
Exploiting Intermediate Sparsity in Computing
Derivatives for a Leapfrog Scheme

Roland Schäfer

IGPM — RWTH Aachen

2006-08-15

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 1 / 23

Outline

1 What is Leapfrog

2 Black-Box Approach

3 Intermediate Sparsity (IS) Approach, Compressed Jacobian

4 2d-Example Shallow Water

Simple Update

Complex Update

5 Conclusion

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 2 / 23

Outline

1 What is Leapfrog

2 Black-Box Approach

3 Intermediate Sparsity (IS) Approach, Compressed Jacobian

4 2d-Example Shallow Water

Simple Update

Complex Update

5 Conclusion

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 3 / 23

What is Leapfrog

Target: Calculate Z (T) from Z (0) (initial value) and W (parameter)

Leapfrog: Z (t + 1) = H
(
Z (t), Z (t − 1), W

)
Leapfrog Scheme (LS)

Initialize Z (0) and W

Compute Z (1)

for t = 1 to T − 1 do

Z (t + 1) = H(Z (t),Z (t − 1),W)

end do

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 4 / 23

What is Leapfrog

Target: Calculate Z (T) from Z (0) (initial value) and W (parameter)

Leapfrog: Z (t + 1) = H
(
Z (t), Z (t − 1), W

)

Leapfrog Scheme (LS)

Initialize Z (0) and W

Compute Z (1)

for t = 1 to T − 1 do

Z (t + 1) = H(Z (t),Z (t − 1),W)

end do

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 4 / 23

What is Leapfrog

Target: Calculate Z (T) from Z (0) (initial value) and W (parameter)

Leapfrog: Z (t + 1) = H
(
Z (t), Z (t − 1), W

)
Leapfrog Scheme (LS)

Initialize Z (0) and W

Compute Z (1)

for t = 1 to T − 1 do

Z (t + 1) = H(Z (t),Z (t − 1),W)

end do

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 4 / 23

Outline

1 What is Leapfrog

2 Black-Box Approach

3 Intermediate Sparsity (IS) Approach, Compressed Jacobian

4 2d-Example Shallow Water

Simple Update

Complex Update

5 Conclusion

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 5 / 23

Calculate Derivatives

Let X be a subset of s elements from the n + p sized [Z (0),W].

We want:
dZ (T)

dX

Black-Box Approach (BB)

Initialize [Z (0), dZ(0)
dX] and [W , dW

dX]

Compute [Z (1), dZ(1)
dX]

for t = 1 to T − 1 do[
Z (t + 1), dZ(t+1)

dX

]
= Ĥ

(
Z (t), dZ(t)

dX , Z (t − 1), dZ(t−1)
dX , W , dW

dX

)
end do

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 6 / 23

Calculate Derivatives

Let X be a subset of s elements from the n + p sized [Z (0),W].

We want:
dZ (T)

dX

Black-Box Approach (BB)

Initialize [Z (0), dZ(0)
dX] and [W , dW

dX]

Compute [Z (1), dZ(1)
dX]

for t = 1 to T − 1 do[
Z (t + 1), dZ(t+1)

dX

]
= Ĥ

(
Z (t), dZ(t)

dX , Z (t − 1), dZ(t−1)
dX , W , dW

dX

)
end do

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 6 / 23

Complexity of BB

Operations:

Computation of H takes fH flops

Computation of Z (T) takes O(fHT) flops

Computation of [Z (T), dZ(T)
dX] takes O(s · fHT) flops

Memory:

need to save two timesteps

Z ∈ Rn, W ∈ Rp

therefore computation of H takes O(2n + p) words of storage

BB takes O(s · (2n + p)) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 7 / 23

Complexity of BB

Operations:

Computation of H takes fH flops

Computation of Z (T) takes O(fHT) flops

Computation of [Z (T), dZ(T)
dX] takes O(s · fHT) flops

Memory:

need to save two timesteps

Z ∈ Rn, W ∈ Rp

therefore computation of H takes O(2n + p) words of storage

BB takes O(s · (2n + p)) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 7 / 23

Complexity of BB

Operations:

Computation of H takes fH flops

Computation of Z (T) takes O(fHT) flops

Computation of [Z (T), dZ(T)
dX] takes O(s · fHT) flops

Memory:

need to save two timesteps

Z ∈ Rn, W ∈ Rp

therefore computation of H takes O(2n + p) words of storage

BB takes O(s · (2n + p)) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 7 / 23

Complexity of BB

Operations:

Computation of H takes fH flops

Computation of Z (T) takes O(fHT) flops

Computation of [Z (T), dZ(T)
dX] takes O(s · fHT) flops

Memory:

need to save two timesteps

Z ∈ Rn, W ∈ Rp

therefore computation of H takes O(2n + p) words of storage

BB takes O(s · (2n + p)) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 7 / 23

Complexity of BB

Operations:

Computation of H takes fH flops

Computation of Z (T) takes O(fHT) flops

Computation of [Z (T), dZ(T)
dX] takes O(s · fHT) flops

Memory:

need to save two timesteps

Z ∈ Rn, W ∈ Rp

therefore computation of H takes O(2n + p) words of storage

BB takes O(s · (2n + p)) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 7 / 23

Complexity of BB

Operations:

Computation of H takes fH flops

Computation of Z (T) takes O(fHT) flops

Computation of [Z (T), dZ(T)
dX] takes O(s · fHT) flops

Memory:

need to save two timesteps

Z ∈ Rn, W ∈ Rp

therefore computation of H takes O(2n + p) words of storage

BB takes O(s · (2n + p)) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 7 / 23

Outline

1 What is Leapfrog

2 Black-Box Approach

3 Intermediate Sparsity (IS) Approach, Compressed Jacobian

4 2d-Example Shallow Water

Simple Update

Complex Update

5 Conclusion

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 8 / 23

Motivation

Leapfrog Scheme:

Z (t + 1) = H(Z (t),Z (t − 1),W)

Differentiate w.r.t. X :

dZ (t + 1)

dX
=

∂H

∂Z (t)
· dZ (t)

dX
+

∂H

∂Z (t − 1)
· dZ (t − 1)

dX
+

∂H

∂W
· dW

dX

Fact

∂H

∂ . . .
is sparse for PDE problems

Exploit this fact with cheap “sparse matrix – matrix” multiplications

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 9 / 23

Motivation

Leapfrog Scheme:

