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Abstract. The genus spectrum of a finite group G is the set of all g ≥ 2

such that G acts faithfully and orientation-preserving on a closed compact

orientable surface of genus g. This article is an overview of some results

relating the genus spectrum of G to its group theoretical properties. In

particular, the arithmetical properties of genus spectra are discussed, and

explicit results are given on the 2-groups of maximal class, certain sporadic

simple groups and a some of the groups PSL(2, q), where q is a small prime

power. These results are partially new, and obtained through both theoret-

ical reasoning and application of computational techniques.
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1 Introduction

Let Σg denote an orientable closed compact surface of genus g ≥ 0.
Let G be a finite group acting on Σg preserving orientation. It is
known that there is a complex structure (X,Σg) on the surface Σg such
that the group action can be realized as a subgroup of Aut(X,Σg).
Given such a surface Σg, there possibly are uncountably many such
complex structures (X,Σg). However, for a fixed g ≥ 2, there are only
finitely many groups of finite order which could possibly act faithfully
on such surfaces. Indeed, it is well-known since the time of Hurwitz
[16], that for any g ≥ 2 and finite subgroup G of Aut(X,Σg) we have
|G| ≤ 84(g − 1).

It is however uninteresting to list the finite groups acting on surfaces
without the knowledge of the topological action. The following result,
also known as Hurwitz’s Theorem, essentially translates the topolog-
ical language into combinatorial group theory. From now on we will
consider only faithful actions, unless otherwise stated.

Theorem 1.1: (Riemann’s Existence Theorem) A finite group G
acts on a surface Σg of genus g ≥ 0 if and only if
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(1) there are integers h ≥ 0 and n1, . . . , nr ≥ 2, for some r ≥ 0, such
that the Riemann-Hurwitz relation

2(g − 1) = |G|

(
2(h− 1) +

r∑
i=1

(1− 1

ni
)

)
holds, and

(2) there are elements a1, b1, . . . , ah, bh, c1, . . . , cr ∈ G such that

G = 〈a1, b1, . . . , ah, bh, c1, . . . cr〉,
fulfilling the long relation

h∏
i=1

[ai, bi] ·
r∏
j=1

cj = 1

and such that
|cj| = nj, 1 ≤ j ≤ r.

�

Applying this to the genera g = 0 and g = 1 leads to the well-known
result, indicated in Table 1, on the finite groups which can act on such
surfaces, see for example [3, Sect.I.3.4].

genus finite groups

0 Cn (cyclic), Dn (dihedral), A4, S4, A5

1 (Cm × Cn) : T , where T = C2, C3, C4 or C6

Table 1

Thus we will henceforth only consider actions of finite groups on sur-
faces of genus g ≥ 2. As was said earlier, for any fixed g there are only
finitely many groups in question. But changing the point of view, and
fixing a finite group, leads to the following notion:

Definition 1.2: Let G be a finite group. The set of all integers g ≥
2 which satisfies the conditions in Theorem 1.1 is called the genus
spectrum of G. We denote it by sp(G).

Let δ = (h;n1, n2, . . . , nr) be a tuple of r+1 integers satisfying the con-
ditions of Theorem 1.1. We see that if δ′ = (h;n′1, n

′
2, . . . , n

′
r) is another

such tuple where (n′1, n
′
2, . . . , n

′
r) is a permutation of (n1, n2, . . . , nr),

then δ′ also satisfies the conditions of Theorem 1.1. Hence let Dr(G)
be the quotient of the collection of all tuples δ = (h;n1, n2, . . . , nr)
under the action of the symmetric group Sr on its last r coordinates.



3

We call the set D(G) :=
⋃
r≥0 Dr(G) the data spectrum of G, and

its elements data or signatures. Then there is the genus function
g: D(G) −→ N0 defined by

δ = (h;n1, n2, . . . , nr) 7→ g(δ) := |G|

(
(h− 1) +

1

2

r∑
i=1

(1− 1

ni
)

)
+ 1

sending a datum to its genus. Thus the image of g, possibly after delet-
ing a subset of {0, 1}, is precisely the genus spectrum of G. The basic
arithmetic property of the genus spectrum sp(G) is given as follows:

Theorem 1.2 [17]: Let G be a finite group. Then there exists a
natural number NG such that:

(1) If g ∈ sp(G) then g ≡ 1 mod NG, and

(2) sp(G) is cofinite in the set 1 +NGN, that is, up to finitely many
exceptions for all g satisfying g ≡ 1 mod NG we have g ∈ sp(G). �

The number NG for a finite group G is called the genus increment
for G, and is found easily as is outlined in Section 2.

Let FG denote the class of all finite groups, and A denote all sets
of positive integers which are cofinite subsets of some arithmetic set
of the form 1 + λN, for some λ ∈ N. We consider the function sp
: FG −→ A, which assigns to every finite group its genus spectrum,
that is, sp(G) := sp(G). We immediately see that the function sp is
a decreasing function with respect to set-theoretic inclusion on both
sides. It is natural to ask the following questions:

Question 1: Is sp surjective?

It is difficult to answer this question since it is not at all easy to compute
the spectrum of finite groups. However the set N \ {1} is the spectrum
of the cyclic groups C2 and C3, of order 2 and 3, respectively. Hence
at least the full set N \ {1} is in the image of sp.

The function sp is clearly not injective, as seen in the previous para-
graph. However for a specific subclass C of FG, we can restrict the
function sp to C, and ask if the restricted function sp|C is injective.
For example, if Cp is the class of all finite cyclic p-groups, with p fixed,
the restricted function sp|Cp is known to be injective [18]. The following
question is still open:

Question 2: Let p be a fixed prime, and let ABp be the class of all
finite abelian p-groups. Is sp|ABp injective?



4

A partial answer is given in [29], where it is shown that sp|AB(p,p2) is

injective, where AB(p,p2) is the class of all finite abelian p-groups of
exponent up to p2.

