Applications

Applications: Kuramoto-Sivashinsky and Kot-Schaffer
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The Kuramoto-Sivashinski equation

U = —VUggpy — Ugy + Quum

on [0,00) x (—m, ) with periodic boundary conditions: u(t,—m) =
u(t, ).

e Jolly, Kevrekidis and Titi, 90: bifurcation diagram for v € (0.057, c0)

for a 12 mode Galerkin approximation;

e here: rigorous proof of existence and localization of several of these

equilibria.
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Prototype Result

Kuramoto-Sivashinsky

Theorem 1 (Mischaikow,Zgliczynski,01) Let u(z) =
Ziil ag sin(kx), with the ay as below. Then, for v = 0.1 there exists

an equilibrium u*(x) for the KS-equation such that

lu* — w2 < 2.8-10717,

a; = 1.07934 x 107
ay = —(0.559867
ar = —1.56596 x 10~3#
i = 000143504
ayz = 4.35072 x 10~
ajg = —1.57158 x 10796
g = —5.62586 x 10_44
age = 1.26591 x 1079
az = —9.46577 x 10743
Uag = —87‘3294 > 10_13

as = 1.25665
a; = 7.81863 x 10738
ag = —0.0122945

a1y = —3.4963 x 1070
ayq = 1.59816 x 107
ayr = 5.50953 x 10—43
az = —1.39049 x 107%%
s = 1.30084 x 1043

aze = 1.0008 x 10~

a3 = —1.92524 x 10~
ag = (0.0881138
ag = 2.54974 x 10739
ays = —0.000156065
a15 = —5.02979 x 10742
apg = 1.49677 x 1007
(g = —8.26547 x 10745
a9y = —1.13347 x 10710
asr = 1.1614 x 1070

Ju* — ul|co < 2.1-107"2,

Stationary Solution to Kuramoto-Shivashinsky =01
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Line of reasoning

e Consider the evolution equation
= F(u)
on some Hilbert space H.

e Decompose
H = Xm s> Yma

with dim X,,, < oo.

o letP,: H— X,,and Q),, : H — Y,, be the associated orthogonal

projections.
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e With p = P,,u and ¢ = ),,,u we rewrite the system as

P.F(p,q)
= QnF(p,q).

p

e Conmnsider a restricted domain W eV C X, ®Y,,.

e Draw conclusions about the dynamics of the differential inclusion
pE€ PnF(p,V)
by using Conley index arguments.

e Lift the information to the original system (by e.g. using compact-

ness/continuity arguments).
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Restricted domain

e Consider a complete orthogonal basis ()ren of H.
o Let X,, =span{yq,...,om_1} and A : H — span{p;}.
e Let W C X, be compact, a;,a; € R, k=0,1,... and

@)

V=]l afl.
k=m

e The bounds W and {a;} are self-consistent, if
(i) a, <0< a for k> M;
(i) w=>_, arpr € H if ay, € [a;,a; ] for all k.
(iii) F is continuous on W @ V.
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Equivalent countable system

If W and {a:} are self-consistent bounds, W @ V is compact and a
function v : [0,T] — W @V,

u(t) =) w(t)er,
k=0
solves ©t = F(u), iff it solves

on [0,7T] for all k.
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Countable system for Kuramoto-Sivashinsky

e We consider
H = {U < L2(_7T77T) ’ U(t, _ﬂ-) — U(t,ﬂ'),’d(t, —SC) — —U(t,x)}.
e Fourier expansion of u € H:

u(t,x) =Y by(t) exp(ikz),

keZ

which yields
b

(k* = vk" by, + ik Y bmbp—m, k € Z.

meZ

e Since u € H is real-valued, by, = b_.
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e Since u € H is odd, b, = 1ay.
e Thus ap, = —a_, ap = 0 and we arrive at

k—1 00
(. = k2(1 - uk2)ak — k Z Ayt + 2k Z Uy Oyt

k=12 ...
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Isolating blocks

e ©:R xR™ — R™ continuous flow, generated by z = f(z).
o If N C R™ is a compact set such that

Inv(N, @) C int N,

then NNV is an isolating neighborhood.