Z (t + 1) = H(Z (t),Z (t − 1),W)

Differentiate w.r.t. X :

dZ (t + 1)

dX
=

∂H

∂Z (t)
· dZ (t)

dX
+

∂H

∂Z (t − 1)
· dZ (t − 1)

dX
+

∂H

∂W
· dW

dX

Fact

∂H

∂ . . .
is sparse for PDE problems

Exploit this fact with cheap “sparse matrix – matrix” multiplications

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 9 / 23

Motivation

Leapfrog Scheme:

Z (t + 1) = H(Z (t),Z (t − 1),W)

Differentiate w.r.t. X :

dZ (t + 1)

dX
=

∂H

∂Z (t)
· dZ (t)

dX
+

∂H

∂Z (t − 1)
· dZ (t − 1)

dX
+

∂H

∂W
· dW

dX

Fact

∂H

∂ . . .
is sparse for PDE problems

Exploit this fact with cheap “sparse matrix – matrix” multiplications

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 9 / 23

Motivation

Leapfrog Scheme:

Z (t + 1) = H(Z (t),Z (t − 1),W)

Differentiate w.r.t. X :

dZ (t + 1)

dX
=

∂H

∂Z (t)
· dZ (t)

dX
+

∂H

∂Z (t − 1)
· dZ (t − 1)

dX
+

∂H

∂W
· dW

dX

Fact

∂H

∂ . . .
is sparse for PDE problems

Exploit this fact with cheap “sparse matrix – matrix” multiplications

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 9 / 23

Why is the matrix sparse

H typically comes from a stencil, which depends only on a few, neighbored
cells

In forthcoming example:
max. 13 non-zero entries of [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W]

124 BISCHOF, BÜCKER AND WU

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

nz = 3101

Figure 1. The nonzero structure of the matrix [∂H
∂Z(t) ,

∂H
∂Z(t−1) ,

∂H
∂W].

per row. The total number of nonzeros in the matrix is 3,101. As for ∂H
∂Z(t−1) , it is essentially

diagonal, with corner points attributing off-diagonal entries. It is the sparsity given in this
figure that is to be exploited in the computation of the Jacobians, i.e., in Step 1 of the code IS.

Suppose we are interested in the Jacobians of the current state with respect to the initial
state and the time-independent parameters. Figure 2 shows the structure of the n × (n + p)
Jacobians [dZ (t)

dZ (0) ,
dZ (t)
dW] through the course of the iteration for t = 1, . . . , 6, using the

derivative seeding (3). Note that fill-in occurs as these sparse matrices are multiplied out.
We noted that for t > 9 the structure of these Jacobians did not change any more and they
were essentially full. Somewhat surprisingly, though, there were still some zero entries per
row—the maximum number of nonzeros per row was 355 instead of n + p = 367. This
fill-in is expected, as the stencil nature of the computation implies that information is spread
further and further through the grid at every time step. The IS approach concentrates this
fill-in in Step 2, the matrix accumulation step.

This phenomenon is further illustrated in figure 3 which shows the average number of
nonzeros occurring in derivative computations over the runtime of the code. The left plot
shows the BB approach with the seeding (3); the right plot shows the IS approach. We
see that, in the BB approach, the number of nonzeros steadily rises until it reaches 355.
In contrast, the number of nonzeros in the derivative vectors in the approach that exploits
the intermediate sparsity is never more than 13, the maximum number of nonzeros per
row of [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W], and structurally, except for the very first time step, the same

computation takes place.

5. Experimental results

In this section, we compare runtime and storage requirements of various runs of the BB
approach and the IS approach on Sun SPARCstation 5 and an IBM RS/6000 workstation
platform. Throughout the experiments, we use three different grid sizes given in Table 2 as

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 10 / 23

Why is the matrix sparse

H typically comes from a stencil, which depends only on a few, neighbored
cells

In forthcoming example:
max. 13 non-zero entries of [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W]

124 BISCHOF, BÜCKER AND WU

0 100 200 300 400 500 600 700

0

50

100

150

200

250

300

350

nz = 3101

Figure 1. The nonzero structure of the matrix [∂H
∂Z(t) ,

∂H
∂Z(t−1) ,

∂H
∂W].

per row. The total number of nonzeros in the matrix is 3,101. As for ∂H
∂Z(t−1) , it is essentially

diagonal, with corner points attributing off-diagonal entries. It is the sparsity given in this
figure that is to be exploited in the computation of the Jacobians, i.e., in Step 1 of the code IS.

Suppose we are interested in the Jacobians of the current state with respect to the initial
state and the time-independent parameters. Figure 2 shows the structure of the n × (n + p)
Jacobians [dZ (t)

dZ (0) ,
dZ (t)
dW] through the course of the iteration for t = 1, . . . , 6, using the

derivative seeding (3). Note that fill-in occurs as these sparse matrices are multiplied out.
We noted that for t > 9 the structure of these Jacobians did not change any more and they
were essentially full. Somewhat surprisingly, though, there were still some zero entries per
row—the maximum number of nonzeros per row was 355 instead of n + p = 367. This
fill-in is expected, as the stencil nature of the computation implies that information is spread
further and further through the grid at every time step. The IS approach concentrates this
fill-in in Step 2, the matrix accumulation step.

This phenomenon is further illustrated in figure 3 which shows the average number of
nonzeros occurring in derivative computations over the runtime of the code. The left plot
shows the BB approach with the seeding (3); the right plot shows the IS approach. We
see that, in the BB approach, the number of nonzeros steadily rises until it reaches 355.
In contrast, the number of nonzeros in the derivative vectors in the approach that exploits
the intermediate sparsity is never more than 13, the maximum number of nonzeros per
row of [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W], and structurally, except for the very first time step, the same

computation takes place.

5. Experimental results

In this section, we compare runtime and storage requirements of various runs of the BB
approach and the IS approach on Sun SPARCstation 5 and an IBM RS/6000 workstation
platform. Throughout the experiments, we use three different grid sizes given in Table 2 as

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 10 / 23

Intermediate Sparsity Approach (IS)

Assume: “sparse matrix – matrix” multiplications are cheap

Intermediate Sparsity Approach (IS)

Initialize [Z (0), dZ(0)
dX] and [W , dW

dX].

