
Homk(X, k) for the contragredient of X, namely, X∗ is again a kG-module via (ϕg)(x) =
ϕ(xg−1) for x ∈ X, ϕ ∈ X∗ and g ∈ G; if no confusion may arise we also call this the dual of X.
For kG-modules X and Y we set [X,Y ]G = dimk[HomkG(X,Y )]. Let H be a subgroup of G,

and let M and N be a kG-module and a kH-module, respectively. Then let M↓GH = M↓H be the

restriction of M to H, and let N↑GH = N↑G = (N⊗kH kG)kG be the induction (induced module)
of N to G. We say that a kG-module X is a trivial source module if X is indecomposable and
X has a trivial source, see [28, II Definition 12.1]. Note that the definition here is slightly
different from [54, §27 p.218] where an indecomposability is not assumed.

We denote by Irr(G) and IBr(G) the sets of all irreducible ordinary and Brauer characters
of G, respectively; we write 1G for the trivial character of G. Since the character field Q(χ) :=
Q(χ(g) ; g ∈ G) ⊆ K of any character χ ∈ Irr(G) is contained in a cyclotomic field, we may
identify Q(χ) with a subfield of the complex number field C, hence we may think of characters
having values in C. In particular, we write χ∗ for the complex conjugate of χ, where of course
χ∗ is the character of the KG-module contragredient to a KG-module affording χ, see [40,
Chap.3 §1.3 p.74]. If A is a block algebra of OG, then we write Irr(A) and IBr(A) for the sets
of all characters in Irr(G) and IBr(G) which belong to A, respectively.

Let G′ be another finite group, and let V be an (OG,OG′)-bimodule. Then we can regard
V as a right O[G × G′]-module via v·(g, g′) = g−1vg′ for v ∈ V and g, g′ ∈ G. Let A and
A′ be block algebras of OG and OG′, respectively, such that A and A′ have a defect group
P in common, that is, if P is considered as an abstract group, we have fixed embeddings
P → G and P → G′. Identifying P with the images of these embeddings, we set ∆P =
{(g, g) ∈ G ×G′ | g ∈ P}. Then we say that A and A′ are Puig equivalent if there is a Morita
equivalence between A and A′ which is induced by an indecomposable (A,A′)-bimodule M
such that, as a right O[G×G′]-module, M is a trivial source module and ∆P -projective. This
is equivalent to the condition that A and A′ have source algebras which are isomorphic as
interior P -algebras, see [46, Remark 7.5] and [32, Theorem 4.1]. We say that A and A′ are
stably equivalent of Morita type if there exists an indecomposable (A,A′)-bimodule M such
that both AM and MA′ are projective and that A(M⊗A′ M∨)A ∼= AAA ⊕ (proj (A,A)-bimod)
and A′(M

∨ ⊗A M)A′ ∼= A′A
′
A′ ⊕ (proj (A′, A′)-bimod). We say that A and A′ are splendidly

stably equivalent of Morita type if the stable equivalence of Morita type is induced by an
indecomposable (A,A′)-bimodule M which is a trivial source O[G × G′]-module and is ∆P -
projective, see [32, Theorem 3.1].

We say that A and A′ are derived equivalent if Db(mod-A) and Db(mod-A′) are equivalent as
triangulated categories, where Db(mod-A) is the bounded derived category of mod-A. In that
case, there even is a Rickard complex M• ∈ Cb(A-mod-A′), where the latter is the category of
bounded complexes of finitely generated (A,A′)-bimodules, all of whose terms are projective
both as left A-modules and as right A′-modules, such that M•⊗A′ (M•)∨ ∼= A in Kb(A-mod-A)
and (M•)∨⊗AM• ∼= A′ in Kb(A′-mod-A′), where Kb(A-mod-A) is the homotopy category asso-
ciated with Cb(A-mod-A); in other words, in that case we even have Kb(mod-A) ∼= Kb(mod-A′).
We say that A and A′ are splendidly derived equivalent if Kb(mod-A) and Kb(mod-A′) are
equivalent via a Rickard complex M• ∈ Cb(A-mod-A′) as above, such that additionally each
of its terms is a direct sum of ∆P -projective trivial source modules as an O[G × G′]-module;
see [31, 32]. Note that a Morita equivalence entails a derived equivalence, and that a Puig
equivalence entails a splendid derived equivalence.
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2. Preliminaries

Lemma 2.1 (Scott). The following holds:

(i) If M is a trivial source kG-module, then M lifts uniquely (up to isomorphism) to a

trivial source OG-lattice M̂ .
(ii) If M and N are both trivial source kG-modules, then [M,N ]G = (χ

M̂
, χN̂ )G.

Proof. See [28, II Theorem 12.4 and I Proposition 14.8] and [3, Corollary 3.11.4]. �

Lemma 2.2 (Linckelmann). Let A and B be finite-dimensional k-algebras (where deviating
from our general assumption k is an arbitrary field), such that A and B are both self-injective
and indecomposable as algebras, but not simple. Suppose that there is an (A,B)-bimodule M
such that M induces a stable equivalence between the algebras A and B.

(i) If M is indecomposable then for any simple A-module S, the B-module (S ⊗AM)B is
non-projective and indecomposable.

(ii) If for any simple A-module S the B-module S⊗AM is simple, then M induces a Morita
equivalence between A and B.

Proof. (i) and (ii) respectively are given in [30, Theorem 2.1(ii) and (iii)]. �

Lemma 2.3 (Fong-Reynolds). Let H be a normal subgroup of G, and let A and B be block
algebras of OG and OH, respectively, such that A covers B. Let T = TG(B) be the inertial

subgroup (stabiliser) of B in G. Then, there is a block algebra Ã of OT such that Ã covers

B, 1A1Ã = 1Ã1A = 1Ã, A = ÃG (block induction), and the block algebras A and Ã are
Morita equivalent via a pair (1A·OG·1Ã, 1Ã·OG·1A), that is, the Morita equivalence is a Puig
equivalence and induces a bijection

Irr(Ã)→ Irr(A), χ̃ 7→ χ̃↑G; Irr(A)→ Irr(Ã), χ 7→ χ↓T ·1Ã
between Irr(Ã) and Irr(A), and a bijection

IBr(Ã)→ IBr(A), φ̃ 7→ φ̃↑G; IBr(A)→ IBr(Ã), φ 7→ φ↓T ·1Ã
between IBr(Ã) and IBr(A),

Proof. See [22, 1.5.Theorem] and [40, Chap.5, Theorem 5.10]. �

Remark 2.4. In 2.3 Ã is called a Fong-Reynolds correspondent of A and vice versa. Note
that there can be more than one Fong-Reynolds correspondent in general.

Lemma 2.5. Let A and B be finite dimensional k-algebras (where deviating from our general
assumption k is an arbitrary field), such that A and B are both self-injective. Let F be a
covariant functor such that

(1) F is exact.
(2) If X is a projective A-module, then F (X) is a projective B-module,
(3) F induces a stable equivalence from mod-A to mod-B.