Coming back to the question of surjectivity of sp, to get some idea we
need a lot of information regarding the spectra of various types of finite
groups. Towards this, we introduce more parameters:

Definition 1.3 Let G be a finite group with genus increment NG. The
minimum genus µ(G) and the stable upper genus σ(G) of G are
defined as follows:

µ(G) := min sp(G)

σ(G) := min{g ∈ sp(G) : g +NGN0 ⊆ sp(G)}

Moreover, the finite set

I(G) := {g ≥ µ(G) : g ∈ 1 +NGN} \ sp(G)

is called the gap sequence of G. Hence a complete spectrum sp(G)
of G is determined by the quadruple (NG, µ(G), σ(G), I(G)).

There is a long series of articles written by various authors describing
the minimum genus µ(G), also referred to as the (strong) symmetric
genus, for various finite groups G. These groups include cyclic groups
[14], non-cyclic abelian groups [21], metacyclic groups [22], alternating
and symmetric groups [5].

Moreover, the minimum genus is known for all 26 sporadic simple
groups [6, 9, 20, 32, 33, 34], as indicated in Table 2. The corre-
sponding actions are all given by some triangular datum of the form
(0;n1, n2, n3) ≡ (n1, n2, n3), where the adjacent letters represent the
numerals of the conjugacy classes the corresponding group generators
belong to, following the notation of [4]. For the groups Co1 and Fi′24

we have not been able to figure out all pieces of information, the un-
certainties are indicated as question marks.

The minimum genus of a finite group corresponding to the datum
(0; 2, 3, 7) is of a special importance: From the Hurwitz upper bound
we see that a possible genus g ≥ 2 for a finite group G would satisfy

g ≥ |G|
84

+ 1. Now, if g corresponds to the datum (0; 2, 3, 7) it follows

from the Riemann-Hurwitz relation in Theorem 1.1, that g = |G|
84

+ 1,
which is the lower bound for g. This gives rise to the question of deter-
mining finite groups G which have this property, known as Hurwitz
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group minimum genus action

M11 631 (2A, 4A, 11A)
M12 3, 169 (2B, 3B, 10A)
J1 2, 091 (2A, 3A, 7A)
M22 34, 849 (2A, 5A, 7A)
J2 7, 201 (2B, 3B, 7A)
M23 1, 053, 361 (2A, 4A, 23A)
HS 1, 680, 001 (2B, 3A, 11A)
J3 1, 255, 825 (2A, 4A, 5A)
M24 10, 200, 961 (3A, 3B, 4C)
McL 78, 586, 201 (2A, 5A, 8A)
He 47, 980, 801 (2B, 3B, 7D)
Ru 1, 737, 216, 001 (2B, 3A, 7A)
Suz 11, 208, 637, 441 (2B, 4D, 5B)
O’N 9, 600, 323, 041 (2A, 3A, 8A)
Co3 5, 901, 984, 001 (2B, 3C, 7A)
Co2 1, 602, 478, 080, 001 (2C, 3A, 11A)
Fi22 768, 592, 281, 601 (2C, 3D, 7A)
HN 3, 250, 368, 000, 001 (2B, 3B, 7A)
Ly 616, 252, 131, 000, 001 (2A, 3B, 7A)
Th 1, 080, 308, 855, 808, 001 (2A, 3C, 7A)
Fi23 85, 197, 301, 526, 937, 601 (2C, 3D, 8C)
Co1 86, 620, 350, 136, 320, 001 (2?, 3D, 8?)
J4 1, 033, 042, 512, 453, 304, 321 (2B, 3A, 7A)
Fi′24 14, 942, 925, 109, 412, 639, 539, 201 (2B, 3E, 7?)
B 86, 557, 947, 525, 550, 545, 649, 532, 928, (2D, 3B, 8x),

000, 001 x ∈ {K,M,N}
M 9, 619, 255, 057, 077, 534, 236, 743, 570, (2B, 3B, 7B)

297, 163, 223, 297, 687, 552, 000, 000, 001

Table 2

groups; for more details the reader is suggested to look into the survey
articles [7, 8] and the references therein.

The stable upper genus σ(G) is rather harder to compute and only
known for very few types of groups: for finite cyclic p-groups [18],
metacyclic groups [31], as well as p-groups of cyclic deficiency ≤ 2 and
elementary abelian p-groups for p odd [24]. The answer is also known
partially for abelian p-groups [29], and cyclic groups of order pq for
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primes p 6= q [26]. A description of genus spectra of finite p-groups of
exponent p is also given in [28].

Encouraged by the similarities of the genus spectra for p-groups (p
odd) of exponent p whose lower central series have the same first two
quotients, it was worth investigating the genus spectra for the finite
non-abelian p-groups whose lower central series quotients would be
relatively simple to study. The corresponding groups are known as
p-groups of maximal class (or co-class 1, see [19]). It is shown in
[28] that if p is an odd prime and n ≤ p then all finite p-groups of
maximal class and of order pn would have the same genus spectrum.
The following question is however open:

Question 3: Show that for n large there are only two genus spectra
for the finite p-groups of maximal class of order pn where p is odd.

The story for 2-groups of maximal class is relatively simpler. There are
are only three isomorphism types of finite 2-groups of maximal class.
The minimum and the stable upper genus for these groups, and hence
the genus spectra, are all different. The proofs of this are outlined in
Section 3.

There is rather a different and relatively complicated journey towards
description of genus spectra for finite simple groups. The genus spectra
of the first twelve sporadic simple groups (out of the total 26 of them)
have been calculated using techniques of computational group theory
and utilizing the computer algebra system GAP [10]. These result would
encourage us to investigate the estimate of the number of solutions of
the associated diophantine equations which are not realizable in G, also
known as bad solutions. This is discussed in detail in Section 4.

Acknowledgement: The first author would like to thank partial
funding credits to Lady Davis (2007-8) and Golda Meir (2008-9) post-
doctoral scholarship funding (Hebrew University, Jerusalem), and the
hospitality of RWTH Aachen.