Compute [Z (1), dZ(1)
dX].

for t = 1 to T − 1 do

Step 1: Compute Z (t + 1) and ∂H
∂Z(t) ,

∂H
∂Z(t−1) ,

∂H
∂W

Step 2: Compute∗ dZ(t+1)
dX via matrix-matrix multiplication

end do

∗ via dZ(t+1)
dX = ∂H

∂Z(t) ·
dZ(t)
dX + ∂H

∂Z(t−1) ·
dZ(t−1)

dX + ∂H
∂W · dW

dX

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 11 / 23

Intermediate Sparsity Approach (IS)

Assume: “sparse matrix – matrix” multiplications are cheap

Intermediate Sparsity Approach (IS)

Initialize [Z (0), dZ(0)
dX] and [W , dW

dX].

Compute [Z (1), dZ(1)
dX].

for t = 1 to T − 1 do

Step 1: Compute Z (t + 1) and ∂H
∂Z(t) ,

∂H
∂Z(t−1) ,

∂H
∂W

Step 2: Compute∗ dZ(t+1)
dX via matrix-matrix multiplication

end do

∗ via dZ(t+1)
dX = ∂H

∂Z(t) ·
dZ(t)
dX + ∂H

∂Z(t−1) ·
dZ(t−1)

dX + ∂H
∂W · dW

dX

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 11 / 23

Complexity for IS-SL

Assume: “matrix-matrix” multiplications are optimized for sparse matrices:
sparse linear algebra (SL)

Operations:

Stencil size is O(κ)

Step 1 needs a total of O(κfHT) flops (instead of O(sfHT))

matrix-matrix multiplication needs O(snT)

Memory:

Step 1 needs O(κ(2n + p)) words of storage

Step 2 needs O(sn) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 12 / 23

Complexity for IS-SL

Assume: “matrix-matrix” multiplications are optimized for sparse matrices:
sparse linear algebra (SL)

Operations:

Stencil size is O(κ)

Step 1 needs a total of O(κfHT) flops (instead of O(sfHT))

matrix-matrix multiplication needs O(snT)

Memory:

Step 1 needs O(κ(2n + p)) words of storage

Step 2 needs O(sn) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 12 / 23

Complexity for IS-SL

Assume: “matrix-matrix” multiplications are optimized for sparse matrices:
sparse linear algebra (SL)

Operations:

Stencil size is O(κ)

Step 1 needs a total of O(κfHT) flops (instead of O(sfHT))

matrix-matrix multiplication needs O(snT)

Memory:

Step 1 needs O(κ(2n + p)) words of storage

Step 2 needs O(sn) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 12 / 23

Complexity for IS-SL

Assume: “matrix-matrix” multiplications are optimized for sparse matrices:
sparse linear algebra (SL)

Operations:

Stencil size is O(κ)

Step 1 needs a total of O(κfHT) flops (instead of O(sfHT))

matrix-matrix multiplication needs O(snT)

Memory:

Step 1 needs O(κ(2n + p)) words of storage

Step 2 needs O(sn) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 12 / 23

Complexity for IS-SL

Assume: “matrix-matrix” multiplications are optimized for sparse matrices:
sparse linear algebra (SL)

Operations:

Stencil size is O(κ)

Step 1 needs a total of O(κfHT) flops (instead of O(sfHT))

matrix-matrix multiplication needs O(snT)

Memory:

Step 1 needs O(κ(2n + p)) words of storage

Step 2 needs O(sn) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 12 / 23

Complexity for IS-SL

Assume: “matrix-matrix” multiplications are optimized for sparse matrices:
sparse linear algebra (SL)

Operations:

Stencil size is O(κ)

Step 1 needs a total of O(κfHT) flops (instead of O(sfHT))

matrix-matrix multiplication needs O(snT)

Memory:

Step 1 needs O(κ(2n + p)) words of storage

Step 2 needs O(sn) words of storage

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 12 / 23

Another way: Compressed Jacobians (IS-CJ)

Let S1, S2 be suitable chosen seed matrices with λ1, λ2 columns for dZ(t)
dX

and dZ(t−1)
dX

Obtain a compressed version of ∂H
∂...

Complexity: (λ = λ1 + λ2 + p)

Computation: O(λfHT) + O(snT)

Memory: O(λ(2n + p)) + O(sn)

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 13 / 23

Another way: Compressed Jacobians (IS-CJ)

Let S1, S2 be suitable chosen seed matrices with λ1, λ2 columns for dZ(t)
dX

and dZ(t−1)
dX

Obtain a compressed version of ∂H
∂...

Complexity: (λ = λ1 + λ2 + p)

Computation: O(λfHT) + O(snT)

Memory: O(λ(2n + p)) + O(sn)

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 13 / 23

Another way: Compressed Jacobians (IS-CJ)

Let S1, S2 be suitable chosen seed matrices with λ1, λ2 columns for dZ(t)
dX

and dZ(t−1)
dX

Obtain a compressed version of ∂H
∂...

Complexity: (λ = λ1 + λ2 + p)

Computation: O(λfHT) + O(snT)

Memory: O(λ(2n + p)) + O(sn)

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 13 / 23

Complexity overview
EXPLOITING INTERMEDIATE SPARSITY 123

Table 1. Number of floating point operations and storage requirement.

BB IS–SL IS–CJ

Computation O(s fH T) O(κ fH T) + O(snT) O(λ fH T) + O(snT)

Storage O(s(2n + p)) O(κ(2n + p)) + O(sn) O(λ(2n + p)) + O(sn)

is λ that of computing H , where λ := λ1 + λ2 + p. Thus, Step 1 here requires O(λ fH T)
floating point operations and O(λ(2n + p)) storage. In the sequel, the intermediate sparsity
approach using compressed Jacobians is denoted by IS–CJ.