Then the following holds:

(i) (Stripping-off method, case of socle) Let X be a projective-free A-module, and write
F (X) = Y ⊕ (proj) for a projective-free B-module Y . Let S be a simple A-submodule
of X, and set T = F (S). Now, if T is a simple B-module, then we may assume that Y
contains T and that

F (X/S) = Y/T ⊕ (proj).

(ii) (Stripping-off method, case of radical) Similarly, let X be a projective-free A-module,
and write F (X) = Y ⊕ (proj) for a projective-free B-module Y . Let X ′ be an A-
submodule of X such that X/X ′ is simple, and set T = F (X/X ′). Now, if T is a
simple B-module, then we may assume that T is an epimorphic image of Y and that

Ker(F (X)� T ) = Ker(Y � T )⊕ (proj).

Proof. See [22, 1.11.Lemma] or [26, A.1.Lemma]. �
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Lemma 2.6. Let H be a proper subgroup of G, and let A and B be block algebras of kG
and kH, respectively. Now, let M and M ′ be finitely generated (A,B)- and (B,A)-bimodules,
respectively, which satisfy the following:

(1) AMB | 1A·kG·1B and BM
′
A | 1B ·kG·1A.

(2) The pair (M,M ′) induces a stable equivalence between mod-A and mod-B.

Then we get the following:

(i) Assume that X is a non-projective indecomposable kG-module in A with vertex Q.
Then there exists a non-projective indecomposable kH-module Y in B, unique up to
isomorphism, such that (X ⊗A M)B = Y ⊕ (proj), and Qg is a vertex of Y for some
element g ∈ G (and hence Qg ⊆ H). Since Qg is also a vertex of X, this means that
X and Y have at least one vertex in common.

(ii) Assume that Y is a non-projective indecomposable kH-module in B with vertex Q.
Then there exists a non-projective indecomposable kG-module X in A, unique up to
isomorphism, such that (Y ⊗B M ′)A = X ⊕ (proj), and Q is a vertex of X.

(iii) Let X,Y and Q be the as in (i). We may assume Q 6 H because we can replace Qg in
(i) by Q. Then there is an indecomposable kQ-module L such that L is a source of both
X and Y . This means that X and Y have at least one source in common.

(iv) Let X,Y and Q 6 H be the same as in (ii). Then there is an indecomposable kQ-module
L such that L is a source of both X and Y . This means that X and Y have at least
one source in common.

(v) Let X,Y , Q and L be the same as in (iii). In addition, suppose that A and B have a
common defect group P (and hence P ⊆ H) and that H > NG(P ). Let f be the Green
correspondence with respect to (G,P,H). If Q ∈ A(G,P,H), see [40, Chap.4, §4] then
we have (X ⊗AM)B = f(X)⊕ (proj).

(vi) Let X, Y , Q and L be the same as in (ii). Furthermore, as in (v), assume that P is a
common defect group of A and B, and that H > NG(P ), and let f and A be the same
as in (v). Now, if Q ∈ A(G,P,H), then we have (Y ⊗B M ′)A = f−1(Y )⊕ (proj).

Proof. See [26, A.3.Lemma]. �

Lemma 2.7. Set G = A5 oC4 = (A5 × 2).2, where the action on C4 of A5 is that C4/C2 acts
faithfully on A5. Let P be a Sylow 3-subgroup of A5 (and hence P ∼= C3).

(i) There is a faithful non-principal block algebra A of kG (that is, not having the central
subgroup of order 2 in its kernel) with defect group P .

(ii) We can write Irr(A) = {χ1, χ2, χ3} such that χ1(1) = 1, χ2(1) = 4, χ3(1) = 5 and
χ1(u) = χ2(u) = 1 for any element u ∈ P − {1}. Moreover, we can write IBr(A) =
{ϕ1, ϕ2} such that the 3-decomposition matrix of A is

ϕ1 ϕ2

χ1 1 .
χ2 . 1
χ3 1 1

(iii) Set H = NG(P ). Then H = S3 × C4. Let further B be the block algebra of kH that is
the Brauer correspondent of A.

(iv) Set M = f(A), where f is the Green correspondence with respect to (G×G,∆P,G×H).
Then, M induces a Morita equivalence between A and B (and hence M induces a Puig
equivalence between A and B). Further, simple kG-modules in A affording ϕ1 and ϕ2

are trivial source kG-modules.

Proof. (i)-(iii) are easy. (iv) follows from (i)-(iii) and [20, Theorem 1.2]. �

3. Green correspondences for A8

Notation 3.1. We introduce some further notation which we use throughout the rest of the
paper. Moreover, in this section let p = 3.

Let G′ be the alternating group on eight letters, namely, G′ = A8, and let A′ be the principal
block algebra of kG′. Note that we are abusing notation here, inasmuch as in the introductory
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Section 1 we have used the same letter to denote the principal block algebra of OG′, but no
confusion will arise from that.

Since Sylow 3-subgroups of G′ are isomorphic to C3 ×C3, we can assume that P is a Sylow
3-subgroup of A8 as well, which is originally a Sylow 3-subgroup of G = 2.HS, see 4.1 and 4.3.
There are exactly two conjugacy classes of G′ which contain elements of order 3, that is, P has
exactly two G′-conjugacy classes of subgroups of order 3. Let Q and R be representatives of
these, see 5.3(ii), and see also [8, p.22].

Let H ′ = NG′(P ), and hence H ′ = P oD8; note that the subgroups of order 3 of P still fall
into two H ′-conjugacy classes. Let B′ be the principal block algebra of kH ′; thus B′ = kH ′.

Lemma 3.2. (i) The 3-decomposition matrix and the Cartan matrix of A′, respectively,
are the following:

kG′ 7 13 28 35
χ′1 1 . . . .
χ′7 . 1 . . .
χ′14 1 . 1 . .
χ′20 . 1 1 . .
χ′28 . . . 1 .
χ′35 . . . . 1
χ′56 1 1 1 . 1
χ′64 1 . . 1 1
χ′70 . 1 . 1 1

P (kG′) P (7) P (13) P (28) P (35)
kG′ 4 1 2 1 2

7 1 4 2 1 2
13 2 2 3 0 1
28 1 1 0 3 2
35 2 2 1 2 4

(ii) All simple kG′-modules kG′ , 7, 13, 28, 35 in A′ have P as their vertices.

Proof. (i) follows from [13, A8 (mod 3)] and [8, p.22], and for (ii) see [16, 3.7.Corollary]. �

Notation 3.3. We use the notation χ′1, · · · , χ′70 and kG′ , 7, 13, 28, 35 as in 3.2, where the
numbers mean the degrees (dimensions) of characters (modules).

