$F \rightarrow G$

 $C \longrightarrow F'$

Paths Vertices Edges

Algorithms

Consequence

Conclusion

Jacobians, Graphs, Combinatorics

Uwe Naumann

LuFG Software and Tools for Computational Engineering Dept. of Computer Science, RWTH Aachen University, Germany

Content

$$F \rightarrow G$$

Algorithm

0

Consequence

- $\mathbf{2} \ G \to F'$

Paths Vertice

Vertices

Edges

Faces

- 3 Algorithms
- 4 Complexity
- **6** Consequences
- **6** Conclusion

Algorithm

Complexit

Consequence

Comboquemee

Conclusion

(Linearized) Computational Graph

$$t = x_0 \cdot \sin(x_0 \cdot x_1)$$

$$x_0 = \cos(t)$$

$$x_1 = t/x_1$$

$$v_{-1} = x_0$$

$$v_0 = x_1$$

$$v_1 = v_{-1} \cdot v_0 \quad c_{1,-1} = v_0; c_{1,0} = \dots$$

$$v_2 = \sin(v_1) \quad c_{2,1} = \cos(v_1)$$

$$v_3 = v_{-1} \cdot v_2 \quad c_{3,-1} = v_2; c_{3,2} = \dots$$

$$v_4 = \cos(v_3) \quad c_{4,3} = -\sin(v_3)$$

$$v_5 = v_3/v_0 \quad c_{5,3} = 1/v_0; c_{5,0} = \dots$$

$$x_0 = v_4$$

$$x_1 = v_5$$

Algorithms

Consequences

Conclusio

Elimination of Paths

$$\frac{\partial v_k}{\partial v_l} \equiv f'_{k,l} = \sum_{[l \to k]} \prod_{(i,j) \in [l \to k]} c_j,$$

For example,

$$f'(4,-1) = c_{3,-1} \cdot c_{4,3} + c_{1,-1} \cdot c_{2,1} \cdot c_{3,2} \cdot c_{4,3}$$

= $(c_{3,-1} + c_{1,-1} \cdot c_{2,1} \cdot c_{3,2}) \cdot c_{4,3}$
Objective ...

▶ W. Baur and V. Strassen: The complexity of partial derivatives. 1983

 $F \rightarrow G$

 $G \rightarrow F$

Paths Vertice:

Edges Faces

Algorithms

_

Consequence

Conclusion

Bipartite Computational Graph

G

Algorithms

Consequence

Elimination of Vertices

$$Cost(j) = |P_j| \cdot |S_j| \quad (Cost(1) = |P_1| \cdot |S_1| = 2 \cdot 2 = 4)$$

- ▶ A. Griewank and S. Reese: On the calculation of Jacobian Matrices by the Markovitz rule. Proceedings of AD1991, SIAM (1991)
- ▶ K. Herley: On minimal fill-in Jacobian accumulation. ANL, 1992

Consequence

Conclusion

Search Space (M_v)

For example, |V| = 3:

- $\rightarrow |V|!$ elimination sequences
- \rightarrow shortest path problem in cost-enhanced *metagraph* M_{ν}
- \rightarrow size of M_V is exponential in size of G

Vertices

Lion Graph

$$f_{3,-1}' = c_{1,-1} \cdot c_{2,1} \cdot c_{3,2}$$

$$f'_{6,-1} = c_{1,-1} \cdot c_{2,1} \cdot c_{6,2} + c_{1,-1} \cdot c_{6,1} = c_{1,-1} \cdot (c_{2,1} \cdot c_{6,2} + c_{6,1})$$

$$f'_{6,0} = c_{1,0} \cdot c_{2,1} \cdot c_{6,2} + c_{1,0} \cdot c_{6,1} = c_{1,0} \cdot (c_{2,1} \cdot c_{6,2} + c_{6,1})$$

. . . .

(Front-)Elimination of Edges

▶ U. Naumann: *Elimination Techniques for Cheap Jacobians*. Proceedings of AD2000, Springer (2000)

Algorithms

Complexity

Consequence

Conclusion

(Back-)Elimination of Edges

$$Cost((i,j)) = |P_i| \quad (Cost((1,3)) = |P_1| = 2)$$

 $F \rightarrow G$

 $G \rightarrow F$

Paths

Edges

Algorithm

Consequence

Conclusion

Paths

Edges

Rerouting

▶ A. Griewank and O. Vogel: Analysis and exploitation of Jacobian scarcity. Proceedings of HPSC (2003)

 $F \rightarrow G$

c =

 $G \rightarrow F'$ Paths

Edges

. . . .