In Table 1, the three different approaches are compared in terms of both floating point op-
erations and storage requirement. Here, it is assumed that one is differentiating with respect
to s independent variables. Recall that evaluating H takes fH floating point operations and
that T denotes the final time step. The additive terms in the two columns IS–SL and IS–CJ
result from Steps 1 and 2 of the IS approach. The terms corresponding to Step 1, the com-
putation of the sparse Jacobians, are derived in the above discussion. The terms associated
with the matrix-matrix multiplications are based on the fact that, in (2), both ∂H

∂Z(t) · dZ (t)
dX

and ∂H
∂Z(t−1) · dZ (t−1)

dX are, in general, multiplications of a sparse matrix of size n × n with
a dense matrix of size n × s. Thus, assuming a (small) fixed number of nonzeros per row
in the sparse matrices ∂H

∂Z(t) and ∂H
∂Z(t−1) , the matrix-matrix multiplications summed over the

iterations require O(snT) floating point operations and O(sn) storage.
We see from this table that, in general, it is hard to predict whether or not the two IS

approaches lead to computational improvements over the BB approach. However, consider
the situation in which κ and λ are small compared to s. Then, there is an advantage of the
IS approaches over the BB approach if O(κ fH T)
 O(snT) in the IS–SL approach or,
similarly, if O(λ fH T)
 O(snT) in the IS–CJ approach. That is, the overall computational
cost of the IS approaches should result from the computation of the Jacobian matrices
and not from the matrix-matrix multiplications. This will be the case if sufficient effort is
expended in the stencil computation leading to a sizable fH which is discussed in more
detail in Section 5.

Notice that if κ and λ are small compared to s we also expect some storage savings
because the IS approaches require less storage for the derivatives of variables internal to H .

4. A 2-D shallow water equations model problem

To illustrate the different approaches for computing derivatives of a leapfrog scheme, we
employ a 2-D shallow water equations model problem. The shallow water equations are of
interest in hydrology, oceanography, weather forecasting, and climate modeling, to name a
few. The particular model that we use in the present study is described in detail in [17, 18].
This code is simple, yet exhibits the characteristic features we based our algorithmic sug-
gestions on, namely, a leapfrog method as time propagator and a stencil-based propagation
operator. In the example given in this section, the dimension of the time-dependent sys-
tem is n = 363 and the number of time-independent parameters is p = 4. Here, the ma-
trix [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W] whose nonzero structure is shown in figure 1 has at most 13 nonzeros

When is IS faster then BB?

Assume: κ, λ � s

IS is faster then BB if O(κfHT) � O(snT)

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 14 / 23

Complexity overview
EXPLOITING INTERMEDIATE SPARSITY 123

Table 1. Number of floating point operations and storage requirement.

BB IS–SL IS–CJ

Computation O(s fH T) O(κ fH T) + O(snT) O(λ fH T) + O(snT)

Storage O(s(2n + p)) O(κ(2n + p)) + O(sn) O(λ(2n + p)) + O(sn)

is λ that of computing H , where λ := λ1 + λ2 + p. Thus, Step 1 here requires O(λ fH T)
floating point operations and O(λ(2n + p)) storage. In the sequel, the intermediate sparsity
approach using compressed Jacobians is denoted by IS–CJ.

In Table 1, the three different approaches are compared in terms of both floating point op-
erations and storage requirement. Here, it is assumed that one is differentiating with respect
to s independent variables. Recall that evaluating H takes fH floating point operations and
that T denotes the final time step. The additive terms in the two columns IS–SL and IS–CJ
result from Steps 1 and 2 of the IS approach. The terms corresponding to Step 1, the com-
putation of the sparse Jacobians, are derived in the above discussion. The terms associated
with the matrix-matrix multiplications are based on the fact that, in (2), both ∂H

∂Z(t) · dZ (t)
dX

and ∂H
∂Z(t−1) · dZ (t−1)

dX are, in general, multiplications of a sparse matrix of size n × n with
a dense matrix of size n × s. Thus, assuming a (small) fixed number of nonzeros per row
in the sparse matrices ∂H

∂Z(t) and ∂H
∂Z(t−1) , the matrix-matrix multiplications summed over the

iterations require O(snT) floating point operations and O(sn) storage.
We see from this table that, in general, it is hard to predict whether or not the two IS

approaches lead to computational improvements over the BB approach. However, consider
the situation in which κ and λ are small compared to s. Then, there is an advantage of the
IS approaches over the BB approach if O(κ fH T)
 O(snT) in the IS–SL approach or,
similarly, if O(λ fH T)
 O(snT) in the IS–CJ approach. That is, the overall computational
cost of the IS approaches should result from the computation of the Jacobian matrices
and not from the matrix-matrix multiplications. This will be the case if sufficient effort is
expended in the stencil computation leading to a sizable fH which is discussed in more
detail in Section 5.

Notice that if κ and λ are small compared to s we also expect some storage savings
because the IS approaches require less storage for the derivatives of variables internal to H .

4. A 2-D shallow water equations model problem

To illustrate the different approaches for computing derivatives of a leapfrog scheme, we
employ a 2-D shallow water equations model problem. The shallow water equations are of
interest in hydrology, oceanography, weather forecasting, and climate modeling, to name a
few. The particular model that we use in the present study is described in detail in [17, 18].
This code is simple, yet exhibits the characteristic features we based our algorithmic sug-
gestions on, namely, a leapfrog method as time propagator and a stencil-based propagation
operator. In the example given in this section, the dimension of the time-dependent sys-
tem is n = 363 and the number of time-independent parameters is p = 4. Here, the ma-
trix [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W] whose nonzero structure is shown in figure 1 has at most 13 nonzeros

When is IS faster then BB?

Assume: κ, λ � s

IS is faster then BB if O(κfHT) � O(snT)

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 14 / 23

Complexity overview
EXPLOITING INTERMEDIATE SPARSITY 123

Table 1. Number of floating point operations and storage requirement.

BB IS–SL IS–CJ

Computation O(s fH T) O(κ fH T) + O(snT) O(λ fH T) + O(snT)

Storage O(s(2n + p)) O(κ(2n + p)) + O(sn) O(λ(2n + p)) + O(sn)

is λ that of computing H , where λ := λ1 + λ2 + p. Thus, Step 1 here requires O(λ fH T)
floating point operations and O(λ(2n + p)) storage. In the sequel, the intermediate sparsity
approach using compressed Jacobians is denoted by IS–CJ.

