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Y
Paths t = xp-sin(xp - x1)
Vertices
Edges xo = cos(t)
- X1 = t/Xl
V_1 = Xo
Vo = X1

Vi =V_1'\V C1771 = \p;, Cl,O = ...
vo =sin(vy) 1 = cos(vy)
V3 =V_1*'W C3771 = Vo, C372 = ...

vy = cos(vz) ca3 = —sin(v3)
vs = v3/vp a3=1/vo; G0=...
X0 = W4

X1 = Wy
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For example,

f'(4,—1) = c3_1-Ca3+CL,_1:C21-C32°Ca 3 =0
=(@_1+c,-1-01-G32) @43
Objective ...
A

-1 0
» W. Baur and V. Strassen: The complexity of partial derivatives. 1983



Jacobians,
Graphs,
Combinatorics

S— Bipartite Computational Graph

4 5
A 4 Y
Paths
Vertices
Edges

Faces




Jacobians,
Graphs,
Combinatorics

Uwe Naumann

Paths
Vertices
Edges
Faces

Elimination of Vertices

2 3
bd
c+ ad be
ae
1 0 1 0

Cost(j) = |Pj| - |Sj| (Cost(1l) = |P1|-|S1|=2-2=4)

» A. Griewank and S. Reese: On the calculation of Jacobian Matrices by
the Markovitz rule. Proceedings of AD1991, SIAM (1991)
» K. Herley: On minimal fill-in Jacobian accumulation. ANL, 1992
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Search Space (M,)

For example, |V| = 3:

— | V|! elimination sequences

—

shortest path problem in

cost-enhanced metagraph
M,

size of M, is exponential

in size of G

1,2

1

G/

<O
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/
f3,—1 =C,-1-C1-€C32

!/
f6,_1 =c1,-1°C1 G2+ C1,-1-61=cr—1(c21 2+ C61)

!
fo.0 = 10 C2,1- G2+ CL0" C61 = C10-(C21 - Co2 + Co.1)
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(Front-)Elimination of Edges

2 3 2 3

—1 0 -1 0
Cost((7,/)) = [5j|  (Cost((=1,1)) = |51] = 2)

» U. Naumann: Elimination Techniques for Cheap Jacobians. Proceedings
of AD2000, Springer (2000)
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P (Back-)Elimination of Edges

-1 0 -1

Cost((7,/)) = [Pil  (Cost((1,3)) = [P1| = 2)
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Rerouting

» A. Griewank and O. Vogel: Analysis and exploitation of Jacobian
scarcity. Proceedings of HPSC (2003)
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Dual Computational Graph

» U. Naumann: Optimal Accumulation of Jacobian matrices by elimination
methods on the dual computational graph. Math. Prog., Springer (2004)
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Compile-time Elimination

t=x0+ (x0-x1)-3.14
xo = cos(t)
X1 = t/Xl

— 0
» U. Naumann and J. Utke: Optimality-preserving elimination of linearities

in Jacobian accumulation. Electronic Transactions on Numerical Analysis,
KSU (2005).
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Heuristics

» U. Naumann: An Enhanced Markovitz Rule for Accumulating Jacobians
Efficiently. Proceedings of 15™ Conference on Scientific Computing
(ALGORITHMY 2000).
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Dynamic Programming

I+m
F'(x)=Qm | ][] TIGi| P eR™"
Jj=1 i<y

where

P, = [I,,,O] e R™9 and Q= [0, Im] e R™9

» A. Griewank and U. Naumann: Accumulating Jacobians as Chained
Sparse Matrix Products. Math. Prog., Springer (2003).
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Simulated Annealing

start sequence, start temperature

(logarithmic) cooling schedule

acceptance of worse sequence with Metropolis probability

run for as long as you like ...
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» U. Naumann: Cheaper Jacobians by Simulated Annealing. SIAM J.
Opt., SIAM (2002).
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Single-Expression-Use Graphs

» U. Naumann and Y. Hu: Optimal Vertex Elimination in
Single-Expression-Use Graphs. AlB-2006-08, RWTH Aachen (2006).
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Complexity