Algorithms

Bat Graph

Faces

Dual Computational Graph

▶ U. Naumann: Optimal Accumulation of Jacobian matrices by elimination methods on the dual computational graph. Math. Prog., Springer (2004)

Elimination of Faces

$$Cost((i,j)) = 1$$

 $F \rightarrow G$

C . E

Paths Vertice Edges Faces

Algorithm

. . .

Consequence

Conclusion

Search Space (M_f)

Algorithms

Consequence

Conclusi

Compile-time Elimination

 $C_{5,0}$

► U. Naumann and J. Utke: Optimality-preserving elimination of linearities in Jacobian accumulation. Electronic Transactions on Numerical Analysis, KSU (2005).

Edges Faces

Algorithms

Heuristics

▶ U. Naumann: An Enhanced Markovitz Rule for Accumulating Jacobians Efficiently. Proceedings of 15th Conference on Scientific Computing (ALGORITHMY 2000).

Dynamic Programming

$$F'(x) = Q_m \left[\prod_{j=1}^{l+m} \prod_{i \prec j} C_{ji} \right] P_n^T \in \mathbb{R}^{m \times n}$$

where

$$P_n \equiv [I_n, 0] \in \mathbb{R}^{n \times q}$$
 and $Q_m \equiv [0, I_m] \in \mathbb{R}^{m \times q}$

▶ A. Griewank and U. Naumann: Accumulating Jacobians as Chained Sparse Matrix Products. Math. Prog., Springer (2003).

, — 0

 $G \rightarrow F'$

Paths Vertices Edges

Algorithms

Consequence

Simulated Annealing

- start sequence, start temperature
- (logarithmic) cooling schedule
- acceptance of worse sequence with Metropolis probability
- run for as long as you like ...

▶ U. Naumann: Cheaper Jacobians by Simulated Annealing. SIAM J. Opt., SIAM (2002).

, , ,

C __ F'

Vertice: Edges Faces

Algorithms

Consequence

Conclusion

Single-Expression-Use Graphs

▶ U. Naumann and Y. Hu: *Optimal Vertex Elimination in Single-Expression-Use Graphs*. AIB-2006-08, RWTH Aachen (2006).

Complexity

Proving NP-completeness

- pick known NP-complete problem (NPP)
- 2 derive polynomially instance of your problem for each instance of NPP
- 3 verify given solution in polynomial time

U. Naumann: Optimal Jacobian Accumulation is NP-complete. Under review by Math. Prog., Springer

 $G \rightarrow F'$

Paths Vertices Edges Faces

Algorithm

Complexity

Consequence

Conclusion

Ensemble Computation

Given a collection $C = \{C_{\nu} \subseteq A : \nu = 1, \dots, |C|\}$ (Jacobian) of subsets $C_{\nu} = \{c_{i}^{\nu} : i = 1, \dots, |C_{\nu}|\}$ (Jacobian entries) of a finite set A (elemental partial derivatives) and a positive integer Ω (max. nr. of scalar multiplications) is there a sequence $u_i = s_i \cup t_i$ (scalar multiplications) for $i=1,\ldots,\omega$ of $\omega\leq\Omega$ union operations, where each s_i and t_i is either $\{a\}$ (elemental partial derivative) for some $a \in A$ or u_i (previously accumulated partial derivative) for some i < i, such that s_i and t_i are disjoint for $i = 1, \dots, \omega$ and such that for every subset $C_{\nu} \in C$, $\nu = 1, \dots, |C|$, there is some u_i , $1 \le i \le \omega$, that is identical to C_{ν} (all Jacobian entries are computed).

Theorem

EC is NP-complete.

M. Garey and D. Johnson. Computers and Intractability. 1979

Algorithm

Complexity

Consequence

Conclusion

EC Example

Let an instance of EC be given by

$$A = \{a_1, a_2, a_3, a_4\}$$

$$C = \{\{a_1, a_2\}, \{a_2, a_3, a_4\}, \{a_1, a_3, a_4\}\}$$

and $\Omega = 4$. The answer to the decision problem is positive with a corresponding instance given by

$$C_1 = u_1 = \{a_1\} \cup \{a_2\}$$

$$u_2 = \{a_3\} \cup \{a_4\}$$

$$C_2 = u_3 = \{a_2\} \cup u_2$$

$$C_3 = u_4 = \{a_1\} \cup u_2$$

Algorithn

Complexity

Consequences

c . .