Lemma 3.4. The following holds:

(i) The character table of H ′ = P oD8
∼= (C3 × C3)oD8 is given as follows:

centraliser 72 8 12 12 18 18 4 6 6
element 1A 2A 2B 2C 3A 3B 4A 6A 6B
χ1a 1 1 1 1 1 1 1 1 1
χ1b 1 1 −1 −1 1 1 1 −1 −1
χ1c 1 1 −1 1 1 1 −1 −1 1
χ1d 1 1 1 −1 1 1 −1 1 −1
χ2 2 −2 0 0 2 2 0 0 0
χ4a 4 0 0 2 −2 1 0 0 −1
χ4b 4 0 0 −2 −2 1 0 0 1
χ4c 4 0 2 0 1 −2 0 −1 0
χ4d 4 0 −2 0 1 −2 0 1 0

Note that χ1b is distinguished amongst the non-trivial linear characters, for example by
having an element of order 4 in its kernel.

(ii) H ′ = Inn(H ′) C Aut(H ′) such that |Aut(H ′)/H ′| = 2, and any non-inner automor-
phism of H ′ induces a non-inner automorphism of D8 = H ′/P , and interchanges the
two conjugacy classes of subgroups of order 3 of P . In particular, there is an induced
character table automorphism of Irr(H ′) interchanging

χ1c ↔ χ1d, χ4a ↔ χ4c, χ4b ↔ χ4d.

(iii) The 3-decomposition matrix and the Cartan matrix of B′ = kH ′ = k[P oD8], respec-
tively, are the following:

7



1a 1b 1c 1d 2
χ1a 1 . . . .
χ1b . 1 . . .
χ1c . . 1 . .
χ1d . . . 1 .
χ2 . . . . 1
χ4a 1 . 1 . 1
χ4b . 1 . 1 1
χ4c 1 . . 1 1
χ4d . 1 1 . 1

P (1a) P (1b) P (1c) P (1d) P (2)
1a 3 0 1 1 2
1b 0 3 1 1 2
1c 1 1 3 0 2
1d 1 1 0 3 2
2 2 2 2 2 5

(iv) All simple kH ′-modules 1a, 1b, 1c, 1d, 2 in B′ have P as their vertices.

Proof. (i) and (ii) follow from an explicit computation with GAP [10], the rest is easy. �

Notation 3.5. We use the notation χ1a, · · · , χ4d and 1a = kH′ , 1b, 1c, 1d, 2 as in 3.4, where
the numbers mean the degrees (dimensions) of characters (modules).

Lemma 3.6. The block algebra B′ = kH ′ = k[P oD8] has exactly 18 non-isomorphic trivial
source modules over k. In fact, they are given in the following list, where the diagrams are
Loewy and socle series:

(i) Five PIM’s P (1a), P (1b), P (1c), P (1d), P (2):

1a
2

1a 1c 1d
2
1a

,

1b
2

1b 1c 1d
2
1b

,

1c
2

1a 1b 1c
2
1c

,

1d
2

1a 1b 1d
2
1d

,

2
1a 1b 1c 1d

2 2 2
1a 1b 1c 1d

2

.

(ii) Five trivial source modules with vertex P : The simple modules 1a, 1b, 1c, 1d, 2.

(iii) Eight trivial source modules with cyclic vertex of order 3, where we also give the asso-
ciated trivial source characters, see 2.1:

1a 1d
2

1a 1d

l
χ1a + χ1d + χ4c

,

1b 1c
2

1b 1c

l
χ1b + χ1c + χ4d

,

2
1a 1d

2

l
χ2 + χ4c

,

2
1b 1c

2

l
χ2 + χ4d

,

1a 1c
2

1a 1c

l
χ1a + χ1c + χ4a

,

1b 1d
2

1b 1d

l
χ1b + χ1d + χ4b

,

2
1a 1c

2

l
χ2 + χ4a

,

2
1b 1d

2

l
χ2 + χ4b

.

Proof. (i) The structure of the PIM’s is immediate as soon as we know that Ext1
kH′(1x, 1y) = 0

for all x, y ∈ {a, b, c, d}. This in turn follows from the Ext-quiver of B′, which is given as a
quiver with relations in [42, Section 4, Case 2].

To find the non-projective trivial source modules, we employ [40, Chap.4, Exc.10]. From
that (ii) is immediate. Moreover, this also yields the trivial source characters given in (iii),
from which it is easy to see, using the vanishing of Ext1

kH′(1x, 1y) again, that the associated
modules are indecomposable. �

Lemma 3.7. An (A′, B′)-bimoduleM′ defined byM′ = f(G′×G′,∆P,G′×H′)(A
′) induces a splen-

did stable equivalence of Morita type between A′ and B′, namely by

F ′ : mod-A′ → mod-B′ : XA′ 7→ (X ⊗A′M′)B′ .
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In particular, F ′ fulfills the assumptions of 2.6, and hence its assertions as well.

Proof. This follows from [42, Example 4.3] and [43, Corollary 2]. �

Lemma 3.8. Let f ′ and g′ be the mutually inverse Green correspondences with respect to
(G′, P,H ′). Then the Green correspondents of simple modules are the following:

g′(1a) = kG′ ↔ χ′1 f ′(kG′) = 1a

g′(1b) = 7 ↔ χ′7 f ′(7) = 1b

g′(1c) =
13

kG′ 7
13

↔ χ′14 + χ′20 f ′(13) =
1c
2

1c

g′(1d) = 28 ↔ χ′28 f ′(28) = 1d

g′(2) = 35 ↔ χ′35 f ′(35) = 2

On the left hand we also give the associated trivial source characters, see 2.1. Recall that by
considering H ′ just as an abstract group {1c, 1d} are indistinguishable, see 3.4, but now note
that by fixing H ′ 6 G′ and specifying f ′, this defines 1c and 1d uniquely.

Proof. This follows from [55, Theorem] and [42, Example 4.3]. �

4. 3-Local structure for 2.HS

Notation 4.1. From now on, we assume that G is the covering group 2.HS of the sporadic
simple Higman-Sims group HS, and hence |G| = 210·32·53·7·11, see [8, p.80].

Lemma 4.2. We obtain the following:

(i) In order to prove Broué’s abelian defect group conjecture 1.1 and Rickard’s conjecture
1.2 for G = 2.HS, it suffices to prove them for the case p = 3.

(ii) There exists a unique faithful 3-block with non-cyclic abelian defect group P , and P
is elementary abelian of order 9, and in order to prove Broué’s abelian defect group
conjecture for G = 2.HS, it suffices to prove it for this 3-block.

Proof. (i) Since the conjecture is proved when the defect group is cyclic, we know from 4.1 that
it is enough to check it for the primes p ∈ {2, 3, 5}. For p = 2 it follows from [13, HS, (mod
2)] that there are a couple of blocks of G and both have non-abelian defect groups. For p = 5
it follows from [13, HS (mod 5)] that there are a couple of blocks of G which have noncyclic
defect groups and the defect group is non-abelian.