Proving NP-completeness

@ pick known NP-complete problem (NPP)

® derive polynomially instance of your problem for each
instance of NPP

© verify given solution in polynomial time

» U. Naumann: Optimal Jacobian Accumulation is NP-complete. Under
review by Math. Prog., Springer
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Ensemble Computation

Given a collection C = {C, C A: v =1,....|C|} (Jacobian) of
subsets C, = {C,l' i =1,...,|C,|} (Jacobian entries) of a finite
set A (elemental partial derivatives) and a positive integer Q (max.
nr. of scalar multiplications) is there a sequence u; = s; U t; (scalar
multiplications) for i = 1,...,w of w < Q union operations,
where each s; and t; is either {a} (elemental partial derivative) for
some a € A or u;j (previously accumulated partial derivative) for some
j < i, such that s; and t; are disjoint for i = 1,...,w and such
that for every subset C, € C, v =1,...,|C|, there is some uj,
1 < i < w, that is identical to C, (all Jacobian entries are
computed).

Theorem
EC is NP-complete.

M. Garey and D. Johnson. Computers and Intractability. 1979
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EC Example

Let an instance of EC be given by

A= {31, a, as, 34}
C={{a1,a2},{a2,a3,a4},{a1,a3,a4}}

and © = 4. The answer to the decision problem is positive with
a corresponding instance given by

G=u= {al} U {32}
up = {a3} U{as}

G=u= {32} U up

G=u = {al} U up
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Optimal Jacobian Accumulation

Given a linearized computational graph G of a vector function
F and a positive integer €2 is there a sequence of scalar
assignments uy = sx o ty, o € {+,%*}, k =1,...,w, where each
sk and ty is either ¢;j; for some (i,j) € E or uy for some

k" < k such that w < Q and for every Jacobian entry there is
some identical vy, k < w?

Example: Lion

C6,1 1= Cp,1 T C6,2C2,1; C2—1 = C2,1C1,—1; €20 = €2,1C10
C6,—1 = Cp,1C1,—1; C6,0 = C6,1€1,0;, C3,—1 = C32C2 -1
C3,0 = C32C20, C4,—1 = C42C2 —1, C40 = C4,2C20

C5,—1 = G202, -1, G50 = (52020
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Reduction EC — OJA

Consider y = F(x,a) where x € R/€, a e R is a vector
containing all elements of A, and F : RICHIAl - RICI defined
as

|G
Yo = Xy * H CJI'/
j=1
for v =1,...,|C| and where ¢/ is equal to some a € A for all

v and j. This transformation is linear with respect to the
original instance of ENSEMBLE COMPUTATION in both space
and time. The Jacobian F’(x,a) is a diagonal matrix with

nonzero entries
|Gyl

=11

j=1
forv=1,...,|C|.
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A= {31, az, as, 34}
C= {{ala 32}7 {327 as, ‘94}7 {317 as, ‘94}}

fll C6 _p = a1 *x az
Up = C72 = Cg4 = a3z * a4
f22 C7—1 = ax* U
G73—C870—31*UQ

Example
6 7
[24]
[p2] 3
1 [as]
b P
B
—2 1

oo

[24]

[as]

[a1]

o
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< Simply subsitute * for U.

Complexity = @ No additions; simply subsitute * for U.
® Suppose that there is some i < w such that s; N t; = {b}.
Hence the computation of u; in the Jacobian accumulation
code involves a factor b x b. Note that such a factor is not
part of any Jacobian entry which implies that the
computation of u; is obsolete and therefore cannot be part
of an optimal Jacobian accumulation code.
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Consequences

® “Rows and columns” of F’ are NP-complete.

1€l 1€l |G|

v

y= E Y= E Xy * H G
v=1 v=1 j=1

® ‘‘Tangents and adjoints” are NP-complete.

|Cul

Yo = Xk X * Hc

© “Partial derivatives of arbitrary order” are NP-complete.

q 1G]

Hc
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Discussion

OPS(F) =65 =30
OPS(F') = 2+6+2 = 14
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