In Table 1, the three different approaches are compared in terms of both floating point op-
erations and storage requirement. Here, it is assumed that one is differentiating with respect
to s independent variables. Recall that evaluating H takes fH floating point operations and
that T denotes the final time step. The additive terms in the two columns IS–SL and IS–CJ
result from Steps 1 and 2 of the IS approach. The terms corresponding to Step 1, the com-
putation of the sparse Jacobians, are derived in the above discussion. The terms associated
with the matrix-matrix multiplications are based on the fact that, in (2), both ∂H

∂Z(t) · dZ (t)
dX

and ∂H
∂Z(t−1) · dZ (t−1)

dX are, in general, multiplications of a sparse matrix of size n × n with
a dense matrix of size n × s. Thus, assuming a (small) fixed number of nonzeros per row
in the sparse matrices ∂H

∂Z(t) and ∂H
∂Z(t−1) , the matrix-matrix multiplications summed over the

iterations require O(snT) floating point operations and O(sn) storage.
We see from this table that, in general, it is hard to predict whether or not the two IS

approaches lead to computational improvements over the BB approach. However, consider
the situation in which κ and λ are small compared to s. Then, there is an advantage of the
IS approaches over the BB approach if O(κ fH T)
 O(snT) in the IS–SL approach or,
similarly, if O(λ fH T)
 O(snT) in the IS–CJ approach. That is, the overall computational
cost of the IS approaches should result from the computation of the Jacobian matrices
and not from the matrix-matrix multiplications. This will be the case if sufficient effort is
expended in the stencil computation leading to a sizable fH which is discussed in more
detail in Section 5.

Notice that if κ and λ are small compared to s we also expect some storage savings
because the IS approaches require less storage for the derivatives of variables internal to H .

4. A 2-D shallow water equations model problem

To illustrate the different approaches for computing derivatives of a leapfrog scheme, we
employ a 2-D shallow water equations model problem. The shallow water equations are of
interest in hydrology, oceanography, weather forecasting, and climate modeling, to name a
few. The particular model that we use in the present study is described in detail in [17, 18].
This code is simple, yet exhibits the characteristic features we based our algorithmic sug-
gestions on, namely, a leapfrog method as time propagator and a stencil-based propagation
operator. In the example given in this section, the dimension of the time-dependent sys-
tem is n = 363 and the number of time-independent parameters is p = 4. Here, the ma-
trix [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W] whose nonzero structure is shown in figure 1 has at most 13 nonzeros

When is IS faster then BB?

Assume: κ, λ � s

IS is faster then BB if O(κfHT) � O(snT)

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 14 / 23

Complexity overview
EXPLOITING INTERMEDIATE SPARSITY 123

Table 1. Number of floating point operations and storage requirement.

BB IS–SL IS–CJ

Computation O(s fH T) O(κ fH T) + O(snT) O(λ fH T) + O(snT)

Storage O(s(2n + p)) O(κ(2n + p)) + O(sn) O(λ(2n + p)) + O(sn)

is λ that of computing H , where λ := λ1 + λ2 + p. Thus, Step 1 here requires O(λ fH T)
floating point operations and O(λ(2n + p)) storage. In the sequel, the intermediate sparsity
approach using compressed Jacobians is denoted by IS–CJ.

In Table 1, the three different approaches are compared in terms of both floating point op-
erations and storage requirement. Here, it is assumed that one is differentiating with respect
to s independent variables. Recall that evaluating H takes fH floating point operations and
that T denotes the final time step. The additive terms in the two columns IS–SL and IS–CJ
result from Steps 1 and 2 of the IS approach. The terms corresponding to Step 1, the com-
putation of the sparse Jacobians, are derived in the above discussion. The terms associated
with the matrix-matrix multiplications are based on the fact that, in (2), both ∂H

∂Z(t) · dZ (t)
dX

and ∂H
∂Z(t−1) · dZ (t−1)

dX are, in general, multiplications of a sparse matrix of size n × n with
a dense matrix of size n × s. Thus, assuming a (small) fixed number of nonzeros per row
in the sparse matrices ∂H

∂Z(t) and ∂H
∂Z(t−1) , the matrix-matrix multiplications summed over the

iterations require O(snT) floating point operations and O(sn) storage.
We see from this table that, in general, it is hard to predict whether or not the two IS

approaches lead to computational improvements over the BB approach. However, consider
the situation in which κ and λ are small compared to s. Then, there is an advantage of the
IS approaches over the BB approach if O(κ fH T)
 O(snT) in the IS–SL approach or,
similarly, if O(λ fH T)
 O(snT) in the IS–CJ approach. That is, the overall computational
cost of the IS approaches should result from the computation of the Jacobian matrices
and not from the matrix-matrix multiplications. This will be the case if sufficient effort is
expended in the stencil computation leading to a sizable fH which is discussed in more
detail in Section 5.

Notice that if κ and λ are small compared to s we also expect some storage savings
because the IS approaches require less storage for the derivatives of variables internal to H .

4. A 2-D shallow water equations model problem

To illustrate the different approaches for computing derivatives of a leapfrog scheme, we
employ a 2-D shallow water equations model problem. The shallow water equations are of
interest in hydrology, oceanography, weather forecasting, and climate modeling, to name a
few. The particular model that we use in the present study is described in detail in [17, 18].
This code is simple, yet exhibits the characteristic features we based our algorithmic sug-
gestions on, namely, a leapfrog method as time propagator and a stencil-based propagation
operator. In the example given in this section, the dimension of the time-dependent sys-
tem is n = 363 and the number of time-independent parameters is p = 4. Here, the ma-
trix [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W] whose nonzero structure is shown in figure 1 has at most 13 nonzeros

When is IS faster then BB?

Assume: κ, λ � s

IS is faster then BB if O(κfHT) � O(snT)

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 14 / 23

Outline

1 What is Leapfrog

2 Black-Box Approach

3 Intermediate Sparsity (IS) Approach, Compressed Jacobian

4 2d-Example Shallow Water

Simple Update

Complex Update

5 Conclusion

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 15 / 23

Example Shallow Water in 2d

Shallow Water used to simulate water flow, where vertical dimension is
much smaller than horizontal (shallow).