2 Arithmetic of the spectrum and groups of
GK-type

The genus incrementNG of a finite groupG is connected to the 2-groups
of GK-type which we will briefly describe now.
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Definition 2.1: A finite p-group G of exponent pe is said to be of
Gorenstein-Kulkarni type (GK-type) if the set κ(G) := {y ∈
G : |y| < pe} of elements of non-maximal order forms a subgroup of
G of index p.

Theorem 2.2 [17]: Given a finite group G, for every prime p let Gp

denote a Sylow p-subgroup of G. Denote by pnp and pep the order and
exponent of Gp, respectively. Then the genus increment NG of G is
given as follows:

NG := ε ·
∏
p||G|

pnp−ep

where

ε :=

{
1 if G2 = {1} or G2 is of GK-type;
1/2 if G2 6= {1} is not of GK-type.

�

Although it is hard to find a finite group G, once a set S ∈ A is given,
which satisfies sp(G) = S, it is relatively easy to find a group G which
satisfies NG = N , whenever N ∈ N is given.

Proposition 2.3: Let N ∈ N. Then there exists a non-trivial finite
group G, such that NG = N .

Proof: If N = 1, then let G be any non-trivial cyclic group. Next
suppose N = pα, where α ≥ 1 and p is a prime. If p is odd, then
for G := Cpα × Cpα , where Cpα denotes the cyclic group of order pα,
we get NG = pα; if p = 2, then for G := Cpα+1 × Cpα+1 we get NG =
1/2 ·2α+1 = 2α. Finally, if N = pα1

1 p
α2
2 · · · p

αk
k , where the pi are pairwise

distinct primes and αi ≥ 1 for all i, let Gi be the finite abelian group
with NGi = pαii , as described in the last paragraph. Then define G to

be the direct product G :=
∏k

i=1 Gi and note that NG =
∏k

i=1NGi . �

For p odd, the importance of finite p-groups of GK-type arrive from the
results of [24], where groups having maximal exponent property
(MEP) are considered. It follows easily that groups with GK-type
have MEP, and hence the stable upper genus for 2-generated groups of
GK-type is easily calculated, see [24, Thm.4.7].

Question 4: Find a closed formula for the stable upper genus for the
finite p-groups of GK-type.
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Looking at the structure of the finite p-groups of GK-type, it would be
interesting to classify them through certain parameters. Towards this,
we arrange them into trees as follows, see [23]:

If G is of GK-type, the subgroup κ(G) of index p might again turn out
to be a p-group of GK-type. We inductively define κi+1(G) := κ(κi(G)),
with κ0(G) = G, if κi(G) is of GK-type. We call the subgroup κi(G) the
i-th GK-core of G. We note that all subgroups κi(G) of G, if defined,
are characteristic and normal. Conversely, G would be referred to as a
GK-extension of κi(G) of degree |G/κi(G)|.

This leads to the levelled directed graphs T (R) = (VT , ET ) which are
defined as follows: The set VT of vertices consists of finite p-groups,
amongst which there is a unique group R, also called the root of T (R),
which is not of GK-type, and is designated as the group of level 0. Any
other finite p-group G occurring is a vertex of level i > 0 if κi(G) = R.
The set ET of directed edges consists of the edges e with initial vertex
H and terminal vertex κ(H), for some p-group H ∈ VT of GK-type.

Note that this implies that T (R) is a directed tree, that is, a directed
connected graph without circuits. Hence T (R) is called the GK-tree
associated with R. The question arises how these trees look like. A
partial answer is given by the following statements:

Theorem 2.4 [23]: Let R be a finite p-group of order pn and exponent
pe which is not of GK-type. Then the tree T (R) is infinite if and only
if exponent of the center Z(R) of R is pe. �

Definition 2.5: A maximal infinite linear subgraph, that is, a sub-
graph topologically homeomorphic to the real line R, of an infinite
graph is called a stem.

Theorem 2.6 [23]: Let R be a finite p-group of order pn and exponent
pe which is not of GK-type, such that T (R) is infinite. Then a finite
p-group G of GK-type in T (R) lies on a stem of T (R) if and only if
there exists t ∈ Z(G) \ κ1(G) such that G = 〈t, R〉.
In this case, if G lies on level l > 0 of T (R), then G has order pn+l and
exponent pe+l, and |t| = pe+l. �

We proceed a little further along these lines:

Definition 2.7: A finite p-group G is called regular, if for every x, y ∈
G we have xpyp = (xy)pcp for some c ∈ [H,H], where H = 〈x, y〉 ≤ G
and [H,H] denotes the derived subgroup of K.
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Hence in particular abelian p-groups, as well as p-groups of exponent
p are regular.

Proposition 2.8: Let G be a finite p-group of GK-type which lies on
a stem of an infinite GK-tree T (R). Then G is regular if and only if
all its GK-cores are regular, which holds if and only if R is regular.

In particular, if R is abelian or of exponent p, then all GK-extensions
of R which lie on the stems of T (R) are regular.

Proof: Since any subgroup of a finite regular p-group is regular again,
it is enough to show that if R is regular and G is a GK-extension of R
such that exp(G) = exp(Z(G)), then G is regular.

Now we have t ∈ Z(G) such that G = 〈t, R〉, and letting x, y ∈ G, we
may write x = tαa and y = tβb for some integers α, β and a, b ∈ R.
Hence we have xpyp = tp(α+β)apbp and (xy)p = tp(α+β)(ab)p. Using the
regularity of R, we have apbp = (ab)pcp for some c ∈ [H,H] where
H = 〈a, b〉. But t centralizes R, which means [H,H] = [K,K], where
K = 〈x, y〉. Moreover, we get

xpyp = tp(α+β)apbp = tp(α+β)(ab)pcp = (xy)pcp,

which implies that G is regular. �

If we call these the regular central groups of GK-type, denoted
by RCGKp, then we see that ABp ⊆ RCGKp. Then we can ask:

Question 5: Let p be a fixed prime. Is sp|RCGKp injective?

3 Genus spectrum of 2-groups of maximal class

In this section we will show that the genus spectra of 2-groups of max-
imal class are all different. Quite contrary to what one would be ex-
pecting in case of p-groups of maximal class where p is odd.