e If in addition for any z € N there exists ¢, > 0 such that
0((0,t,),2) NN =0 or ¢((—t,,0),z) "N =10,

then NV is an isolating block.
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Local sections

e [solating blocks can be constructed via local sections:

e = C R™ is a local section for ¢, if

@ :(—€,6) XxZE— p((—¢,¢),5)
is a homeomorphism and ¢((—¢,¢), =) is open.

e Example: hypersurface = which is transversal to the flow, i.e. for

each z € =,
n(z) - f(z) #0,

where n(z) is a normal vector at z € =.
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Isolating blocks for linear systems

Consider

2’1 )\1 0 21

22 0 )\2 Z9

with A, Ay # 0. Then

lay, af] X [ay, a]

with a; < 0 < a; is an isolating block.
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Robust isolating blocks

Consider the nonlinear, perturbed system

where | f;[(z) = O(]|z||*) and max.cn |g:(2)] <

It

21

29

A O
0 Ao

Niai + fi(2) +ei(2)

<1

<2

_|_

C;.

Kuramoto-Sivashinsky

(2)

has the same sign as \;a;” on the sets {z € N, z; = a;"}, then N is an
isolating block for .

~+ system of inequalities
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Conley index

e Let N be an isolating block for ¢. Let L be the closed subset of
ON such that for all z € L

#((0,€),2) NN =0
for a sufficiently small € > 0. The Conley index of Inv(N, @) is
CH,(Inv(N, ) = H.(N, L).

e McCord, 88: If the Conley index has the form

(
Z  if j=¢q
CH;(Inv(N, ¢)) & <

0 otherwise,
\

for some ¢, then N contains a fixed point.
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Lifting to higher order modes

e Idea: construct isolating block N for the m-mode system

p= PmF(pa Q) (3)
such that it is robust for all ¢ € V.

e Definition: The compact sets N C W and the bounds {a;"} are
topologically self-consistent, if W and {a;"} are self-consistent

(i) foru e WV and k > m

ApF(u) <0 if Agu = a),
ApF(u) >0 if Agu=a,,

(ii) and N is an isolating block for (3)) for all ¢ € V.
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Lifting to higher order modes

Let N C W and {a;-} be topologically self-consistent. Consider

N = N X H la;,af].
k=m+1

Then N is an isolating block for the system

ar = AgF (Z%‘%‘) , k=1,...,m

1=1

and

A

CH,(Inv(N)) = CH,(Inv(N)).
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Lifting to higher order modes

Theorem 2 (Mischaikow,Zgliczytiski,01) Let N C W and {a;’}
be topologically self-consistent. Suppose that

Z ifj=q

0 otherwise,

12

C'H,(Inv(N))

for some q, then there exists a fixed point
u* €N xV

for the partial differential equation @ = F(u).
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Estimates

(i) 1 <k < m: actual variables,

m

W = H[alzvaZ]S

k=1
(ii) m < k < M: explicit bounds (intervals)
(iii) M < k: asymptotic bounds,

o] = L1

for some C' > 0 and some integer s > 1.

Kuramoto-Sivashinsky
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Prototype estimates

o For 1 <k <m,

00 M—k 00
ay|
Z pQpir  C Z Ay Qpar + C Z - —1,1]
n=m-—k+1 n=m—k+1 n=M —k+1 <k T n)
02
+ —1,1]

(it M+ 1) (s — M1

e For k> M

23%”“kcks%M4])<uw+1y1@1)+§:MA>[1J]

n=1 n=1
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Example

Kuramoto-Sivashinsky

For v = 0.75 and m = 2 we obtain the Galerkin system

dl = —a1 + 2&1@2
éLQ — —8&2 — 2&1.
: : 4 1 1
Fixed points are a= = (£ 5, —3).

The full equations reads

1 ©.@)
1% + 2 Z Ay Q41

a1

n=1

a2

n=1

©.@)
—8ag — 2a% + 4 Z Gy Q12 -
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We choose
W =a" +[-0.1,0.1] x [-0.1,0.1]

and suitable bounds a,iu,t, in particular

B 10285.3
[ak ) a+] — L-10 =1L 1]

for £ > 10.
By estimating the contributions of the neglected modes we obtain the
inclusion

éLl - Zal + 2&1&2 + €1

d2 S —8&2 — ZCL% + £9.
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with

g = [-1-107%,8-107"]
gy = [=2-107%,7-1077.