E.g. rivers, lakes, costal flow

Variables: water height, x-momentum, y -momentum (2d)

We calculate s = n + p derivatives

126 BISCHOF, BÜCKER AND WU

0 292 584 876 1168 1460
Time

0

72

144

216

288

360

N
on

ze
ro

s

BB Approach

0 148 296 444 592 740
Time

0

2

4

6

8

10

12

14

N
on

ze
ro

s

IS Approach

Figure 3. Nonzero entries in derivative vectors over time (BB vs IS approach).

model problems. We compute s = n + p derivatives with respect to Z (0) and W using the
seeding suggested in (3) for T = 60 time steps.

In Step 1 of the IS–SL approach we use SparsLinC to compute the sparse Jacobian shown
in figure 1. In the IS–CJ approach, we use SparsLinC only in the first time step to determine
the sparsity structure and then follow the compressed Jacobian approach in subsequent time
steps. This approach is feasible here because the sparsity pattern does not change. Notice
that continuous use of SparsLinC could accommodate varying sparsity patterns.

Table 3 contains a summary of the memory requirements of the IS–SL, IS–CJ, and BB
approaches. We see that the IS schemes require less memory, since data internal to H
require shorter gradients. The storage available on the SUN platform is less than on the
IBM platform and the larger problems with grid sizes 16 × 16 and 21 × 21 do not fit into
memory on the SUN platform. Therefore, results of the SUN platform are reported only for

Table 2. Characteristics of model problem.

Grid size n p s = n + p

11 × 11 3 · 11 · 11 = 363 4 367

16 × 16 3 · 16 · 16 = 768 4 772

21 × 21 3 · 21 · 21 = 1323 4 1327

Table 3. Memory requirements in mbytes.

Grid size IS–SL IS–CJ BB

11 × 11 3.72 3.85 4.70

16 × 16 13.61 13.84 18.82

21 × 21 37.82 38.16 53.31

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 16 / 23

Example Shallow Water in 2d

Shallow Water used to simulate water flow, where vertical dimension is
much smaller than horizontal (shallow).

E.g. rivers, lakes, costal flow

Variables: water height, x-momentum, y -momentum (2d)

We calculate s = n + p derivatives

126 BISCHOF, BÜCKER AND WU

0 292 584 876 1168 1460
Time

0

72

144

216

288

360

N
on

ze
ro

s

BB Approach

0 148 296 444 592 740
Time

0

2

4

6

8

10

12

14

N
on

ze
ro

s

IS Approach

Figure 3. Nonzero entries in derivative vectors over time (BB vs IS approach).

model problems. We compute s = n + p derivatives with respect to Z (0) and W using the
seeding suggested in (3) for T = 60 time steps.

In Step 1 of the IS–SL approach we use SparsLinC to compute the sparse Jacobian shown
in figure 1. In the IS–CJ approach, we use SparsLinC only in the first time step to determine
the sparsity structure and then follow the compressed Jacobian approach in subsequent time
steps. This approach is feasible here because the sparsity pattern does not change. Notice
that continuous use of SparsLinC could accommodate varying sparsity patterns.

Table 3 contains a summary of the memory requirements of the IS–SL, IS–CJ, and BB
approaches. We see that the IS schemes require less memory, since data internal to H
require shorter gradients. The storage available on the SUN platform is less than on the
IBM platform and the larger problems with grid sizes 16 × 16 and 21 × 21 do not fit into
memory on the SUN platform. Therefore, results of the SUN platform are reported only for

Table 2. Characteristics of model problem.

Grid size n p s = n + p

11 × 11 3 · 11 · 11 = 363 4 367

16 × 16 3 · 16 · 16 = 768 4 772

21 × 21 3 · 21 · 21 = 1323 4 1327

Table 3. Memory requirements in mbytes.

Grid size IS–SL IS–CJ BB

11 × 11 3.72 3.85 4.70

16 × 16 13.61 13.84 18.82

21 × 21 37.82 38.16 53.31

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 16 / 23

Memory & . . .

126 BISCHOF, BÜCKER AND WU

0 292 584 876 1168 1460
Time

0

72

144

216

288

360

N
on

ze
ro

s

BB Approach

0 148 296 444 592 740
Time

0

2

4

6

8

10

12

14

N
on

ze
ro

s

IS Approach

Figure 3. Nonzero entries in derivative vectors over time (BB vs IS approach).

model problems. We compute s = n + p derivatives with respect to Z (0) and W using the
seeding suggested in (3) for T = 60 time steps.

In Step 1 of the IS–SL approach we use SparsLinC to compute the sparse Jacobian shown
in figure 1. In the IS–CJ approach, we use SparsLinC only in the first time step to determine
the sparsity structure and then follow the compressed Jacobian approach in subsequent time
steps. This approach is feasible here because the sparsity pattern does not change. Notice
that continuous use of SparsLinC could accommodate varying sparsity patterns.

Table 3 contains a summary of the memory requirements of the IS–SL, IS–CJ, and BB
approaches. We see that the IS schemes require less memory, since data internal to H
require shorter gradients. The storage available on the SUN platform is less than on the
IBM platform and the larger problems with grid sizes 16 × 16 and 21 × 21 do not fit into
memory on the SUN platform. Therefore, results of the SUN platform are reported only for

Table 2. Characteristics of model problem.

Grid size n p s = n + p

11 × 11 3 · 11 · 11 = 363 4 367

16 × 16 3 · 16 · 16 = 768 4 772

21 × 21 3 · 21 · 21 = 1323 4 1327

Table 3. Memory requirements in mbytes.

Grid size IS–SL IS–CJ BB

11 × 11 3.72 3.85 4.70

16 × 16 13.61 13.84 18.82

21 × 21 37.82 38.16 53.31

Memory requirements in megabytes

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 17 / 23

. . . & RuntimeEXPLOITING INTERMEDIATE SPARSITY 127

Table 4. Runtime in seconds on IBM and Sun platforms.

Grid size (platform) SL CJ MM IS–SL IS–CJ BB

11 × 11 (IBM) 4.90 1.93 8.03 12.93 9.96 4.24

16 × 16 (IBM) 17.77 8.70 38.66 56.43 47.36 36.68

21 × 21 (IBM) 42.98 21.51 119.32 162.30 140.83 71.98

11 × 11 (Sun) 12.26 6.55 19.24 31.50 25.79 26.63

the 11 × 11 grid throughout this note. We stress that, in all three approaches, derivatives
produced with the various schemes agreed to machine precision.