For the terminologies specific to finite p-groups, we need to adopt the
following specific notations.

Let p be a fixed odd prime and G be a finite p-group of order pn and
exponent pe. Let δ = (h;n1, . . . , nr) ∈ D(G). Since ni are powers of p
which could be repeated, we denote them by δ = (h;m1,m2, . . . ,me)
instead of (h; p, . . . , p, p2, . . . , p2, . . . , pe, . . . , pe), where pi is repeated mi

times in δ. A set G = Gδ = HG∪
⋃e
i=1EG,i) of generators corresponding

to δ would be labelled as follows:
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• Hyperbolic generators: HG = {a1, b1, . . . , ah, bh}.
• Elliptic generators of order pi: EG,i = {xi1, xi2, . . . , ximi} (1 ≤ i ≤ e),

where the repeated elements are considered as different in the union
HG ∪

⋃e
i=1 EG,i.

The Riemann-Hurwitz equation takes the form:

2(g − 1) = pn

(
2(h− 1) +

r∑
i=1

mi(1−
1

pi
)

)
,

and the long relation looks like:∏
HG ·

e∏
i=1

∏
EG,i = 1,

where ∏
HG :=

h∏
i=1

[ai, bi] and
∏

EG,j :=

mj∏
l=1

xjl.

Data extensions 3.1: This is a method which will be applied in
the main proof. Let δ = (h;m1,m2, . . . ,me) ∈ D(G). Now every
element x of order 2i in G can be expressed as x = x1x2, where |x1| =
2j < 2i and |x2| = 2i. Replacing x by x1x2 in the long relation and
moving them to the right place using conjugates, we realize that δ′ =
(h;m1,m2, . . . ,mj−1,mj + 1,mj+1, . . . ,me) ∈ D(G). Inductively, this
shows that the multiplicities mi can be arbitrarily increased within
D(G), if mi is not the last non-zero term in δ among the mk’s. On
the other hand arbitrarily many hyperbolic pairs of generators can be
inserted on top of the existing ones. Hence if mt is the last non-zero
term, δ′ = (h′;m′1, . . . ,m

′
t−1,mt, 0, . . . , 0) ∈ D(G) if h′ ≥ h,m′k ≥ mk,

where 1 ≤ k ≤ t− 1.

To understand the stable upper genus of 2-groups of exponent 2e, where
e ≥ 5, we need to look at the following diophantine equation:

M = 2e · h+
e−1∑
i=1

mi(2
e−1 − 2e−1−i)

Let Ωe(2) denote the set of solutions M of the above equation for which
h,mi ≥ 0. For a fixed e, consider the 2-adic expansion

M = a0 + a12 + . . .+ ae−12e−1

where ai = 0, 1 for 0 ≤ i ≤ e− 2 and ae−1 ≥ 0. Let Se(M) denote the
sum a0 + a1 + . . .+ ae−1.
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Theorem 3.2 [18]: We have

Ωe(2) = {M ∈ N : Se(M) ≥ e−1−i, ai is the first non zero coefficient}.

�

Let δe(2) denote the smallest positive integer such that all M ≥ δe(2)
are realized as a solution of the above diophantine equation, for some
h,mi ≥ 0. It is known from the properties of diophantine equations
that such an integer δe(2) exists.

Theorem 3.3 [18]: The least stable solution δe(2) is given by:

δe(2) = (e− 3)2e−1 + 2

�

There are three isomorphism types of 2-groups of maximal class in each
order 2e+1; namely, dihedral, quaternion and semi-dihedral 2-groups,
being given in terms of presentations as follows, see [19]:

(1) Dihedral Group : 〈y, x : x2 = 1 = y2e , x−1yx = y−1〉

(2) Quaternion Group : 〈y, x : x2 = y2e−1
, x4 = 1, x−1yx = y−1〉

(3) Semi-Dihedral Group : 〈y, x : x2 = 1 = y2e , x−1yx = y2e−1−1〉

Theorem 3.4: Let G be a finite 2-group of order 2e+1, where e ≥ 5,
and of maximal class. Then the minimum and stable upper genus of
G are as given in Table 3.

Type Minimum Genus µ0 Stable Upper Genus δ0

Dihedral 2e−1 (e− 3)2e + 4
Quaternion 2e−1 (e− 3)2e + 2e−1 + 3
Semi-Dihedral 2e−2 (e− 3)2e + 2e−2 + 3

Table 3

All these three groups of order 2e+1 contain a (maximal) cyclic subgroup
of index 2. Since none of these are of GK-type, the genus increment NG

for all of them equals 1. We will only show the details of the remaining
calculations for dihedral groups. The calculations for other two groups
are similar. The proof for the dihedral group relies on the following
lemmas:
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Lemma 3.5: Let G be a dihedral group of order 2e+1 with generators
x, y satisfying the relations given above. If G = 〈xya, xyb〉, then a− b
is odd. If G = 〈ya, xyb〉, then a is odd.

Proof of Lemma 3.5: The Frattini subgroup is Φ(G) = 〈y2〉, and
hence the quotient equals G/Φ(G) = C2 × C2 = 〈x, y〉. Now if a− b is

even, we have xya = xyb, which implies G/Φ(G) is cyclic, a contradic-
tion. In the second case if a is even, it again implies G/Φ(G) is cyclic,
a contradiction. �

The elements of order 2 in the dihedral group G which are of the form
xya, for a ∈ Z, are often referred to as reflections in geometry. Next
we note that:

Lemma 3.6: The number of reflections among the elliptic generators
EG,1 (with repetitions allowed) is even.

Proof of Lemma 3.6: Assume that EG,1 contains k reflections, say
xyi1 , xyi2 , . . . , xyik . Since the reflections in G form a union of conjugacy
classes, we note that

∏
EG,1 = xyi1xyi2 . . . xyikξ for some ξ ∈ {1, y2e−1}.

Since xyaxyb = yb−a, for k odd we get
∏
EG,1 = xyj for some j ∈ Z.