(ii) Assume that p = 3. Then, again by [13, HS (mod 3)], there are three 3-blocks of G
which have noncyclic defect groups. Those 3-blocks have defect groups which are elementary
abelian of order 9. Two of them are non-faithful and therefore these two blocks show up in HS.
For the principal 3-block of HS, the conjectures have been checked by Okuyama [42, Example
4.8]. For the non-principal 3-block of HS, they have been verified in our previous paper [21,
0.2 Theorem(ii)]. Thus, the remaining untreated case is a unique faithful 3-block of G with
noncyclic defect group. �

Notation 4.3. From now on, we assume p = 3 and let A be the block algebra of kG with
defect group P ∼= C3×C3 mentioned in 4.2; note that we are again abusing notation here, since
in the introductory Section 1 we have used the same letter for the associated block of OG, but
this will not lead to any confusion.

Set N = NG(P ), and let AN be the block algebra of kN which is the Brauer correspondent
of A. Let (P, e) be a maximal A-Brauer pair in G, namely, e is a block idempotent of kCG(P )
such that BrP (1A)·e = e, see [1], [6] and [54, §40]. Set H = NG(P, e), namely, H = {g ∈
NG(P )|g−1eg = e}. Let B be a block algebra of kH which is a Fong-Reynolds correspondent
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of AN , see 2.3; note that there are exactly two distinct Fong-Reynolds correspondents of AN ,
see 4.10(iii).

Lemma 4.4. (i) The 3-decomposition matrix of A is given as follows:

degree [8, p.81] S1 S2 = S1
∗ S3 S4 S5

176 χ26 1 . . . .
176∗ χ27 . 1 . . .
616 χ28 1 . 1 . .
616∗ χ29 . 1 1 . .
56 χ25 . . . 1 .

1000 χ32 . . . . 1
1792 χ35 1 1 1 . 1
1232 χ33 1 . . 1 1
1232∗ χ34 . 1 . 1 1

where S1, · · · , S5 are non-isomorphic simple kG-modules in A whose k-dimensions
are 176, 176, 440, 56, 1000, respectively. The simples S1 and S2 are dual to each
other, while the remaining are self-dual. There are three pairs (χ26, χ27), (χ28, χ29) and
(χ33, χ34) of complex conjugate characters, and all the other χi’s are real-valued.

(ii) All simple kG-modules S1, · · · , S5 in A have P as a vertex.

Proof. (i) follows from [13, HS (mod 3)] and [8, p.81], and for (ii) see [16, 3.7.Corollary]. �

Notation 4.5. We use the notation χ26, χ27, χ28, χ29, χ25, χ32, χ35, χ33, χ34, and S1, · · · , S5 as
in 4.4.

Lemma 4.6. The following holds:

(i) N = NG(P ) = 2.
(

2× (P o SD16)
)

= P o L for a subgroup L of N with |L| = 26 such

that L B Z ∼= C4 and L/Z ∼= SD16. Moreover, L/Z acts non-trivially on Z, with kernel
isomorphic to D8. (Recall that SD16 has a unique subgroup isomorphic to D8.)

(ii) CG(P ) = Z × P and L/Z acts faithfully on P . (Note that SD16 is a Sylow 2-subgroup
of GL2(3).)

(iii) Z = O3′(CG(P )) = O3′(N), and we can write Irr(Z) = {ψ0, ψ1, ψ2, ψ3} such that
ψi(z) =

√
−1 i for i = 0, 1, 2, 3, where z is a generator of Z ∼= C4, and

√
−1 ∈ O is a

fixed 4-th root of unity. Moreover, we have TN (ψi) = G for i = 0, 2, while for j = 1, 3
we have

TN (ψ1) = TN (ψ3) � G such that TN (ψj)/CG(P ) ∼= D8.

(iv) kN = A0 ⊕ A2 ⊕ AN as block algebras, having inertial quotients SD16, SD16 and
D8, respectively. Here, A0 is the principal block algebra of kN , covering ψ0, while A2

covers ψ2; hence AN is the faithful block algebra being the Brauer correspondent of A.
Moreover, A0

∼= A2
∼= k[P o SD16] as k-algebras, and

AN ∼= Mat2(k[P oD8])

as k-algebras, where AN has k[P oD8] as its source algebra.
(v) The 3-decomposition matrix of AN is given as follows:

2α 2β 2γ 2δ 4
χ2α 1 . . . .
χ2β = χ∗2α . 1 . . .
χ2γ . . 1 . .
χ2δ . . . 1 .
χ4 . . . . 1
χ8α 1 . 1 . 1
χ8β . 1 . 1 1
χ8γ = χ∗8β 1 . . 1 1

χ8δ = χ∗8α . 1 1 . 1

10



where the numbers mean the degrees (dimensions) of characters (modules). Note that
2β = 2α∗ and that 2γ, 2δ and 4 are all self-dual, but apart from this the characters of
degree 2 are indistinguishable: Apart from the character table automorphism of Irr(AN )
induced by complex conjugation there is another one interchanging

χ2γ ↔ χ2δ, χ8α ↔ χ8γ , χ8β ↔ χ8δ.

Proof. (i)–(ii) follow from explicit computation with GAP [10], and (iii) is an immediate conse-
quence.

(iv)–(v) It follows from (iii) and [37, Theorem 2] that kG = A0 ⊕A2 ⊕AN where

A0
∼= Mat|G:TG(ψ0)|ψ0(1)

(
kα[TG(ψ0)/Z]

)
∼= kα[P o SD16],

A1
∼= Mat|G:TG(ψ2)|ψ2(1)

(
kβ [TG(ψ2)/Z]

)
∼= kβ [P o SD16],

AN ∼= Mat|G:TG(ψ1)|ψ1(1)

(
kγ [TG(ψ1)/Z]

)
∼= Mat2

(
kγ [P oD8]

)
,

as k-algebras, for some α, β ∈ Z2(SD16, k
×), and γ ∈ Z2(D8, k

×). Since |H2(SD16, k
×)| = 1

by [15, Proof of Corollary (2J)], we have α ≡ β ≡ 1 (mod B2(SD16, k
×)). On the other

hand, |H2(D8, k
×)| = 2 by [12, V Satz 25.6]. But now the assertion in (v) follows by explicit

computation with GAP [10], in particular we get that there are 9 irreducible ordinary characters
belonging to AN , and 5 irreducible Brauer characters. Hence, by [15, Page 34 Table 1] we
infer γ ≡ 1 (mod B2(D8, k

×)). Finally, the statement about source algebras follows from [45,
Proposition 14.6], see [54, (45.12)Theorem] and [2, Theorem 13]. �

Remark 4.7. Note that the decomposition matrix of AN given above coincides with that of
B′ in 3.4. This will of course turn out to be no accident, but by the current state of knowledge
we cannot avoid the explicit computation to proceed as above.

Notation 4.8. We use the notation L and Z, as in 4.6. Moreover, let z be a generator of
Z ∼= C4. We also use the notation χ2α, χ2β , χ2γ , χ2δ, χ4, χ8α, χ8β , χ8γ , χ8δ and 2α, 2β, 2γ, 2δ, 4
as in 4.6.