Table 4 shows the overall runtime of the IS–SL, IS–CJ, and BB approaches in the last
three columns, respectively. In addition, the table gives the runtime of Steps 1 and 2 of
the IS approaches. More precisely, the total time spent by the IS–SL approach is the
sum of the time spent in Step 1 to compute the sparse Jacobians using SparsLinC, la-
beled SL in the table, and the time for the matrix-matrix multiplications in Step 2 la-
beled MM. Similarly, the total runtime of the IS–CJ approach is the sum of the time spent
to compute the compressed Jacobians in Step 1 labeled CJ and the matrix-matrix multiply
time MM.

We observe that except on the Sun SPARCstation, the IS approaches do not produce
any runtime improvements overall, since the matrix-matrix multiplication cost dominates
overall cost. In our experiments, we employed a standard sparse matrix-vector multiply
kernel written in Fortran as well as an ESSL library routine on the IBM system but found
little impact on performance.

The disappointing performance of both IS schemes in this particular case is not really
surprising. We compute a large number s of derivatives, and the shallow water equations
solver is based on a five-point stencil and updates the east and west wind components as
well as the geopotential at a cost of only 59 floating point operations per grid point. Thus,
the overall cost of both IS approaches is dominated by the matrix-matrix-multiplications in
Step 2. The complexity considerations carried out in Section 3 show that one should avoid
this situation and better make sure that the computation of the sparse Jacobians in Step 1 is
the computationally dominating part.

There are two alternatives to shift computational load from Step 2 to Step 1 in the IS
scheme. The first is to not perform the matrix-matrix multiplications in every iteration as
described so far, but to carry out the matrix-matrix multiplications only every kth iteration.
Conceptually, this corresponds to replacing H with the k-fold concatenation of H . As
discussed in the previous section, the degree of sparsity in the resulting Jacobians will
decrease using this strategy. However, the number of computationally expensive matrix-
matrix multiplications is reduced. To quantify its impact on the computational cost, we
assume that the cost associated with the last term in (2), namely ∂H

∂W · dW
dX , remains the same.

Moreover, we let TMM(k) denote the overall time spent in computing the matrix-matrix
multiplications associated with the first two terms in (2) and we let nz(k) denote the number
of nonzero per row in [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W] when performing matrix-matrix multiplications

after k times applying H . Recall from Table 1 that, if k = 1, the cost of the matrix-matrix

Runtime in seconds

SL: calculate sparse Jacobians

CJ: calculate compressed Jacobians

MM: matrix-matrix multiplications

SL+MM = IS-SL, CJ+MM = IS-CJ

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 18 / 23

Complexity overview
EXPLOITING INTERMEDIATE SPARSITY 123

Table 1. Number of floating point operations and storage requirement.

BB IS–SL IS–CJ

Computation O(s fH T) O(κ fH T) + O(snT) O(λ fH T) + O(snT)

Storage O(s(2n + p)) O(κ(2n + p)) + O(sn) O(λ(2n + p)) + O(sn)

is λ that of computing H , where λ := λ1 + λ2 + p. Thus, Step 1 here requires O(λ fH T)
floating point operations and O(λ(2n + p)) storage. In the sequel, the intermediate sparsity
approach using compressed Jacobians is denoted by IS–CJ.

In Table 1, the three different approaches are compared in terms of both floating point op-
erations and storage requirement. Here, it is assumed that one is differentiating with respect
to s independent variables. Recall that evaluating H takes fH floating point operations and
that T denotes the final time step. The additive terms in the two columns IS–SL and IS–CJ
result from Steps 1 and 2 of the IS approach. The terms corresponding to Step 1, the com-
putation of the sparse Jacobians, are derived in the above discussion. The terms associated
with the matrix-matrix multiplications are based on the fact that, in (2), both ∂H

∂Z(t) · dZ (t)
dX

and ∂H
∂Z(t−1) · dZ (t−1)

dX are, in general, multiplications of a sparse matrix of size n × n with
a dense matrix of size n × s. Thus, assuming a (small) fixed number of nonzeros per row
in the sparse matrices ∂H

∂Z(t) and ∂H
∂Z(t−1) , the matrix-matrix multiplications summed over the

iterations require O(snT) floating point operations and O(sn) storage.
We see from this table that, in general, it is hard to predict whether or not the two IS

approaches lead to computational improvements over the BB approach. However, consider
the situation in which κ and λ are small compared to s. Then, there is an advantage of the
IS approaches over the BB approach if O(κ fH T)
 O(snT) in the IS–SL approach or,
similarly, if O(λ fH T)
 O(snT) in the IS–CJ approach. That is, the overall computational
cost of the IS approaches should result from the computation of the Jacobian matrices
and not from the matrix-matrix multiplications. This will be the case if sufficient effort is
expended in the stencil computation leading to a sizable fH which is discussed in more
detail in Section 5.

Notice that if κ and λ are small compared to s we also expect some storage savings
because the IS approaches require less storage for the derivatives of variables internal to H .

4. A 2-D shallow water equations model problem

To illustrate the different approaches for computing derivatives of a leapfrog scheme, we
employ a 2-D shallow water equations model problem. The shallow water equations are of
interest in hydrology, oceanography, weather forecasting, and climate modeling, to name a
few. The particular model that we use in the present study is described in detail in [17, 18].
This code is simple, yet exhibits the characteristic features we based our algorithmic sug-
gestions on, namely, a leapfrog method as time propagator and a stencil-based propagation
operator. In the example given in this section, the dimension of the time-dependent sys-
tem is n = 363 and the number of time-independent parameters is p = 4. Here, the ma-
trix [∂H

∂Z(t) ,
∂H

∂Z(t−1) ,
∂H
∂W] whose nonzero structure is shown in figure 1 has at most 13 nonzeros

When is IS faster then BB?

Assume: κ, λ � s

IS is faster then BB if O(κfHT) � O(snT)

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 19 / 23

Expensive Update

Lets evaluate H not only one time, but up to 16 times to emulate a
function H, which is more expensive to calculate

(IS-SL)EXPLOITING INTERMEDIATE SPARSITY 129

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 8 16

Repetitions

S
pe

ed
up

Sun Sparc 5, SIZE = 11x11
IBM SP, SIZE = 21x21
IBM SP, SIZE = 16x16
IBM SP, SIZE = 11x11

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 4 8 16

Repetitions

S
pe

ed
up

Sun Sparc 5, SIZE = 11x11
IBM SP, SIZE = 21x21
IBM SP, SIZE = 16x16
IBM SP, SIZE = 11x11

Figure 4. Serial speedup of the IS–SL approach (top) and IS–CJ approach (bottom) over the BB approach.