Now since
∏
HG,

∏
EG,i ∈ 〈y〉, where i ≥ 2, using the long relation we

get xyj ∈ 〈y〉, a contradiction. �

Lemma 3.7: If δ = (h;m1, . . . ,me) ∈ D(G) with h ≤ 1 and me−1 =
me = 0, then EG,1 contains at least two reflections.

Proof of Lemma 3.7: Assume the contrary, then we have EG,i ⊆
Φ(G) = 〈y4〉 for all i. Hence HG,i generates G, thus h = 1 and this
contradicts the long relation using Lemma 3.6. �

Proof of Theorem 3.1 for the dihedral group G of order 2e+1: We
will first show that the minimum genus µ(G) corresponds to the datum
δ0 = (0; 3, 0, . . . , 0, 1) given by g(δ0) = 2e−1.

Let δ = (h;m1, . . . ,me) ∈ D(G) correspond µ. If h ≥ 2, then g(δ) ≥
2e+1 + 1. Hence h = 0 or 1.

We consider the case h = 1. If me 6= 0, since γ2(G) = 〈y2〉 we have from
the long relation that me ≥ 2. Then g(δ) ≥ 2e+1(1 − 1

2e
) + 1 > 2e−1,

hence me = 0. Next, if me−1 ≥ 1, then g(δ) ≥ 2e(1− 1
2e−1 ) + 1 > 2e−1,

hence me−1 = 0.
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By lemma 3.4 we have that EG,1 contains at least two reflections, that
is, m2 ≥ 2. Hence g(δ) ≥ 2e + 1 > 2e−1. This proves that h 6= 1.

Now we consider the case h = 0. Since the group cannot be generated
without at least one reflection, we have m2 ≥ 2. If m2 = 2 and me ≥
2, then g(δ) ≥ 2e. But with m2 = 2 and me = 1, we need some
more elliptic generators to make the right side of the Riemann-Hurwitz
formula positive, say mi ≥ 1. Then g(δ) ≥ 2e+1(3

2
− 1

2i
− 1

2e
) + 1 > 2e.

Hence with m2 = 2 we have me = 0. But the product of two reflections
generating G is 2e. Hence if m2 ≥ 2 and me = 0 we would need at
least four reflections in EG,1. Hence m2 ≥ 4. Now with m2 ≥ 5 we
have g(δ) ≥ 2e−1 + 1. Hence we consider m2 = 4. We would then need
more elliptic generators to make the genus > 1, say mi ≥ 1 for some i.
Then g(δ) ≥ 1 + 2e − 2e−i ≥ 2e−1 + 1.

This shows that the minimum genus of G is µ(G) = 2e−1. We will next
show that the stable upper genus σ(G) equals (e − 3)2e + 4. For this
we show, recalling hat NG = 1:

(1) If g ≥ (e− 3)2e + 4, then g ∈ sp(G).
(2) (e− 3)2e + 3 is not realized by any datum of G.

Proof of (1): For such an integer g, consider Vg := g + 2e+1 − 1.
Equivalently we will show that if Vg ≥ (e− 1)2e + 3, then there exists
a datum δ = (h;m1,m2, . . . ,me) ∈ D(G) such that g(δ) = g.

Case I : Vg is odd.

This ensures that me is odd. We first consider me = 1, and then
any δ′ = (h;m1,m2, . . . ,me−1, 1) is a datum if m1 ≥ 2, since it is a
proper extension of (0; 2, 0, . . . , 0, 1), where (0; 2, 0, . . . , 0, 1) is realized
by G = {x, xy, y−1} and does not associate to a genus ≥ 2. Now

Vg − 2e + 1

2
= 2e · h+

e−1∑
i=1

(2e−1 − 2e−1−i)mi.

From Theorem 3.3 it follows that all odd integers Vg with Vg−2e+1

2
≥

(e − 3)2e−1 + 2 + 2.(2e−1 − 2e−2) can be realized. This means that all
odd integers Vg ≥ (e − 1)2e + 3 with me = 1 can be realized. For
an arbitrary odd me, insert a slot uu−1 in the elliptic part of the long
relation, where the order of u is 2e. Finally, this means that all even
integers g ≥ (e− 3)2e + 4 are genera.

Case II : Vg is even.



14

Here me is even. Consider me = 0, and then any tuple δ′ =
(h;m1,m2, . . . ,me−1, 0) is a datum if m1 ≥ 4, since it is a proper
extension of (0; 4, 0, . . . , 0), where (0; 4, 0, . . . , 0) is realized by G =
{x, xy, x, xy−1} and does not associate to a genus ≥ 2. Now

Vg
2

= 2e · h+
e−1∑
i=1

(2e−1 − 2e−1−i)mi.

From Theorem 3.3 it follows that all odd integers Vg with Vg
2
≥ (e −

3)2e−1 + 2 + 4.(2e−1 − 2e−2) associate a realized data. This mean all
even integers Vg ≥ (e − 1)2e + 4 realize a data, and therefore all odd
integers g ≥ (e− 3)2e + 5 are genus. �

Proof of (2): In this part we will examine all possible solutions of the
equation:

Vg = (e− 1) · 2e + 2 = 2e+1 · h+
e∑
i=1

(2e − 2e−i)mi

Lemma 3.8: me is even and 6≥ 4.

Proof of Lemma 3.8: It is clear that me is even. Now from the above
equation we get

(A) 2e · (2h+m1 + . . .+me)−M(m1, . . . ,me) = (e− 1)2e + 2

where M(m1, . . . ,me) = 2e−1m1 + 2e−2m2 + . . .+ 2me−1 +me.

This implies that M(m1, . . . ,me) ≡ −2 mod 2e.

Sub-case I : me ≡ 2 mod 22. It is possible to define the following
equations, with integers ri ≥ 0:

me = 2 + 22re

me−1 + 2 + 2re = 2re−1

me−2 + re−1 = 2re−2

me−3 + re−2 = 2re−3

me−4 + re−3 = 2re−4

. . .

m2 + r3 = 2r2

m1 + r2 = 2r1

From equation (A) we get

2e · 2h = 2e(e− 1 + r1 − (m1 + . . .+me)).
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Since h ≥ 0 we have that m1 + . . .+me − r1 ≤ e− 1, which implies

(B) r1 + r2 + . . .+ re−1 + 2re ≤ e− 1.

