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We will present the application of automatic differentiation to
numerical integration algorithms for ODE’s, in particular the
ramifications of the fact that AD is applied not only to the
solution but also to the solution procedure itself.
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mathematical model of technical systems or natural
phenomena

Initial value problem, ODE
For given values of system parameters p ∈ Rh, find the trajectories
x(t, p), x ∈ Rn for t0 ≤ t ≤ t1, where x is the state vector, t the
time. The state is determined by the solution of the initial value
problem:

ẋ = f (x , p, t), x(t = t0, p) = x0,

where f is the vector of state derivatives, x0 the initial state, t0

and t1 the initial and final time respectively.
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The ODE is typically solved by using numerical integration
algorithms. In engineering applications one is not only interested in
the final state but also in the performance criteria ψ computed from
the trajectories x. If optimization procedures are applied on order to
choose optimal design variables with respect to certain performance
criteria, or if parameter estimation techniques are used to identify
model parameters from measurements, then, with the final state

x1 := x(t1, p)

one typically has to compute

∂x1

∂pT .
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The numerical value of the sensitivities at the final step may
depend on the whole history of the system.
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I AD tools have been developed to make it possible to augment
general Fortran or C codes with statements for the
computation of derivatives in an automated fashion.

I AD is based on the fact that every computer program employs
only the simplest operations (addition, multiplication, sin,
etc.) whose derivatives are known.

I AD computes the derivatives for the whole programm and then
compose them using the chain rule of differential calculus.
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Watch out!

AD differentiate not only the solution computed by a programm,
but also the algorithm by which the solution is being derived. Thus,
the value of the derivative may depend on the algorithm chosen to
compute the solution.
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PLAN

We will:
1. consider AD of a prototypical integration algorithm and

illustrate how different integrators can lead to different values
of computed derivatives

2. suggest two approaches to suppress the impact of the solution
algorithm on derivatives
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Algorithms for numerical integration of ODEs:
1. single step
2. multistep
3. extrapolation
4. special (for stiff systems, highly or loosely coupled systems,

systems composed of several subsystems, etc.)

Zofia Mączyńska Numerical integration algorithms



Introduction
Automatic differentiation of prototypical numerical integration algorithms

Experimental results with a one-mass oscillator
Application to a technical system

Conclusions

Algorithms for numerical integration of ODEs:
1. single step
2. multistep
3. extrapolation
4. special (for stiff systems, highly or loosely coupled systems,

systems composed of several subsystems, etc.)

Zofia Mączyńska Numerical integration algorithms



Introduction
Automatic differentiation of prototypical numerical integration algorithms

Experimental results with a one-mass oscillator
Application to a technical system

Conclusions

Algorithms for numerical integration of ODEs:
1. single step
2. multistep
3. extrapolation
4. special (for stiff systems, highly or loosely coupled systems,

systems composed of several subsystems, etc.)

Zofia Mączyńska Numerical integration algorithms



Introduction
Automatic differentiation of prototypical numerical integration algorithms

Experimental results with a one-mass oscillator
Application to a technical system

Conclusions

Algorithms for numerical integration of ODEs:
1. single step
2. multistep
3. extrapolation
4. special (for stiff systems, highly or loosely coupled systems,

systems composed of several subsystems, etc.)

Zofia Mączyńska Numerical integration algorithms



Introduction
Automatic differentiation of prototypical numerical integration algorithms

Experimental results with a one-mass oscillator
Application to a technical system

Conclusions

We will illustrate the interplay of the AD and the integration
algorithms (single-step algorithm of Euler and Runge-Kutta type
with and without stepsize control and a sophisticated multistep
intergation algorithm with adaptive stepsize control and
interpolation order control.)
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single-step algorithm
Time discretization applied to ẋ = f (x , p, t), x(t = t0, p) = x0

leads to a recursive scheme:

xi+1 = xi + hi ˙̄xi

ti+1 = ti + hi ,

where:
i denotes the ith integration step, xi := x(ti ), hi is the actual
stepsize, ˙̄x denotes slope estimation.
Two cases are possible:

I hi = h = const leads to the Euler scheme
I dynamically adaptive stepsize control (based on local error

estimates).
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multistep algorithm

Multistep algorithms additionally use the information from former
steps to predict the appropriate stepsizes and slopes.
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All variables in
xi+1 = xi + hi ˙̄xi

may depend on p.
This leads to:

xi+1(p) = xi (p) + hi (p) ˙̄xi (p)
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Differentiating
xi+1(p) = xi (p) + hi (p) ˙̄xi (p)

with respect to p with ∇x := dx
dpT gives:

∇xi+1 = ∇xi + hi∇ ˙̄xi +∇hi ˙̄xi .
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Computation of the desired derivatives for the state variables