The resulting computational behavior of this second strategy is shown in figures 4 and 5.
Speedup here is the ratio of CPU time of the BB approach versus the CPU time of the IS
approach. Figure 4 shows that we can in fact obtain considerable speedup if the computa-
tional weight of the time step update is sufficiently large in comparison with the cost of the
matrix-matrix accumulation step. This is also evident in figure 5, which shows the steadily
decreasing influence of the matrix-matrix multiply time as the amount of work per time
step increases.

6. A parameter identification scenario

There is another scenario where the intermediate sparsity approach is advantageous. Con-
sider the case where one is interested in finding the system parameters, W ∈ R

p, from

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 20 / 23

Expensive Update

Lets evaluate H not only one time, but up to 16 times to emulate a
function H, which is more expensive to calculate (IS-SL)EXPLOITING INTERMEDIATE SPARSITY 129

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 8 16

Repetitions

S
pe

ed
up

Sun Sparc 5, SIZE = 11x11
IBM SP, SIZE = 21x21
IBM SP, SIZE = 16x16
IBM SP, SIZE = 11x11

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 4 8 16

Repetitions

S
pe

ed
up

Sun Sparc 5, SIZE = 11x11
IBM SP, SIZE = 21x21
IBM SP, SIZE = 16x16
IBM SP, SIZE = 11x11

Figure 4. Serial speedup of the IS–SL approach (top) and IS–CJ approach (bottom) over the BB approach.

The resulting computational behavior of this second strategy is shown in figures 4 and 5.
Speedup here is the ratio of CPU time of the BB approach versus the CPU time of the IS
approach. Figure 4 shows that we can in fact obtain considerable speedup if the computa-
tional weight of the time step update is sufficiently large in comparison with the cost of the
matrix-matrix accumulation step. This is also evident in figure 5, which shows the steadily
decreasing influence of the matrix-matrix multiply time as the amount of work per time
step increases.

6. A parameter identification scenario

There is another scenario where the intermediate sparsity approach is advantageous. Con-
sider the case where one is interested in finding the system parameters, W ∈ R

p, from

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 20 / 23

MM Multiplication Percentage
130 BISCHOF, BÜCKER AND WU

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1 2 4 8 16

Repetitions

M
M

 M
ul

t-
P

er
ce

nt
ag

e

Sun Sparc 5, SIZE = 11x11
IBM SP, SIZE = 21x21
IBM SP, SIZE = 16x16
IBM SP, SIZE = 11x11

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

1 2 4 8 16

Repetitions

M
M

 M
ul

t-
P

er
ce

nt
ag

e

Sun Sparc 5, SIZE = 11x11
IBM SP, SIZE = 21x21
IBM SP, SIZE = 16x16
IBM SP, SIZE = 11x11

Figure 5. Percentage of time spent in matrix-matrix multiplications for the IS–SL approach (top) and IS–CJ
approach (bottom).

given data measurements, Yt ∈ R
d , of projected system states for all time steps t . A common

approach to identify the system parameters W is to minimize

g(W) = 1

2

∥∥∥∥∥∥∥∥∥∥




Y1

Y2

...

YT


 −




PZ(1)

PZ(2)
...

PZ(T)




∥∥∥∥∥∥∥∥∥∥

2

2

,

where P is a projection used to sort out d entries of a system state Z (t). In a Gauss–Newton
algorithm for the iterative solution of this nonlinear least-squares problem, a linear system

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 21 / 23

Outline

1 What is Leapfrog

2 Black-Box Approach

3 Intermediate Sparsity (IS) Approach, Compressed Jacobian

4 2d-Example Shallow Water

Simple Update

Complex Update

5 Conclusion

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 22 / 23

Conclusion

Exploiting Sparsity works, if O(κfHT) � O(snT)

this means: evaluation of H must be expensive

for example: High-Order code

substantial speedup

Lit.: C. Bischof, M. Bücker, P. Wu:
Exploiting Intermediate Sparsity in Computing Derivatives for a Leapfrog
Scheme,
Comp. Opt. Appl. 24, 117–133, 2003

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 23 / 23

Conclusion

Exploiting Sparsity works, if O(κfHT) � O(snT)

this means: evaluation of H must be expensive

for example: High-Order code

substantial speedup

Lit.: C. Bischof, M. Bücker, P. Wu:
Exploiting Intermediate Sparsity in Computing Derivatives for a Leapfrog
Scheme,
Comp. Opt. Appl. 24, 117–133, 2003

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 23 / 23

Conclusion

Exploiting Sparsity works, if O(κfHT) � O(snT)

this means: evaluation of H must be expensive

for example: High-Order code

substantial speedup

Lit.: C. Bischof, M. Bücker, P. Wu:
Exploiting Intermediate Sparsity in Computing Derivatives for a Leapfrog
Scheme,
Comp. Opt. Appl. 24, 117–133, 2003

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 23 / 23

Conclusion

Exploiting Sparsity works, if O(κfHT) � O(snT)

this means: evaluation of H must be expensive

for example: High-Order code

substantial speedup

Lit.: C. Bischof, M. Bücker, P. Wu:
Exploiting Intermediate Sparsity in Computing Derivatives for a Leapfrog
Scheme,
Comp. Opt. Appl. 24, 117–133, 2003

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 23 / 23

Conclusion

Exploiting Sparsity works, if O(κfHT) � O(snT)

this means: evaluation of H must be expensive

for example: High-Order code

substantial speedup

Lit.: C. Bischof, M. Bücker, P. Wu:
Exploiting Intermediate Sparsity in Computing Derivatives for a Leapfrog
Scheme,
Comp. Opt. Appl. 24, 117–133, 2003

Roland Schäfer (IGPM) Intermediate Sparsity 2006-08-15 23 / 23

	What is Leapfrog
	Black-Box Approach
	Intermediate Sparsity (IS) Approach, Compressed Jacobian
	2d-Example Shallow Water
	Simple Update
	Complex Update

	Conclusion