Now suppose me ≥ 6, which implies re ≥ 1. From the list of relations
we get that me−1 ≥ 2, and ri ≥ 1 if 1 ≤ i ≤ e − 2. This contradicts
(B). Hence re = 0 and consequently me = 2.

Sub-case II : me ≡ 0 mod 22. It is possible to define the following
equations, with integers r′i ≥ 0:

me = 22r′e
me−1 + 1 + 2r′e = 2r′e−1

me−2 + r′e−1 = 2r′e−2

me−3 + r′e−2 = 2r′e−3

me−4 + r′e−3 = 2r′e−4

. . .

m2 + r′3 = 2r′2
m1 + r′2 = 2r′1

From equation (A) we get

2e · 2h = 2e(e− (r′1 + r′2 + . . .+ r′e−1 + 2r′e)).

Since h ≥ 0 we get

(C) r′1 + r′2 + r′e−1 + 2r′e ≤ e.

Now if me ≥ 4 we have r′e ≥ 1. Also inductively we obtain r′e−2 ≥ 2,
and r′i ≥ 1 if 1 ≤ i ≤ e− 3. This contradicts (C). Hence me = 0. �

Lemma 3.9: If me = 2, then the only solution of (A) is given by

h = 0,mi = 1 for 1 ≤ i ≤ e− 2,me−1 = 0.

Proof of Lemma 3.9: From the list of equations in Lemma 3.8 (Sub-
case I) it follows that, if me−1 ≥ 1, then re−2 ≥ 2 and for the other
ones ri ≥ 1, which contradicts equation (B). If me−1 = 0, then ri ≥ 1
for 1 ≤ i ≤ e − 1. Hence from (B), the only choice is ri = 1 for
1 ≤ i ≤ e − 1. This gives the result from the list of equations given
and A. �

Lemma 3.10: If me = 0, then m1 ≤ 3 and h = 0.

Proof of Lemma 3.10: If me = 0, then the similar analysis yields
r′i ≥ 1 for 1 ≤ i ≤ e− 1, and we get the relation

e− 1 ≤ r′1 + r′2 + . . .+ r′e−1.
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If all of r′i = 1, then from equation (A) we get that h = 1/2, a contra-
diction. Hence r′i = 1 for all i, except one factor, say rj = 2 for some
1 ≤ j ≤ e− 1. Then we obtain:

me = 0,me−1 = 1, . . . ,mj+1 = 1,

mj = 3,mj−1 = 0,mj−2 = 1, . . . ,m1 = 1,

with the exceptional solutions

me = 0,me−1 = 3,me−2 = 0,me−3 = 1, . . . ,m1 = 1

and
me = 0,me−1 = 1, . . . ,m2 = 1,m1 = 3.

In all these cases, we have h = 0. �

Back to proof of (2): If me = 2, then m1 = 1, h = 0 and hence any
set G with this datum can generate at most the subgroup 〈y〉. If me =
0, we have h = 0, and hence we need to generate G by the reflections in
EG,1, which cannot be more than two, hence by Lemma 3.6 are exactly
two. Then

∏
EG,1 is an odd power of y, whereas

∏
i 6=1

∏
EG,i is an

even power of y. This contradicts the long relation. �

4 Computation of genus spectra of finite simple
groups

We describe how the genus spectrum of a given finite group G can be
determined explicitly using tools from computational group theory. To
this end, let ∆(G) denote the set of non-trivial periods of G, that is,
∆(G) := {|x| ∈ N : 1 6= x ∈ G} = {n1, . . . , nk}, say, for some k ∈
N0. Then the Auxiliary Euler-Characteristic Equation (AEC
equation) is defined by

2(g − 1) = |G|

2(h− 1) +
∑

n∈∆(G)

an(1− 1

n
)

 ,

where g, h ∈ N0, and an ∈ N0 for all n ∈ ∆(G). Letting NG still being
the genus increment associated with G, the associated reduced AEC
equation is:

g̃ :=
(g − 1)

NG

=
|G|
NG

(h− 1) +
1

2

∑
n∈∆(G)

an(1− 1

n
)

 ,

where g̃ is called the reduced genus corresponding to the genus g.
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Let D(G) :=
⋃
g̃≥1Dg̃(G), where for a reduced genus g̃ ≥ 1 the set

Dg̃(G) denotes the set of all solutions δ of the reduced AEC equation,

written as δ := (h;n
[a1]
1 , . . . , n

[ak]
k ). If δ is realized in the group G as

described by Riemann’s Existence Theorem we notice that the tuple δ
just is a datum of G. This leads to the following:

Definition 4.1: A solution δ ∈ Dg̃(G) to the reduced AEC equation

of G is called bad if g̃ ≥ µ̃(G) := µ(G)−1
NG

, where the latter number is

called the minimum reduced genus of G, and δ 6∈ D(G), that is δ is
not a datum.

Thus letting σ̃(G) := σ(G)−1
NG

be the stable upper reduced genus of
G, describing the spectrum ofG completely is equivalent to determining
µ̃(G) and σ̃(G) as well as D(G) and the bad solutions. Note that the
bad solutions necessarily belong to the interval µ̃(G) ≤ g̃ ≤ σ̃(G).

Now, to determine σ̃(G) we need to look at a diophantine problem due
to Frobenius popularly known as the ”Coin Problem”: Given positive
integers n1, n2, . . . , nk having no non-trivial common divisor, consider
the linear equation

n = n1x1 + n2x2 + . . .+ nkxk,

and call a non-negative integer n dependent on n1, n2, . . . , nk if there ex-
ists a solution (x1, x2, . . . , xk) of the above equation in the non-negative
integers, and independent from n1, n2, . . . , nk otherwise. It is known
that there is a bound f such that all n exceeding f are dependent,
and the largest independent integer f = f(n1, n2, . . . , nk) is called the
Frobenius number of n1, n2, . . . , nk.