To obtain the desired derivatives we can consider two choices:
I manual transformation
I automatic transformation with AD tools
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Differentiating
ẋ = f (x , p, t)

with respect to p we obtain (with dt
dpt = 0):

d
dpT (ẋ) =

d
dpT (

dx
dt

) =
∂f
∂xT

dx
dpT +

∂f
∂pT

Exchanging the order of differentiation we obtain a new ODE for
∇x :

d
dt

(
dx

dpT ) =
d
dt

(∇x) = [∇̇x ] =
∂f
∂xT ∇x+

∂f
∂pT , ∇x(t = t0) = ∇x0,

which we can integrate alongside our original solution. AD
techniques could be employed to compute ∂f

∂xT and ∂f
∂pT but we

would not integrate through the integration algorithm for x .
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observation

The stepsize hi is likely to depend on the parameters p and the AD
tool will associate a gradient ∇hi with hi . Thus, the update
∇xi+1 = ∇xi + hi∇ ˙̄xi +∇hi ˙̄xi , which will be computed by an AD
tool, leads to an inconsistent integrator for ∇x , as the final result
depends on the discretization strategy chosen. Hence it is also
unlikely that ∇x1 = ∇x |(ti=t1) equals the desired ∂x1

∂pT .
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The automatically differentiated integration algorithm computes
x1(t1(p), p) (the dependence of t1 on p results only from the
adaptive time discretization). Differentiating with respect to p we
obtain:

∇x1 =
∂x1

∂t1∇t1 +
∂x1

∂pT

The green depend on the time discretization and are computed by
the AD generated code. Thus, to arrive at the desired solution ∂x1

∂pT ,
we can pursue one of the following strategies:
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∇x1 =
∂x1

∂t1∇t1 +
∂x1

∂pT

We can pursue one of the following strategies:
I Perform a posteriori error correction:

The desired derivatives ∂x1

∂pT , which don’t depend on the time
discretization can be computed as:

∂x1

∂pT = ∇x1 − f (x1, p, t1)∇t1.

I Use an integrator with fixed stepsize:
In this case, we have: ∇hi ≡ 0,∀i . Thus ∇t ≡ 0 and hence:
∇x1 ≡ ∂x1

∂pT . The AD-computed derivative trajectories are the
desired ones, and thus, no modification is required for fixed
stepsize integration algorithms.
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∇x1 =
∂x1

∂t1∇t1 +
∂x1

∂pT

We can pursue one of the following strategies:
I Perform a posteriori error correction.
I Use an integrator with fixed stepsize.
I Modify the AD-generated code to enforce ∇hi = 0∀i :

I For the first step the user must guess the initial step h0
I h0 independent of p, thus ∇h0 = 0
I Assume that the correct stepsize h is known in advance for

each step. Then ∇hi = 0∀i and we get the same correct
results as for the fixed stepsize algorithm.
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Experimental results with a one-mass
oscillator
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the simplest multibody system

We consider a horizontal one-mass oscillator. One can derive
solutions for both, that state and its gradients, and thus it is a well
suited example for us.
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mechanical model
I A body mass m can slide on a horizontal ground.
I It is coupled to the wall with a linear spring with spring

stiffness c
I the position is described by y(t)
I From the Newton’s equation one can derive the equation of

motion:
mÿ + cy = 0,

equivalently, with x = [y , ẏ ]T a system of first order ODEs:

ẋ = [ẋ1, ẋ2]
T = [x2,−

c
m

x1]
T

I With the initial condition x(t = t0) = x0 = [0, v0]T , the
solution of the ODE is:

y(t) = v0
√

m
c

sin
√

c
m

t.
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For m = 1 and the system parameters p = [c, v0] we find:

y(t) = v0 1√
c
sin
√

ct,

ẏ(t) = v0cos
√

ct,

ÿ(t) = −v0√csin
√

ct.
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We now define two criteria:
I The criterion ψ1 contains the position of the body at the time

t1 = π
2 .

For p = [1, 0.5]T we have:

dψ1

dp1
=

dψ1

dc
= . . . = −0.25,

dψ1

dp2
=

dψ1

dv0 =
1√
c
sin(

√
c
π

2
) = 1.0.

I The criterion ψ2 integrates the position over the whole
interesting simulation time interval [t0, t1]:

ψ2 =

∫ t1

t0
y(t)dt =

∫ t1=π
2

t0=0

v0
√

c
sin
√

ct.

Explicit solution for the gradients:

ψ2

dp1
=
ψ2

dc
= . . . =

π

8
− 1

2
,
ψ2

dp2
=

ψ2

dv0 = . . . = 1.0.
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Single-step integration without stepsize control

I We investigate and compare three similar integration schemes:
Euler scheme, the Heun algorithm, and the 4th order
Runge-Kutta algorithm.

