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Content of Lecture

Why adjoint approaches?

What is an adjoint approach?

Continuous and discrete adjoint approaches / solvers

Validation and Application in 2D and 3D

Algorithmic / Automated Differentiation (AD)

Coupled aero-structure adjoint approach

Validation and application in MDO context

One shot approaches
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Requirements on CFD
• high level of physical modeling

– compressible flow
– transonic flow
– laminar - turbulent flow  
– high Reynolds numbers (60 million)
– large flow regions with flow separation 
– steady / unsteady flows

• complex geometries
• short turn around time

Use of CFD in Aerodynamic Aircraft Design
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Consequences
solution of 3D compressible Reynolds averaged 
Navier-Stokes equations 
turbulence models based on transport equations (2 – 6 eqn)
models for predicting laminar-turbulent transition 
flexible grid generation techniques with high level of automation
(block structured grids, overset grids, unstructured/hybrid grids)
link to CAD-systems
efficient algorithms (multigrid, grid adaptation, parallel algorithms...)
large scale computations ( ~ 10 - 60 million grid points)
…

Use of CFD in Aerodynamic Aircraft Design
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MEGAFLOW Software

Structured RANS solver FLOWer

block-structured grids 
moderate complex configurations
fast algorithms (unsteady flows)
design option
adjoint option

Unstructured RANS solver TAU

hybrid grids 
very complex configurations
grid adaptation 
fully parallel software
adjoint option
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• M∞=0.85, Re=32.5x106

• coupled CFD/structural analysis for wing deformation at α ≈ 1.5°
• FLOWer, kω turbulence model, fully turbulent

Validation
HiReTT Wing/Body Configuration

3.5 million grid points
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• M∞=0.85, Re=32.5x106

• coupled CFD/structural analysis for wing deformation at α ≈ 1.5°
• FLOWer, kω turbulence model, fully turbulent

Validation
HiReTT Wing/Body Configuration

3.5 million grid points
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Requirements
complex configurations

compressible Navier-Stokes equations
with accurate models for turbulence and transition

validated and efficient CFD codes

multi-point design, multi-objective optimization, MDO

large number of design variables

physical and geometrical constraints
meshing & mesh deformation techniques ensuring grid quality
efficient optimization algorithms

automatic framework

parameterization based on CAD model

Aerodynamic Shape Optimization 
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Requirements
complex configurations

compressible Navier-Stokes equations
with accurate models for turbulence and transition

validated and efficient CFD codes

multi-point design, multi-objective optimization, MDO

large number of design variables

physical and geometrical constraints
meshing & mesh deformation techniques ensuring grid quality
efficient optimization algorithms

automatic framework

parameterization based on CAD model

Aerodynamic Shape Optimization 

⇓

⇒ Sensitivity based
deterministic optimization
strategies !!!

⇒
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Parametrized
airfoil
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• Finite Differences n design variables require
n+1 flow calculations

Metric sensitivities → pressure variation → aerodynamic sensitivity
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i-th component of cost function‘s gradient
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Finite Differences

Variation of i-th design variable
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High number of design variables

• Finite Differences n design variables require 
n+1 flow calculations

• Adjoint Approach n design variables require 
1 flow and
1 adjoint flow calculation

Independent of number of 
design variables

High accuracy

Motivation of Adjoint Approach
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Convection Eq.
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How to get the gradient using adjoint theory

Let the optimization problem be stated as 

and with the governing equations 

with W the flow variables, X the mesh and D the design variables.

We introduce the Lagrangian multiplyer Λ and define the Lagrangian L as

( ) 0,, =DXWR

( ),,, min
                          D

DXWI

RIL TΛ+=
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The derivatives of L with respect to the design variables D are: 

( ) ( )( )Λ+= DXWRDXWI
dD
d

dD
dL T ,,,,  

How to get the gradient using adjoint theory
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The derivatives of L with respect to the design variables D are: 

How to get the gradient using adjoint theory
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The derivatives of L with respect to the design variables D are: 

How to get the gradient using adjoint theory
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After solving the adjoint equation,

the derivatives of L with respect to D are evaluated according to 
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• Continuous Adjoint
- optimize then discretize
- hand coded adjoint solvers
- time consuming in implementation
- efficient in run and memory