There are no formulae known for f(n1, n2, . . . , nk) whenever k ≥ 4; see
[1, 27]. But at least it is known that f(n1, n2) = (n1 − 1)(n2 − 1)− 1.
Our main interest is in the recurrence formula in case there are common
divisors for any (k − 1) of the given numbers, which occurs always for
the AEC equations.

Theorem 4.2 [1]: If d divides n2, n3, . . . , nk, then

f(n1, n2, . . . , nk) = d · f(n1,
n2

d
, . . . ,

nk
d

) + n1(d− 1).

�

The existence of a datum (0;n1, n2, n3) ∈ D3(G) can be explicitly com-
puted by the following character sum formula, where Irr(G) denotes
the set of irreducible complex characters of G:
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Theorem 4.3, see [11, Thm.2.12]: Let G be a finite group, and let
C1, C2, . . . , Ck denote the conjugacy classes in G, with representatives
g1, g2, . . . , gk. Then the number of solutions to the equation xyz = 1
in G with x ∈ Cr and y ∈ Cs and z ∈ Ct is given by

cCr,Cs,Ct =
|Cr|.|Cs|.|Ct|

|G|
·
∑

χ∈Irr(G)

χ(gr)χ(gs)χ(gt)

χ(1)
.

�

The number cCr,Cs,Ct is also referred to as the associated class multi-
plication coefficient.

The data extensions are slightly different from what we have done in
the previous section. Let (h;n1, n2, . . . , nr) ∈ Dr(G) denote a datum of
G corresponding to the genus g ≥ 2, allowing repetitions of the periods
ni, with a possible generating sequence {a1, b1, . . . , ah, bh; c1, . . . , cr} as
in Riemann’s Existence Theorem. Let cj = c′1c

′
2 where the c′i are non-

trivial elements of G of order n′i. Then replacing cj in the long relation
by c′1c

′
2 we see that (h;n1, n2, . . . , nj−1, n

′
1, n

′
2, nj+1, . . . , nr) is a datum

in Dr+1(G) corresponding to the genus g′, where it is straightforward
to check that g′ ≥ g.

We now turn to explicit calculations for some finite simple groups. First
we consider the infinite family PSL(2, q), where q is a prime power;
recall that these groups are simple if and only if q ≥ 4.

Theorem 4.4, see [15, Satz.II.8.10]: Let G = PSL(2, q), where q = pf

is a prime power, and let l be a prime dividing |G|. Then we have:

(1) If 2 6= l 6= p, then the Sylow l-subgroups of G are cyclic.

(2) If p 6= 2, then the Sylow 2-subgroups of G are dihedral.

(3) The Sylow p-subgroups are elementary abelian of order q. �

Thus, the genus increment of PSL(2, q), for any odd prime power q =
pf , equals q/p = qf−1, while the genus increment of PSL(2, 2f ) equals
2f−2 for f ≥ 2, and that of PSL(2, 2) equals 1. In particular, the genus
increment of PSL(2, q), where p is any prime, equals 1.

As for the minimum genus of PSL(2, p), where p is a prime, we have
the following results. Recall that PSL(2, 4) ∼= PSL(2, 5) ∼= A5 acts on
the Riemann sphere, so its genuine minimum genus indeed equals 0, as
indicated below, while in our considerations of genus spectra we only
look at genera g ≥ 2.
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Theorem 4.5 [13]: For any prime p ≥ 13 let

dp := min

{
e : e ≥ 7, either e|p− 1

2
or e|p+ 1

2

}
.

Then the minimum genus of PSL(2, p), where p ≥ 5 is a prime, comes
from the following data:

(1) (0; 2, 3, p) if p = 5, 7, 11,

(2) (0; 2, 5, 5) if p ≥ 13, p ≡ ±1 mod 5, p 6≡ ±1 mod 8 and dp ≥ 15,

(3) (0; 3, 3, 4) if p ≥ 13, p 6≡ ±1 mod 5, p ≡ ±1 mod 8 and dp ≥ 12,

(4) (0; 2, 4, 5) if p ≥ 13, p ≡ ±1 mod 5, p ≡ ±1 mod 8 and dp ≥ 9,

(5) (0; 2, 3, dp) in all other cases. �

More generally, the minimum genus for PSL(2, q), where q is an ar-
bitrary prime power, has been determined in [12]. Moreover, in [30]
there covering groups SL(2, q) have been treated. Thus we ask for the
minimum stable genus and the bad solutions. If we restrict ourselves
again to the case p a prime, we have the following result:

Theorem 4.6 [25, Cor.5.10]: Let G = PSL(2, p), where p ≥ 13 is a
prime. Then for the data spectrum of G we have D(G) = D(G), in
particular there are no bad solutions. �

Thus, the spectrum of G can be just read off from the solutions of the
AEC equation: Letting ∆(G) = {n1, . . . , nk} be the set of periods of
G, then the stable upper genus of G is given as

σ(G) = 2 + |G|+ f(|G|(n1 − 1)/2n1, . . . , |G|(nk − 1)/2nk),

where f denotes the associated Frobenius number.

Actually, it can be checked explicitly that the assertion of Theorem 4.5
also holds for p = 5, 7, 11. Indeed, we take the opportunity to present
some details for the case p = 7, in order to indicate the flavor of the
computations, and to show how techniques from computational group
theory, using the computer algebra system GAP [10] and its character
table library [2], come into play:

The groupG = PSL(2, 7) has order 168 and periods ∆(G) = {2, 3, 4, 7}.
From Theorem 4.4 we recover the well-known fact that the minimum
genus of G equals 3, and corresponds to the datum (0; 2, 3, 7), estab-
lishing G as a Hurwitz group. The reduced AEC of G is

g − 1 = g̃ = 168(h− 1) + 42a2 + 56a3 + 63a4 + 72a7,
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The associated Frobenius number being f(168, 42, 56, 63, 72) = 565, we
conclude that g̃ = 565− 168 = 397 is not a reduced genus.