Lemma 4.9. The block algebra AN has exactly 18 non-isomorphic trivial source modules over
k. In fact, they are given in the following list, in which the diagrams are Loewy and socle series
and we use the same notation as in 4.8.

(i) Five PIM’s: P (2α), P (2β), P (2γ), P (2δ), P (4).

2α
4

2α 2γ 2δ
4

2α

,

2β
4

2β 2γ 2δ
4

2β

,

2γ
4

2α 2β 2γ
4

2γ

,

2δ
4

2α 2β 2δ
4
2δ

,

4
2α 2β 2γ 2δ

4 4 4
2α 2β 2γ 2δ

4

.

(ii) Five trivial source modules with a vertex P : 2α, 2β, 2γ, 2δ, 4.

(iii) Eight trivial source modules with cyclic vertex of order 3, where we also give the asso-
ciated trivial source characters, see 2.1:

2α 2δ
4

2α 2δ

l
χ2α + χ2δ + χ8γ

,

2β 2γ
4

2β 2γ

l
χ2β + χ2γ + χ8δ

,

4
2α 2δ

4

l
χ4 + χ8γ

,

4
2β 2γ

4

l
χ4 + χ8δ

,
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Table 1. G′ = A8 as a subgroup of G = 2.HS.

G = 2.HS

N = NG(P ) = 2.(2× (P o SD16))

H = NG(P, e) = Z × (P oD8)

G′ = A8

H ′ = NG′(P ) = P oD8

CG(P ) = Z × P

P = CG′(P )
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�8

4

2

4

8

2α 2γ
4

2α 2γ

l
χ2α + χ2γ + χ8α

,

2β 2δ
4

2β 2δ

l
χ2β + χ2δ + χ8β

,

4
2α 2γ

4

l
χ4 + χ8α

,

4
2β 2δ

4

l
χ4 + χ8β

.

Proof. This follows from 3.6 and 4.6(iv). �

Lemma 4.10. The following holds:

(i) H = Z × (P oD8) = CG(P )oD8, hence H C N such that |N/H| = 2.
(ii) We have the block decomposition

kH = B0 ⊕B1 ⊕B2 ⊕B3,

where the block Bi covers the block containing ψi ∈ Irr(Z) for i = 0, 1, 2, 3.
(iii) Hence both B1 and B3 are Fong-Reynolds correspondents of AN , see 4.3.
(iv) We can write IBr(Bi) = {1αi, 1βi, 1γi, 1δi, 2Bi

}, for i = 0, 1, 2, 3, so that we have

2x↓NH = 1x1 ⊕ 1x3, for each x ∈ {α, β, γ, δ}, and 4↓NH = 2B1 ⊕ 2B3 .

Proof. This follows from 4.6 and 2.3. �

Notation 4.11. We use the notation 1αi, 1βi, 1γi, 1δi, 2Bi as in 4.10.

Lemma 4.12. The following holds:

(i) The group G = 2.HS has a unique conjugacy class of subgroups isomorphic to G′ = A8.
(ii) Fixing an embedding of G′ into G, and a Sylow 3-subgroup P of G′, we have the con-

figuration of groups as depicted in Table 1, where the numbers between two boxes are
indices between the two corresponding groups.

Proof. This follows from [8, pp.80–81], 3.1, 4.6 and 4.10. �
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Remark 4.13. In view of the group theoretic configuration given in 4.12, a few more detailed
comments on how computations in GAP [10] are actually done are in order:

The starting point is the smallest faithful permutation representation of G on 704 points,
available in terms of standard generators, see [56], in [59]; we choose this realisation of G once
and for all. Moreover, there is a maximal subgroup of G isoclinic to S8 × 2, a generating set
of which in terms of the standard generators of G is available in [59] as well. Hence going over
to the derived subgroup of the latter, we find a subgroup G′ 6 G isomorphic to A8; we keep
G′ fixed all the time. Finally, we compute a Sylow 3-subgroup P of G′, and keep this fixed as
well. Since the other groups appearing in the diagram in 4.12 are uniquely determined from
this by group theoretic properties, we have thus achieved a concrete realisation of the above
configuration of groups.

Using this setting we have all kinds of computational tools at our disposal: In particular,
we are able to compute the ordinary and Brauer character tables of the groups N , H, and H ′

explicitly, as well as the restriction or induction of characters between these groups. Moreover,
we may fetch representations of G and G′ from [59], or compute them using the MeatAxe [50],
and restrict them explicitly to N , H, and H ′, respectively, in order to analyse the restrictions
with the MeatAxe [50] and its extensions.

Note that the explicit results in 3.4 and 4.6 have been obtained in that setting already.
Moreover, by restricting the representation 28, see 3.3, from G′ to H ′ we are able to compute
its Green correspondent f ′(28), see 3.8, and thus to identify the representation 1d, see 3.5. In
the same spirit we obtain the following, where we recall that so far, we are not able to tell 2γ
and 2δ apart, see 4.6(v):

Lemma 4.14. The following holds:

(i) For i = 1, 3 the restriction functor Res↓HH′ induced by the (Bi, B
′)-bimodule Bi

(Bi)B′

induces a Puig equivalence mod-Bi → mod-B′.
(ii) {1α1↓HH′ , 1α3↓HH′} = {1a, 1b} = {1β1↓HH′ , 1β3↓HH′}, where 1αi↓HH′ 6= 1βi↓HH′ ; hence

2α↓NH′ = (2α∗)↓NH′ = 2β↓NH′ = 1a⊕ 1b.

(iii) 1γ := 1γ1↓HH′ = 1γ3↓HH′ and 1δ := 1δ1↓HH′ = 1δ3↓HH′ , where {1γ, 1δ} = {1c, 1d}; hence

2γ↓NH′ = 1γ ⊕ 1γ and 2δ↓NH′ = 1δ ⊕ 1δ.

(iv) 2B1
↓HH′ = 2B3

↓HH′ = 2; hence 4↓NH′ = 2⊕ 2.

Proof. Most of the assertions follow from 4.10, while the identification of the explicit restrictions
1xi↓HH′ , for x ∈ {α, β, γ, δ}, follows from explicit computations in GAP [10]. �

5. Stable equivalences for 2.HS

Strategy 5.1. Our practical aim in §§5–7 is to construct a functor F̃ : mod-A → mod-A′,
where A is the non-principal block algebra of kG = k[2.HS] with defect group P ∼= C3×C3, and

A′ is the principal block algebra of kA8, such that F̃ induces a stable equivalence of Morita type

between A and A′, and that F̃ transfers each simple kG-module in A to a simple kA8-module

in A′. If it has been done, then Linckelmann’s theorem 2.2(ii) yields that F̃ realizes a Morita
equivalence between A and A′.

Notation 5.2. Recall the notation G, A, P , N , H, B, e as in 4.1, 4.3 and 4.8. Let i and j
respectively be source idempotents of A and B with respect to P . As remarked in [32, pp.821–
822], we can take i and j such that BrP (i)·e = BrP (i) 6= 0 and that BrP (j)·e = BrP (j) 6= 0.
Set GP = CG(P ) = CH(P ) = HP .