• Discrete Adjoint / Algorithmic Differentiation (AD)
- discretize then optimize
- hand coding of adjoint solvers or …
- … more or less automated generation
- memory effort increases (way out e.g. check-pointing)

• Hybrid Adjoint
- use source to source AD tools 
- optimize differentiated code
- merge “continuous and discrete” routines

Different Adjoint Approaches
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Nomenclature
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Continuous adjoint
• Euler implemented in FLOWer & TAU
• surface formulation for gradient evaluation
• one shot method (FLOWer)
• coupled aero-structure adjoint (FLOWer) 
• Navier-Stokes (frozen μ) implemented

in FLOWer, robustness problems

Discrete adjoint
• implemented in TAU 
• Euler & RANS with several turbulence 

models
• currently high memory requirements
• experience with automatic differentiation

(FLOWer and TAUij) moment

pressure drag

comparison of gradients (airfoil, inviscid)

TAU-Code

Adjoint solvers 
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Continuous adjoint solver FLOWer

Adjoint solver on block-structured grids

• continuous adjoint approach
• implemented in FLOWer
• cost functions: lift, drag & moment

and combinations 
• adjoint solver based on multigrid
• Euler & Navier-Stokes (frozen μ)

convergence history, FLOWer

-12.4408 -9.55489 -6.66898 -3.78306 -0.897145 1.98877 4.87468 7.7606

ψ1
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RAE2822
M∞=0.73, α = 2.0°
50 design variables
(B-spline)

Validation of continuous adjoint solver in FLOWer
Adjoint approach  vs. finite differences‘ gradient

drag

lift

moment

finite differences: 
51 calls of FLOWer MAIN
adjoint approach:
1 call of FLOWer MAIN
3 calls of FLOWer ADJOINT
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Validation of adjoint gradient based optimization

Objective function

4 Drag reduction for RAE 2822 airfoil

4 M∞ =0.73, α=2.00°

Constraints

4 Constant thickness

Approach

4 FLOWer Euler Adjoint

4 Deformation of camberline
(20 Hicks-Henne functions)

Optimizer

4 Steepest Descent 

4 Conjugate Gradient

4 Quasi Newton Trust Region
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Validation of adjoint gradient based optimization

Objective function

4 Drag reduction for RAE 2822 airfoil

4 M∞ =0.73, α=2.00°

Constraints

4 Constant thickness

Approach

4 FLOWer Euler Adjoint

4 Deformation of camberline
(20 Hicks-Henne functions)

Optimizer

4 Steepest Descent 

4 Conjugate Gradient

4 Quasi Newton Trust Region



40Summer School on AD, Bommerholz, August 14-18,2006

Orthogonal
projection

i
i i

D
T
i

D b
b

CbCb ∑
=

∇
+−∇=

2

1
23  

 

03 =ba T
i ,  2,1=i

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=−=

=

∑
=

+
++ . 2,1   

                                      , 

1
2

1
11

11

lb
b
abab

ab

i

l

i i

l
T
i

ll

},,{},,{ 321 DmL CCCaaa −∇∇∇=

)()( )(k
LL XCrC ≈

0)()(
)(

)(

)(

)(

)( =∇=
k

k
T

LXk

k
L

r
rC

dr
XdC

k

},,{ 321 bbb

Schmidt - orthogonalization

:

In direction b3 the drag is reduced while the
lift and pitching moment are held constant

it holds
In direction r(k) the drag is reduced while
the lift is held constant

.

X(k)

LC∇ DC∇−

r(k)

r

Treatment of Constraints



41Summer School on AD, Bommerholz, August 14-18,2006

Orthogonal
projection

i
i i

D
T
i

D b
b

CbCb ∑
=

∇
+−∇=

2

1
23  

 

03 =ba T
i ,  2,1=i

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=−=

=

∑
=

+
++ . 2,1   

                                      , 

1
2

1
11

11

lb
b
abab

ab

i

l

i i

l
T
i

ll

},,{},,{ 321 DmL CCCaaa −∇∇∇=

)()( )(k
LL XCrC ≈

0)()(
)(

)(

)(

)(

)( =∇=
k

k
T

LXk

k
L

r
rC

dr
XdC

k

},,{ 321 bbb

Schmidt - orthogonalization

:

In direction b3 the drag is reduced while the
lift and pitching moment are held constant

it holds
In direction r(k) the drag is reduced while
the lift is held constant

.