Since GAP [10] shows that for the class multiplication coefficients in G
we c7,7,i 6= 0, for all i ∈ ∆(G), the extension principle shows that all
tuples (h; 2[a2], 3[a3], 4[a4], 7[a7]) with h ≥ 0, a2 ≥ 1, a3 ≥ 1, a4 ≥ 0, a7 ≥ 1
are actually data of G. Thus all g̃ > 565− 168 + (42 + 56 + 72) = 567
are reduced genera of G. We will prove that all integers g̃ with 398 ≤
g̃ ≤ 567 are genera of G, and thus in particular are solutions of the
reduced AEC, implying that σ(G) − 1 = σ̃(G) = 398. Moreover, we
will prove that all solutions of the reduced AEC come from data of G,
so that there are no bad solution.

Using GAP [10] we verify that the above assertions follow from the ex-
tension principle, as soon as we have shown that the following actually
are data: (Indeed, we cannot do with less.)

(0; 2, 4, 7), (0; 2, 7, 7), (0; 3, 3, 4), (0; 3, 3, 7), (0; 3, 4, 4),

(0; 3, 4, 7), (0; 3, 7, 7), (0; 4, 4, 4), (0; 4, 7, 7), (0; 7, 7, 7).

To this end, firstly GAP [10] shows that all the relevant class multipli-
cation coefficients are non-zero. Hence for any case there are triples
of elements fulfilling the associated long relation. Next, recall that, by
[4], G has precisely our conjugacy classes of maximal subgroups, these
consist of groups of shape S4 (order 24), 7 : 3 (order 21), D8 (order 8),
D6 (order 6), respectively. In particular, the only maximal subgroup
having order divisible by 7 is of shape 7 : 3, which moreover has a
normal Sylow 7-subgroup. Hence triples corresponding to (0; 2, 4, 7),
(0; 2, 7, 7), (0; 3, 4, 7), (0; 3, 7, 7) and (0; 4, 7, 7) necessarily generate G.

Moreover, from c7X,7X,7X = c7Y,7X,7X = c7X,7Y,7X = 24 and c7Y,7Y,7X =
216, where {X, Y } = {A,B}, we conclude that there are 576 triples
associated with (0; 7, 7, 7). If such a triple does not generate G, then
it necessarily generates a cyclic group of order 7. But there are pre-
cisely eight such subgroups in PSL(2, 7), each of which contains 30
such triples. Hence there are generating triples of this shape. Simi-
larly, there are 1008 triples in G associated with (0; 3, 3, 7), but in any
of the eight subgroups isomorphic to 7 : 3 there are precisely 84 such
triples; hence there are triples of this shape generating G.

Next we consider (0; 3, 3, 4): Assume a corresponding triple does not
generate G, then it necessarily generates a subgroup isomorphic to S4,
but since elements of order 4 in S4 are odd permutations while elements
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of order 3 are even, this is a contradiction. Hence all such triples
necessarily generate G. Similarly, a non-generating triple associated
with (0; 4, 4, 4) generates a subgroup isomorphic to a subgroup of S4 or
D8, but since elements of order 4 in S4 are odd, and D8 has a unique
cyclic subgroup of order 4, this is a contradiction as well, implying that
triples of this shape are necessarily generating.

It remains to look at (0; 3, 4, 4): The relevant class multiplication co-
efficient equals c3,4,4 = 672. If an associated triple does not generate
G, then it necessarily generates a subgroup isomorphic to S4. Now the
class multiplication coefficient in S4 equals c3,4,4 = 42, and since there
precisely 7 subgroups in PSL(2, 7) isomorphic to S4, we conclude that
there are generating triples of this shape. �

Elaborating on the techniques indicated above, and also using GAP
[10], we have done a few computations towards an understanding of
the minimum stable genus and the bad solutions in the general case.
The explicit results are shown in Table 4; recall again the exceptions
PSL(2, 2) ∼= S3 and PSL(2, 3) ∼= A4, as well as PSL(2, 4) ∼= PSL(2, 5) ∼=
A5, and that we are only considering genera g ≥ 2 here.

p NG µ(G) σ(g) bad

2 1 2 2 0
4 1 3 63 0
8 2 7 1, 453 0

16 4 205 32, 153 1
32 8 1, 241 517, 617 0
64 16 11, 761 1, 386, 081 12
3 1 3 3 0
9 3 16 505 1

27 9 118 61, 696 0
81 27 15, 499 5, 371, 111 6
5 1 3 63 0

25 5 326 52, 111 3
125 25 11, 626 9, 886, 176 4

7 1 3 399 0
49 7 2, 451 337, 359 7

Table 4

These data imply that a straightforward generalization of Theorem 4.5
cannot possibly hold, leading to the following question:
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Question 6: Give a closed formula for the stable upper genus of
PSL(2, q), and find a combinatorial description of the bad solutions.

Finally, similarly, and still employing GAP [10], we have calculated the
stable upper genus and the bad solutions for the first thirteen spo-
radic simple groups. The result is given in Table 5, together with the
respective genus increments and number of bad solutions.

G NG µ(G) σ(g) bad

M11 3 631 48, 511 2
M12 36 3, 169 510, 841 4
J1 2 2, 091 2, 749, 249 0
M22 24 34, 849 3, 856, 897 1
J2 360 7, 201 1, 905, 841 3
M23 24 1, 053, 361 176, 488, 081 2
HS 2, 400 1, 680, 001 335, 793, 601 3
J3 216 1, 255, 825 880, 271, 713 1
M24 576 10, 200, 961 4, 063, 754, 881 0
McL 16, 200 78, 586, 201 6, 587, 730, 001 1
He 141, 120 47, 980, 801 36, 015, 517, 441 1
Ru 115, 200 1, 737, 216, 001 2, 658, 295, 065, 601 0
Suz 622, 080 11, 208, 637, 441 5, 213, 968, 496, 641 0

Table 5

This leads to the following question:

Question 7: Compute the stable upper genus and the number of bad
solutions for the remaining sporadic simple groups.
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