Moreover, letting Q 6 P be a subgroup of order 3, we set GQ = CG(Q) and HQ = CH(Q).
By replacing eQ and fQ (if necessary), we may assume that eQ and fQ respectively are block
idempotents of kGQ and kHQ such that eQ and fQ are determined by i and j, respectively.
Namely, BrQ(i)·eQ = BrQ(i) and BrQ(j)·fQ = BrQ(j). Let AQ = kGQ·eQ and BQ = kHQ·fQ,
so that eQ = 1AQ

and fQ = 1BQ
.

Lemma 5.3. The following holds:
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(i) All elements in P − {1} are conjugate in N , and hence in G; actually P − {1} ⊆ 3A,
where 3A is a conjugacy class of G following the notation in [8, pp.80–81]. Thus all
subgroups of P of order 3 are conjugate in N , and hence in G.

(ii) The elements in P − {1} fall into two conjugacy classes of H. Thus P has exactly two
H-conjugacy classes of subgroups of order 3; we fix representatives Q and R. Note that
we can use the same notation Q and R as in 3.1.

(iii) HQ = CN (Q) = Z×Q×S3 and HR = CN (R) = Z×R×S3, so that HQ/Q ∼= C4×S3

and HR/R ∼= C4 ×S3.
(iv) GQ = Q× (A5 o Z) ∼= Q× (A5 × 2).2, so that GQ/Q ∼= (A5 × 2).2.

Proof. (i)–(iii) follow from 4.6 and 4.10, (iv) follows from an explicit computation in GAP
[10]. �

Lemma 5.4. Let MQ be the unique (up to isomorphism) indecomposable direct summand of

AQ↓
GQ×GQ

GQ×HQ
·1BQ

with vertex ∆P . Then, the pair (MQ,M∨Q) induces a Puig equivalence between

AQ and BQ.

Proof. Note first that MQ exists by [23, 2.4.Lemma], and also that P is a defect group of
AQ and BQ by [32, 7.6]. Then using 5.3(iii) and (iv), as well as 2.7(iv), the assertion follows
as in [23, Proof of 6.2.Lemma], by going over to the central quotients GQ/Q and HQ/Q and
their blocks dominating AQ and BQ, respectively, and applying [20, 1.2.Theorem] and [19,
Theorem]. �

Lemma 5.5. The (A,B)-bimodule 1A·kG·1B has a unique (up to isomorphism) indecomposable
direct summand M with vertex ∆P . Moreover, the functor

F : mod-A→ mod-B : XA 7→ (X ⊗AM)B

induces a splendid stable equivalence of Morita type between A and B. In particular, F fulfils
the assumptions of 2.6, and hence its assertions as well.

Proof. Note first that, again, AMB exists by [23, 2.4.Lemma]. Then the assertion follows
as in [23, Proof of 6.3.Lemma], by applying [24, Theorem] in order to make use of 5.4, and
using gluing through [32, 3.1.Theorem]; note that the fusion condition in the latter theorem is
automatically satisfied by [22, 1.15.Lemma]. �

Notation 5.6. We use the notation M and F as in 5.5.

Lemma 5.7. The following holds:

(i) The (A,AN )-bimodule 1A·kG·1AN
has a unique (up to isomorphism) indecomposable

direct summand MN with vertex ∆P . Moreover, the functor

FN : mod-A→ mod-AN : XA 7→ (X ⊗AMN )AN

induces a splendid stable equivalence of Morita type between A and AN . In particular,
FN fulfils the assumptions of 2.6, and hence its assertions as well.

(ii) Suppose that X is an indecomposable kG-module in A such that a vertex of X belongs
to A(G,P,N), and let FN (X) = Y ⊕ (proj) for a non-projective indecomposable kH-
module Y in B, and FN (X) = f(X)⊕(proj), where f denotes the Green correspondence
with respect to (G,P,N). Then, f(X) is the correspondent of Y with respect to the

Fong-Reynolds correspondence between B and AN , namely f(X) ∼= Y ↑N .

Proof. (i) follows by 5.5 and 2.3, and (ii) follows from 2.6. �

6. Images of simples via the functor FN
Notation 6.1. For brevity, let F : mod-A→ mod-AN denote the functor induced by FN given
in 5.7. Recall that F (X) = f(X) ⊕ (proj), where f is the Green correspondence with respect
to (G,P,N), whenever the Green correspondent f(X) is defined, see 5.7(ii). Recall also the
modules S1, · · · , S5 defined in 4.4 and 4.5.

Lemma 6.2. The simples S1 and S2 are trivial source kG-modules.
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Proof. By [8, p.80] G has a subgroup U with U ∼= U3(5). Then, by a computation with GAP [10],

we know 1U↑G·1A = χ26 + χ27. Therefore there is a kG-module X such that X = (kU↑G·1A)
and X is liftable to an OG-lattice affording χ26 +χ27. Thus by 4.4, it holds that X = S1 +S2,
as composition factors. From 2.1(ii), we have dimk[EndkG(X)] = 2. Hence X ∼= S1 ⊕ S2, since
S1 6∼= S2. �

Lemma 6.3. The simple S4 is a trivial source kG-module.

Proof. By [8, p.80] G has a subgroup M with M ∼= M11. Then, again by a computation with

GAP [10], it holds that 1M↑G·1A = χ25 + χ26 + χ27 + χ28 + χ29. Set X = kM↑G·1A. Thus
it follows from [28, I Theorem 17.3] that X has a submodule S such that S ↔ χ25. By 4.4,
S ∼= S4 and X = 2×S1 + 2×S2 + 2×S3 +S4 as composition factors. Therefore the self-duality

of S4 and X implies S
∣∣∣X. �

Lemma 6.4. The simple S5 is a trivial source kG-module.

Proof. As before it follows from [8, p.80] that G has a maximal subgroup M such that M ∼=
2.M22 and |G : M | = 100. By [8, p.39] and [13, M22 (mod 3)], we know that M has a 3-block

Ã (which is called ”Block 6” in [13, M22 (mod 3)]) such that Ã has a defect group P̃ with

P̃ ∼= C3 ×C3, where we can assume P̃ = P . Moreover, Ã has an irreducible ordinary character
χ̃13 of degree 10, and Ã has a simple kM -module S̃ of dimension 10 corresponding to χ̃13.
Now, it follows from [9, Proposition 3.19] that S̃ has a trivial source. On the other hand, a

computation in GAP [10] shows χ̃13↑G = χ32. Therefore 4.4 yields that S5
∼= S̃↑G also has a

trivial source. �

Lemma 6.5. We can assume that f(S1) = 2α and f(S2) = f(S∗1 ) = (2α)∗ = 2β.