X(k)
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Treatment of Constraints

A lot of other strategies and
commercial packages are
available !!!
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Objective function

4 Drag reduction for RAE 2822 airfoil

4 M∞ =0.73, α=2.0°

Constraints

4 Lift, pitching moment and 
angle of attack held constant

4 Constant thickness

Approach

4 FLOWer Euler Adjoint

4 Constraints handled by
feasible direction

4 Deformation of camberline

Multi-constraint airfoil optimization RAE2822
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Objective function

4 Drag reduction for RAE 2822 airfoil

4 M∞ =0.73, α=2.0°

Constraints

4 Lift, pitching moment and 
angle of attack held constant

4 Constant thickness

Approach

4 FLOWer Euler Adjoint

4 Constraints handled by
feasible direction

4 Deformation of camberline

Multi-constraint airfoil optimization RAE2822

surface pressure distribution
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Objective function

4 Reduction of drag in 2 design points

Design points

4 1 : M∞=0.734, CL = 0.80 , α = 2.8°, Re=6.5x106, xtrans=3%,   W1=2

4 2 : M∞=0.754, CL = 0.74 , α = 2.8°, Re=6.2x106, xtrans=3%,   W2=1

Constraints

4 No lift decrease, no change in angle of incidence

4 Variation in pitching moment less than 2% in each point 

4 Maximal thickness constant and at 5% chord more than 96% of initial 

4 Leading edge radius more than 90% of initial 

4 Trailing edge angle more than 80% of initial

Multipoint airfoil optimization RAE2822

),(
2

1
iid

i
i MCWI α∑

=
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Parameterization
4 20 design variables changing camberline, Hicks-Henne functions 

Optimization strategy
4 Constrained SQP

4 Navier-Stokes solver FLOWer, Baldwin/Lomax turbulence model

4 Gradients provided by FLOWer Adjoint, based on Euler equations

Results

Pt α Mi Clt Cdt (.10-4) Cl Cdt (.10-4)  ΔCd/Cdt ΔCl/Clt ΔCm/Cmt

1 2.8 0.734 0.811 197.1 0.811 135.5  -31.2% 0% +1.6%

2 2.8 0.754 0.806 300.8 0.828 215.0 -27.4% +2.7% +2.0%

Multipoint airfoil optimization RAE2822
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1. design point 2. design point

shape geometry

Multipoint airfoil optimization RAE2822
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Objective function

4 drag reduction by constant lift

Design point

4 Mach number = 2.0

4 lift coefficient = 0.12

Constraints

4 fuselage incidence

4 minimum fuselage radius  

4 wing planform unchanged

4 minimum wing thickness distribution in spanwise direction

Optimization of SCT Configuration 
(SCT – Supersonic Cruise Transporter)
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Approach

4 FLOWer code in Euler mode with target lift option

4 Lift kept constant by adjusting angle of attack

4 FLOWer code in Euler adjoint mode

4 Adjoint gradient formulation

4 Structured mono-block grid (MegaCads), 230.000 grid 
points

Optimization strategy

4 Quasi-Newton Method (BFGS algorithm)

Optimization of SCT Configuration 
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Fuselage

10 sections controlled by Bezier nodes

Design variables  
h fuselage: 10 parameters
h twist deformation: 10 parameters
h camberline (8 sections):  32 parameters
h thickness (8 sections): 32 parameters
h angle of attack: 1 parameter     .

85 parameters

Optimization of SCT Configuration 
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Camberline Thickness

Deformation in
8 sections

Deformation in 
8 sections

Design variables  
h fuselage: 10 parameters
h twist deformation: 10 parameters
h camberline (8 sections):  32 parameters
h thickness (8 sections): 32 parameters
h angle of attack: 1 parameter     .

85 parameters

Optimization of SCT Configuration 
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Design variables  
h fuselage: 10 parameters
h twist deformation: 10 parameters
h camberline (8 sections):  32 parameters
h thickness (8 sections): 32 parameters
h angle of attack: 1 parameter     .