Optimal Jacobian Accumulation

Given a linearized computational graph G of a vector function F and a positive integer Ω is there a sequence of scalar assignments $u_k = s_k \circ t_k, \circ \in \{+, *\}, \ k = 1, \ldots, \omega$, where each s_k and t_k is either $c_{j,i}$ for some $(i,j) \in E$ or $u_{k'}$ for some k' < k such that $\omega \leq \Omega$ and for every Jacobian entry there is some identical $u_k, \ k \leq \omega$?

Example: Lion

$$c_{6,1} := c_{6,1} + c_{6,2}c_{2,1}; c_{2,-1} = c_{2,1}c_{1,-1}; c_{2,0} = c_{2,1}c_{1,0}$$
 $c_{6,-1} = c_{6,1}c_{1,-1}; c_{6,0} = c_{6,1}c_{1,0}; c_{3,-1} = c_{3,2}c_{2,-1}$
 $c_{3,0} = c_{3,2}c_{2,0}; c_{4,-1} = c_{4,2}c_{2,-1}; c_{4,0} = c_{4,2}c_{2,0}$
 $c_{5,-1} = c_{5,2}c_{2,-1}; c_{5,0} = c_{5,2}c_{2,0}$

Conclusion

Reduction EC → OJA

Consider $\mathbf{y} = F(\mathbf{x}, \mathbf{a})$ where $\mathbf{x} \in \mathbb{R}^{|C|}$, $\mathbf{a} \in \mathbb{R}^{|A|}$ is a vector containing all elements of A, and $F : \mathbb{R}^{|C| + |A|} \to \mathbb{R}^{|C|}$ defined as

$$y_{\nu} = x_{\nu} * \prod_{j=1}^{|C_{\nu}|} c_j^{\nu}$$

for $\nu=1,\ldots,|C|$ and where c_j^{ν} is equal to some $a\in A$ for all ν and j. This transformation is linear with respect to the original instance of Ensemble Computation in both space and time. The Jacobian $F'(\mathbf{x},\mathbf{a})$ is a diagonal matrix with nonzero entries

$$f_{
u,
u}=\prod_{j=1}^{|\mathcal{C}_
u|}c_j^
u$$

for $\nu = 1, ..., |C|$.

Algorithn

Complexity

Consequence

Example

$$A = \{a_1, a_2, a_3, a_4\}$$

$$C = \{\{a_1, a_2\}, \{a_2, a_3, a_4\}, \{a_1, a_3, a_4\}\}$$

$$f'_{1,1} = c_{6,-2} = a_1 * a_2$$

 $u_2 = c_{7,2} = c_{8,4} = a_3 * a_4$
 $f'_{2,2} = c_{7,-1} = a_2 * u_2$
 $f'_{3,3} = c_{8,0} = a_1 * u_2$

Algorithm

Complexity

Consequence

EC ⇔ OJA

 \Leftarrow : Simply substitute * for \cup .

 \Rightarrow : 1 No additions; simply substitute * for \cup .

② Suppose that there is some $i \leq \omega$ such that $s_i \cap t_i = \{b\}$. Hence the computation of u_i in the Jacobian accumulation code involves a factor b*b. Note that such a factor is not part of any Jacobian entry which implies that the computation of u_i is obsolete and therefore cannot be part of an optimal Jacobian accumulation code.

Consequences

1 "Rows and columns" of F' are NP-complete.

$$y = \sum_{\nu=1}^{|C|} y_{\nu} = \sum_{\nu=1}^{|C|} \left(x_{\nu} * \prod_{j=1}^{|C_{\nu}|} c_{j}^{\nu} \right)$$
.

2 "Tangents and adjoints" are NP-complete.

$$y_{\nu} = x * \dot{x}_{\nu} * \prod_{i=2}^{|C_{\nu}|} c_{j}^{\nu} \quad .$$

3 "Partial derivatives of arbitrary order" are NP-complete.

$$y_{
u}=rac{x_{
u}^q}{q!}\prod_{i=1}^{|\mathcal{C}_{
u}|}c_j^{
u}$$
 .

Consequences

Discussion

$$OPS(F) = 6 * 5 = 30$$

 $OPS(F') = 2 + 6 * 2 = 14$

Algorithms

Consequence

Conclusion

Conclusion

DO YOU WANT THE SIMPLE BUT MIS-LEADING EXPLANA-TION OR THE ONE YOU WON'T UNDER-STAND?

© UFS, Inc.