Proof. It follows from 6.2, 4.4 and [41, Lemma 2.2] that f(S1) and f(S2) are simple, so
{f(S1), f(S2)} ⊆ {2α, 2β, 2γ, 2δ, 4}. Then, since 2γ, 2δ, 4 are self-dual and 2β = (2α)∗ by
4.6(v), and since S2 = S1

∗ by 4.4, it holds that {f(S1), f(S2)} = {2α, 2β}. Thus we get the
assertion. �

Lemma 6.6. We can assume that

f(S4) = 2δ and f(S5) = 4.

Recall that by considering N just as an abstract group {2γ, 2δ} are indistinguishable, see 4.6(v).
But fixing N 6 G and specifying f serves to identify the latter uniquely.

Proof. It follows from 6.3, 6.4, 6.5, 4.4 and [41, Lemma 2.2] that {f(S4), f(S5)} ⊆ {2γ, 2δ, 4}.
Now, by 4.1 and Sylow’s theorem, we have |G : N | ≡ 1 (mod 3). Set Ti = f(Si) for i = 4, 5.

By the definition of Green correspondence, T5↑G = S5 ⊕X for a kG-module X such that X is
Q-projective. Hence, by 4.1 and [40, Chap.4, Theorem 7.5], it holds that

dim(S5) ≡ dim(T5↑G) = dim(T5) · |G : N | ≡ dim(T5) mod 3,

and dim(S5) = 1000 ≡ 1 mod 3. Thus, T5 = 4, so that T4 ∈ {2γ, 2δ}. �

Lemma 6.7. Using the assumption of 6.6, it holds that

f(S3) =
2γ
4
2γ

.

Proof. As noted in the proof of 6.4, G has a maximal subgroup M such that M ∼= 2.M22 and
|G : M | = 100. By [8, p.39] and [13, M22 (mod 3)], we know that M has a 3-block B̃ (which is

called ”Block 7” in [13, M22 (mod 3)]) such that B̃ has a defect group Q̃ with Q̃ ∼= C3, where we

can assume Q̃ = Q. Moreover, B̃ has an irreducible ordinary character χ̃16 of degree 120, and
B̃ has a simple kM -module T̃ of dimension 120 corresponding to χ̃16. Now, it follows from [9,

Proposition 3.19] that T̃ is a trivial source module with vertex Q. Hence the indecomposable
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summands of X := T̃↑G · 1A have a trivial source as well, and are Q-projective. On the other
hand, a computation in GAP [10] says that

X ↔ χ̃16↑G · 1A = χ26 + χ27 + χ28 + χ29.

Therefore, 4.4 yields that X = 2× S1 + 2× S1
∗ + 2× S3 as composition factors; note that this

shows that X is projective-free. Recall that χ26 ↔ S1 and χ28 ↔ S1 + S3. Hence, it holds by
2.1, 6.2 and 4.4 that, as k-spaces,

HomkG(S1, X) ∼= HomkG(S1
∗, X) ∼= HomkG(X,S1) ∼= HomkG(X,S1

∗) ∼= k,

HomkG(S4, X) = HomkG(S5, X) = HomkG(X,S4) = HomkG(X,S5) = 0.

Moreover, it follows from [28, II Lemma 2.7 and Corollary 2.8], 6.5 and 6.1 that, as k-spaces,

HomkN (F (X), 2α) ∼= HomkN (F (X), 2α) ∼= HomkG(X,S1) ∼= HomkG(X,S1) ∼= k.

Similarly, we get HomkN (F (X), (2α)∗) ∼= k. Using 6.6 in the above proof, we obtain

HomkN (F (X), 2δ) = HomkN (F (X), 4) = HomkN (2δ, F (X)) = HomkN (4, F (X)) = 0.

Then, let Y be an indecomposable direct summand of X with S1

∣∣∣(Y/rad(Y )), hence Y

is non-projective. This means that we can write F (Y ) = U ⊕ (proj) for a non-projective
indecomposable kN -module U in AN , where by 2.6 we infer that U is a trivial source kN -
module with vertex Q, since T̃ has vertex Q and Y is non-projective. Moreover, from

F (X) = F (Y )⊕ (module) = U ⊕ (proj)⊕ (module),

6.5 and 6.1, we get HomkN (F (Y ), 2δ) = HomkN (F (Y ), 4) = 0 and

HomkN (U, 2α) ∼= HomkN (U, 2α) ∼= HomkN (F (Y ), 2α)

∼= HomkG(Y, S1) ∼= HomkG(Y, S1) ∼= k.

Thus, from 4.9(iii) we conclude that

U =
2α 2γ

4
2α 2γ

.

Since U
∣∣∣F (X) and X is self-dual, by [26, A.2.Lemma] we have U∗

∣∣∣F (X)∗ = F (X∗) = F (X)

as well. Since U is not self-dual, this yields that

F (X) = U ⊕ U∗ ⊕ (module)⊕ (proj)

=
2α 2γ

4
2α 2γ

⊕ (2α)∗ 2γ
4

(2α)∗ 2γ

⊕
(module)

⊕
(proj),

Note that since X is Q-projective, neither S1 nor S1
∗ can possibly be a direct summand of X

by 4.4(ii). Hence it follows from the stripping-off method, see 2.5, that there is a subquotient
module Z of X such that Z = S3 + S3 as composition factors, and such that

F (Z) = V ⊕ V ∗ ⊕ (module) ⊕ (proj), where V =

2γ
∣∣∣∣∣∣ 4

∣∣∣∣∣∣ 2γ

.

Since F induces a stable equivalence by 6.1, we conclude that Z is decomposable, that is
Z ∼= S3 ⊕ S3, which implies that F (S3)⊕ F (S3) = V ⊕ V ∗, since F (S3) is indecomposable by
2.2(i). Hence we infer that V ∼= V ∗ is indecomposable, having Loewy and socle series

V =
2γ
4

2γ
.
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Remark 6.8. (a) Note that the above analysis also shows that

X =
S1

S3

S1

⊕ S∗1
S3

S∗1

,

but we do not need this fact.

(b) Moreover, to prove 6.7, as an alternative we could have proceeded as follows: Actually,
the structure of the Green correspondent f(S3) and of the trivial source module X had been
found by explicit computation in the first place, hence we just could have stated the outcome.
But, having seen these results, subsequently we have managed to compile the above proof,
which now is based as much as possible on general principles.

7. Proof of main results

Lemma 7.1. Keeping the setting in 4.12 fixed, we have

2δ↓NH′ = 1δ ⊕ 1δ = 1d⊕ 1d and 2γ↓NH′ = 1γ ⊕ 1γ = 1c⊕ 1c.