85 parameters
Thickness and camberline

Normalised airfoil

Optimization of SCT Configuration 
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11 times faster than classical approach

14.6 Drag Counts

optimized geometry

baseline geometry

Optimization of SCT Configuration 
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11 times faster than classical approach

14.6 Drag Counts

optimized geometry

baseline geometry

Optimization of SCT Configuration 
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and Area Rule
Radius of the fuselage in freestream direction

Optimization of SCT Configuration 
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Wing section and pressure distribution

η=0.24

η=0.49

η=0.92

Optimization of SCT Configuration 
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Algorithmic Differentiation (AD)

Work in progress and results

• ADFLOWer generated with TAF (3D Navier-Stokes, k-w),
first verifications and validation

• Adjoint version of TAUij (2D Euler) + mesh deformation
and parameterization with ADOL-C, validated and tested

• First and second derivatives of a “FLOWer-Derivate”
(2D Euler) + mesh deformation and parameterization
generated with TAPENADE, used for All-at-Once (Piggy-Back)
→ See lecture of Andreas Griewank!
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FastOpt

Test configuration
2d NACA0012
k-omega (Wilcox) turbulence model
cell-centred metric
2000 time steps on fine grid
target sensitivity: d lift/ d alpha 

Steps
Modifications of FLOWer code (TAF Directives, slight recoding, etc...)
tangent-linear code (verification) 
adjoint code
efficient adjoint code

Major challenge
memory management (all variables in one big field 'variab')
complicates detailed analysis and handling of deallocation

ADFLOWer by TAF(               )
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TAF CPUs Code lines solve rel CPU solve memory
Nominal 166000 1.0 57
tangent 293 268000 3.3 75
adjoint 253 310000 6.3 489

Usually better for larger 
configurations

Ma = 0.734
α = 2.8°
Re = 6x10^6
kw turbulence model

ADFLOWer
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Ma = 0.734
α = 2.8°
Re = 6x10^6
kw turbulence model

Demonstrates convergence of 
discrete sensitivities including 
turbulence

Same sensitivity for Navier-
Stokes adjoint (Wilcox kw) and 
tangent linear model

ADFLOWer
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Demonstrates convergence of 
discrete sensitivities including 
turbulence

Same sensitivity for Navier-
Stokes adjoint (Wilcox kw) and 
tangent linear model

Ma = 0.734
α = 2.8°
Re = 6x10^6
kw turbulence model

ADFLOWer
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• Adjoint version of entire design chain by ADOL-C (TU-Dresden)
• TAUij (2D Euler) + mesh deformation + parameterization

P
x

x
dx

dx
m

m
C

dP
dC new

new

DD
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⋅
∂
∂

⋅
∂
∂

⋅
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∂
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and

TAUij_AD    meshdefo_AD   defgeo_AD

Automatic  Differentiation of Entire Design Chain

Id
x

xx
x
dx

new

oldnew

new

=
∂

−∂
=

∂
∂ )()(

design vector (P)  → defgeo  → difgeo  → meshdefo  → flow solver  → CD

xnew dx                     m

surface grid            grid
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• Run time   (2000 fixed-point iterations)
- primal: 2 minutes
- adjoint: 16 minutes

• Tape size: 340 MB (reverse accumulation approach!)
[Christianson in 94]

• Run time memory
- primal: 8 MB
- adjoint: 45 MB

Automatic  Differentiation of Entire Design Chain
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Drag reduction  
• RAE 2822, M = 0.73, α = 2.0°
• inviscid flow, mesh 161x33 cells
• 20 design variables (Hicks-Henne)
• steepest descent

First Application / Validation:

Automatic  Differentiation of Entire Design Chain
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Coupled Aero-Structure Adjoint

Motivation

Wing deflection up 
to 7% of wing span!

Deflected aerodynamic
optimal shape can be
worse than the initial …

Boeing 737Boeing 737--800 at ground and in cruise (Ma = 0.76)800 at ground and in cruise (Ma = 0.76)
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Coupled Aero-Structure Adjoint

AMP wing

15 design variables
(shape bumping 
functions based on 
Bernstein polynomials)

Ma=0.78
alpha=2.83

Drag reduction by
constant lift

Taking into account
static deformation

NASTRAN
shell/beam model
126 nodes

FLOWer MAIN/ADJOINT
15 design variables
Ma=0.78
alpha=2.83
(300.000 cells)
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Aerodynamics, 
e.g Euler Eqn.:

Structure:

K:  Symmetric stiffness matrix
a:   Aerodynamic force
d:  Displacement vector
P:  Vector of Design variables

Coupled Aero-Structure Adjoint

Adjoint Gradient:

Aero/Structure Adjoint System:

Conventional Gradient:

:
:

S

A

ψ
ψ Aerodynamic Adjoint

Structure Adjoint
~:  Lagged ...
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Coupled Aero-Structure Adjoint
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, : perturb shape by d,P → calculate change in CFD residual

: perturb shape by d,P → calculate change in drag coefficient

: treat                                                       → boundary condition∫ +
∂
∂

C
yx nn

w
p )...sincos(... αα

: treat                              → boundary condition∫ ∂
∂

C w
p ......

… has been derived before!
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Coupled Aero-Structure Adjoint

Finite Differences:
Perturb the shape by each design
variable and converge the aero-
elastic loop until stationary behavior

Coupled Aero-Structure Adjoint:
Each 100 iterations the lagged
is updated ... 

Sψ~

AMP wing

Aψ
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Validation of Adjoint Gradient

Coupled Aero-Structure Adjoint

NASTRAN
shell/beam model
126 nodes

15 design variables
Ma=0.78
alpha=2.83
(300.000 cells)

AMP wing
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Validation of Adjoint Gradient

Coupled Aero-Structure Adjoint

NASTRAN
shell/beam model
126 nodes

15 design variables
Ma=0.78
alpha=2.83
(300.000 cells)

AMP wing
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Coupled Aero-Structure Adjoint

AMP wing

240 design variables
(control points free form 
deformation)

Ma=0.78
alpha=2.83

Drag reduction by
constant lift ΔCD= 24.9 %

ΔCL= 0.1%

feasible direction method
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Coupled Aero-Structure Adjoint

AMP wing

240 design variables
(control points free form 
deformation)

Ma=0.78
alpha=2.83

Drag reduction by
constant lift

baseline

optimized
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Coupled Aero-Structure Adjoint

Comparison of numerical effort:
(PC Pentium IV, 2.6 GHz, 2GB RAM)

• Coupled adjoint: 15 days
(11 gradient and 91 state evaluations)

• Finite differences:     227 days 

AMP wing

240 design variables
(control points free form 
deformation)

Ma=0.78
alpha=2.83

Drag reduction by
constant lift
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Aero-Structure MDO 
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adjoint b.c.
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AMP wing

240 design variables
(control points free form 
deformation)

Ma=0.78
alpha=2.83

Range maximization by
constant lift

Aero-Structure MDO 

ΔCD = -25 %

Δks = -10 %

ΔR = +37 %

feasible direction method
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I∇

start geometry
x0

ψ

x0

w

xn+1

k-loop

k-loop

Adjoint Based Optimization 

min Ι (w,x)
s.t. R(w,x)=0

optimization
strategy

RANS solver
R(wk,xn)=0 

gradient

∫=∇
V

m
n

m dVxiI ))(,(w,)( δψ

Adjoint solver
R*(w,ψk,xn)=0 

dim x = M

n-loop 
n=1,…,N

m-loop
m=1,…,M

All at once?
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Simultaneous Pseudo-Time stepping
- One Shot Approach -
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University of Trier
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Newton SQP
method

inexact Newton 
rSQP method

simultaneous 
preconditioned
pseudo time stepping
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Lx∇

start geometry
x0

ψk+1

x0

wk+1

xk+1

primal update
wk+1=wk-Δt·R(wk,xk)

gradient

∫ ++=∇
V

m
kkk

mx dVxlL ))(,,(w)( 11 δψ

k-loop 
dual update

ψk+1= ψk-Δt·R*(wk+1,ψk,xk)

}{ 111 L
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kk ∇⎟
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∂
∂
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m-loop
m=1,…,M

design update

Bk – BFGS updates
of reduced Hessian Lxx

Simultaneous Pseudo-Time stepping
- One Shot Approach - University of Trier
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Optimization problem
• drag reduction for RAE 2822 
• inviscid flow
• M=0.73, a=20

Tools
• FLOWer
• FLOWer adjoint

Simultaneous Pseudo-Time stepping
- One Shot Approach - University of Trier
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Optimization at the cost of 4 flow simulations!

Simultaneous Pseudo-Time stepping
- One Shot Approach - University of Trier