I Result:
I Only minor differences between the reference gradient and the

AD gradient exists
I The relative error in the criteria is about the size of the error

on the gradients

I Explanation: As expected AD of single-step integration
algorithms without stepsize control leads to the desired results
without any need for user modification. The differnties can be
explained by the choice of the stepsize and the algorithm, no
additional errors are introduced in the AD procedure.
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on the gradients

I Explanation: As expected AD of single-step integration
algorithms without stepsize control leads to the desired results
without any need for user modification. The differnties can be
explained by the choice of the stepsize and the algorithm, no
additional errors are introduced in the AD procedure.
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Single step integration algorithms with adaptive stepsize
control

We consider a mixed 4th and 5th order Runge-Kutta algorithm
with stepsize control.
The error ∆ is of magnitude h5, thus we can estimate the required
stepsize h̄ from the desired error bound ∆̄, the actual stepsize h
and the actual error ∆:

h̄5

∆̄
≈ h5

∆
⇒ h̄ ≈ h

5

√
∆̄

∆
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If h̄ > h, the actual stepsize was too big and the step has to be
repeated with decreased stepsize until the the error estimate is
acceptable. Otherwise the next step is computed and the
integration proceeds.
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Conclusions

I The actual stepsize hi and the actual time ti depend n the
state xi and therefore on the system parameters p, so the AD
tool will compute the gradients ∇hi = dhi

dpT and ∇ti = dti
dpT .

I We then employ the relation ∂x1

∂pT = ∇x1 − f (x1, p, t1)∇t1 to

compute (at every time step) the desired ∂x
∂pT from ∇x and

∇t.
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multistep integration algorithm (Shampine-Gordon)

In a multistep algorithm the information already available from
previous steps is used to predict further steps. (The integration
algorithm consists of about 900 lines of code and therefore the
manual modification of the code to ensure ∇hi = 0 is not a reliable
approach, the a posteriori error correction is used instead and it
leads to correct results.
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Application to a technical system
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Conclusions

I We consider a robot which consists of 7 bodies, has 5 degrees
of freedom and is described by 10 ODEs.

I We investigate the sensitivity of the position of the end
effector at the final time with respect to the disturbances in
several system parameters p = [F1,z , L, tend ,m2, I3zz ]

T (driving
force, geometrical length, final time, mass, a component of the
inertia tensor).

I The results are verified by a using the adjoint variable
method (AVM) and (very costly) finite-difference
approximations with adaptive order control.

Zofia Mączyńska Numerical integration algorithms



Introduction
Automatic differentiation of prototypical numerical integration algorithms

Experimental results with a one-mass oscillator
Application to a technical system

Conclusions

I We consider a robot which consists of 7 bodies, has 5 degrees
of freedom and is described by 10 ODEs.

I We investigate the sensitivity of the position of the end
effector at the final time with respect to the disturbances in
several system parameters p = [F1,z , L, tend ,m2, I3zz ]

T (driving
force, geometrical length, final time, mass, a component of the
inertia tensor).

I The results are verified by a using the adjoint variable
method (AVM) and (very costly) finite-difference
approximations with adaptive order control.

Zofia Mączyńska Numerical integration algorithms



Introduction
Automatic differentiation of prototypical numerical integration algorithms

Experimental results with a one-mass oscillator
Application to a technical system

Conclusions

I We consider a robot which consists of 7 bodies, has 5 degrees
of freedom and is described by 10 ODEs.

I We investigate the sensitivity of the position of the end
effector at the final time with respect to the disturbances in
several system parameters p = [F1,z , L, tend ,m2, I3zz ]

T (driving
force, geometrical length, final time, mass, a component of the
inertia tensor).

I The results are verified by a using the adjoint variable
method (AVM) and (very costly) finite-difference
approximations with adaptive order control.

Zofia Mączyńska Numerical integration algorithms



Introduction
Automatic differentiation of prototypical numerical integration algorithms

Experimental results with a one-mass oscillator
Application to a technical system

Conclusions

The reference criterion and reference gradient obtained using AVM
with integration error tolerances near machine accuracy is for the
component ∂ψ

∂p1
as follows:

ψ = 4.136636,
∂ψ

∂p1
= 0.0186126.
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Conclusions

I If the relative and the absolute error bounds for the
Shampine-Gordon integration algorithms are chosen as
relerr = abserr = 10−7, we get the following errors in the
component ∂ψ

∂p1
:

AVM relerr = 8.06 · 10−7, abserr = 1.5 · 10−8

AD + corrections relerr = 2.31 · 10−7, abserr = 4.3 · 10−8.
I Both gradients are sufficiently accurate and both methods can

be used for the sensitivity analysis of a multibody system.
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Conclusions

I In general:
I the computation of the adjoint variable gradients is more

efficient, but they are based on a hand coded, highly optimized
algorithm whose implementation took man-years

I AD-generated code is fairly simple to create and requires
(including the result verification) much less time, at the
expense of a less efficient execution.

I However the time verification of the gradients can be very high
and unless the algorithm and the implementations are well
understood, one should check the results carefully. This is due
to the fact that AD differentiate the algorithm without any
knowledge of the mathematics that underlie the algorithm.
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Conclusions

I The numerical behavior of the criteria and the gradient
computation must be studied carefully. It is not obvious that
the stepsize control is determined only by the state variables
required for the criteria computation; and, therefore, the errors
introduced in the state variables for the gradients may be
bigger than the prescribed error bounds for the state variables
for the criteria.

I The application of plan AD often yields the right results
nevertheless the inclusion of expert knowledge can highly
improve the performance and numerical behavior. (Example: if
the differentiation of the stepsize control is switched off, we
can compute the correct gradients more efficiently)
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