Proof. By 4.14 we have to show that 1δ = 1d. In order to do so, we employ the kG-module
S4, for which we first show that S4↓G′ = 28⊕28: By an explicit computation with GAP [10] we
know that S4↓G′ = 2× 28 as composition factors, see 4.4 and 3.2. Hence we are done as soon
as we show that Ext1

kG′(28, 28) = 0. This in turn is seen as follows: Since by 3.7 the functor
F ′ commutes with taking Heller translates in the stable module categories, we have

Ext1
kG′(28, 28) ∼= Ext1

kH′(F ′(28),F ′(28)) ∼= Ext1
kH′(1d, 1d) = 0,

by making use of 3.8, and the vanishing result in the proof of 3.6. (As an alternative, the
vanishing of Ext1

kG′(28, 28) can also be found in [53, Appendix p.3115].)
Now, on the one hand we get by 3.8 that

S4↓H′ =S4↓G′↓H′ = (28⊕ 28)↓H′

=
(
f ′(28)⊕ f ′(28)⊕ (Y(G′, P,H ′)-proj)

)
=1d⊕ 1d⊕ (Y(G′, P,H ′)-proj),

see [40, Chap.4, §4]. On the other hand, we get from 6.6 that

S4↓H′ =S4↓N↓H′ =
(
f(S4)⊕ (Y(G,P,N)-proj)

)
↓H′

=
(

2δ ⊕ (Y(G,P,N)-proj)
)
↓H′

=(1δ ⊕ 1δ)⊕
(
Y(G,P,N)-proj

)
↓H′ .

Therefore, by comparing the vertices of the indecomposables showing up above and by Krull-
Schmidt’s theorem, we finally know that 1δ = 1d. �

Lemma 7.2. The blocks A and A′ are Morita equivalent induced by an (A,A′)-bimodule which
is ∆P -projective and is a trivial source k[G×G′]-module.

Proof. We are now able to specify functors as envisaged in 5.1: Indeed A and A′ are splendidly
stable equivalent of Morita type by either of the (A,A′)-bimodules

M̃i = A(M⊗Bi Bi ⊗B′M′
∨

)A′ ,

whereM andM′ are the same as in 5.5 and 3.7, respectively, and i = 1, 3 by 4.14(i). Hence,
the following holds from 3.8, 5.7(ii) as well as 6.5, 6.6, 6.7, 4.14(ii)–(iv) and 7.1:
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mod-A
F−→ mod-Bi

Res↓H
H′−→ mod-B′

F ′−1

−→ mod-A′

S1 7→ 1αi 7→

{
1a

1b
7→

kG′

7

}

S2 = S∗1 7→ 1βi 7→

{
1b

1a
7→

7

kG′

}

S3 7→
1γi
2Bi

1γi

7→
1c
2
1c

7→ 13

S4 7→ 1δi 7→ 1d 7→ 28

S5 7→ 2Bi
7→ 2 7→ 35

Note that, by 3.6(i), the B′-module F ′(13) is uniquely (up to isomorphism) determined by its
Loewy series; hence we indeed have

Res↓HH′(F(S3)) ∼= F ′(13).

Therefore we finally get that A and A′ are Morita equivalent by 2.2(ii). More precisely, we

know also that the Morita equivalence is given by either of the bimodules M̃i, satisfying the
properties desired. �

Remark 7.3. A remark on the strategy employed in the proofs of 7.1 and 7.2 is in order:
(a) To derive 7.1 we use the full strength of 4.12: Indeed, using an embedding H ′ 6 G′ and

the Green correspondence f ′, we have defined 1d, see 3.8, and similarly, using an embedding
H 6 N 6 G and the Green correspondence f , we have defined 1δ see 6.6. But from that alone
we would only be able to conclude that {1γ, 1δ} = {1c, 1d}, see 4.14. Now only additionally
using an embedding G′ 6 G, entailing a compatible embedding H ′ 6 H, we are able to conclude
as in the proof of 7.1, whose starting point is restricting S4 from G to G′.

(b) In order to be able to proceed as in the proof of 7.2 we have to ensure that the functor

induced by M̃i maps simple A-modules to simple A′-modules, which happens if and only if

Res↓HH′(F(S4)) = Res↓HH′(1δi) = 1δ
!
= 1d = F ′(28),

which is proved by the full strength of 7.1. Without using the explicit configuration of groups
in 4.12 we only know 1δ ∈ {1c, 1d}. (Note that this phenomenon has also been observed in [23,
6.14.Question].) As an alternative we would have to proceed as follows:

By 3.4(ii) there is an outer automorphism of H ′, hence inducing a Morita self-equivalence of

of kH ′ = k[P oD8], interchanging 1c↔ 1d. Twisting the bimodule M̃i accordingly then still
yields a Morita equivalence between A and A′. But the outer automorphism applied necessarily
changes the structure of kH ′, which is its own source algebra, as an interior P -algebra; in other
words, the twisted bimodule then no longer is ∆P -projective, hence it does no longer induce
a Puig equivalence between A and A′. Thus, as already indicated in 1.6(a) we would end up
with the weaker statement in 7.2 only saying that A and A′ are Morita equivalent.

Remark 7.4. In the proofs of 1.5, 1.3 and 1.4 below, we note that a Puig equivalence lifts
from k to O by a result of Puig [44, 7.8.Lemma] (see [54, (38.8)Proposition]), and so does a
splendid derived equivalence by a result of Rickard [48, Theorem 5.2], see also [11, p.75, lines
−17∼−13]). Hence, it is enough to consider all blocks only over k instead of O.

Proof of 1.5. By 1.8, the assertion of 7.2 is equivalent to saying that A and A′ are Puig
equivalent. �
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Remark 7.5. In the proof of 1.5 the two choices of M̃i, for i = 1, 3, account precisely for the
two bijections between the simple A- and A′-modules as described in 1.6(b).

Proof of 1.3. This follows from 1.5, since by [42, Example 4.3] and [43, Theorem 3] the block
algebras A′ and B′ are splendidly derived equivalent, and by 4.14(i) and 2.3 the block algebras
B′ and B are Puig equivalent. �

Proof of 1.4. This follows from 1.3 and 4.2. �
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Verlag, Basel, 1999.

[47] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303–317.
[48] J. Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc.

(3) 72 (1996), 331–358.

[49] J. Rickard, Triangulated categories in the modular representation theory of finite groups, in: Derived
Equivalences for Group Rings, edited by S. König and A. Zimmermann, Lecture Notes in Math., Vol.1685,

Springer, Berlin, 1998, pp.177–198.
[50] M. Ringe, The C-MeatAxe, Version 2.4, http://www.math.rwth-aachen.de/homes/MTX, 1998.

[51] R. Rouquier, From stable equivalences to Rickard equivalences for blocks with cyclic defect, in: Groups

’93 Galway/St Andrews Vol.2, edited by C.M. Campbell et al., London Math. Society Lecture Note Series,
Vol.212 (1995), pp.512–523, London Math. Soc., Cambridge.

[52] R. Rouquier, The derived category of blocks with cyclic defect groups, in: Derived Equivalences for Group

Rings, edited by S. König and A. Zimmermann, Lecture Notes in Mathematics, Vol.1685, Springer, Berlin,
1998, pp.199–220.

[53] S. Siegel, Projective modules for A9 in characteristic three, Comm. Alg. 19 (1991), 3099–3117.
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