Applications Kot-Schaffer

Oliver Junge, Institute for Mathematics, University of Paderborn 23
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infinite dimensional map

lGalerkin + truncation estimate

finite dimensional multivalued map

l spatial discretization (GAIO)

combinatorial multivalued map (directed graph)

lgraph algorithms

combinatorial index pair

l computational homology (CHomP)

Conley index for finite dimensional continuous selector

\[Iifting

Conley index for original map
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The map

The Kot-Schaffer growth-dispersal model for plants:

01— 12 b)) =5 [ ey pae) (1- 23 ) de

:% B

a,b,c € L*([—m, 7)), > 0,b(z,y) = bz — y).
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Equivalent countable system

Kot-Schaffer

Using a basis of Fourier-modes ¢, = exp(ik-) for L? one obtains the

countable system of maps:

fula) = pby | — > caa,

_ J+l4+n=k

a, by, ¢, Fourier coefficients of a, b, c!.

Regularity of the solution

[{D(a), or)| < Cgalbr]

)

k e 7,
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Line of reasoning

o Let P, : L? — X,, = span{y, ..., 0m_1} be the projection onto
the first m modes and consider the finite dimensional map

f(m):XmHXma f(m):Pmof;

e What is the relation between the dynamics of f and of f(™?

o Write f(a) = f(Pna)+ (f(a) — f(Pya)) and suppose that we can
bound f(a) — f(P,,a) on a compact subset

Z=WxV, WcCX,,

of L?:
f(a) — f(Pna)| < ™M forall a € Z.
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e Now consider a multivalued map F™ : W = X,, with the prop-
erty that for all a € Z

P, f(a) € F'"™(P,a).

e Compute objects of interest for F™ via a rigorous set-oriented

approach in combination with the Conley-index theory:
— cover the maximal invariant set of F(™ in W:

— compute approximate locations of objects of interest (periodic

points, connecting orbits, chain recurrent sets);
— construct a corresponding index pair;

— compute its Conley index;

e Lift the information on F") resp. ™), to the full system ®.
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Finite dimensional multivalued map

F,im)(ao, ey Ue1) = pbg | ag — Z ciaian, | + 5,(€m) —1,1],

J+l+n=k
0<7,l,n<m-—1

k=0,1,...,m— 1.

The error 5,(€m) has been computed in such a way that

fu(@) = 1™ (ag, ... am-1)| € el™[=1,1]

for all a in some compact set Z =W x V C L?.
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Computing F

e Write
flz 4 h) = f(z)+ Df(x)h+ f*(z, h).
e For the box B = B(c,r) € B (c: center, r: radius) compute £ (c)
such that

max
[h|<r

f™(c,h)| < e™(c)
e For v € B set
F"™(x) = B(f(c), |Df(e)|r + ™ (c) + ™)
e Finally define
F(B(e,r)={B' e B|F(c)nB" #0}.
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e Note: the set F(B) can be determined by a single depth first

search of the tree:

F = cap(B,C,k)
if BNC #0)
if depth(B) =k
F .=FU{B}
else
F = F Ucap(B",C,k)Ucap(B~,C,k)

return F

Control of round off via interval arithmetic (BIAS, Profil, b4m, GAIO);
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Lifting to the full system

The compact set Z =W x V C L? is of the form

Z = H[alzv a:]
k=0
Theorem 3 Let I'™ be an isolating neighborhood for F™ . [f
fu(Z2) C(ay,af), k=>m,
then

I=1" x ][l ]
k=m

15 an 1solating neighborhood for ®. In particular, the Conley index for
a corresponding index pair is the same as for 1™,
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Truncation estimates

Consider a polynomial nonlinearity c¢(x)a(x)? in ®. The corresponding

terms in the associated countable system read

a/k: > E Cnoa/nl o o o a/np_l ak_(n0+...+np_1).
no,...,Np—1E€Z

Regularity assumptions. Suppose that for some constants A, B,C' >

0,b,s > 1, lax| < Fi,  |be| < %, x| < S, k€ Z, then

a? APC b IF]
‘ Z Cnoanl “ . Cbnp_lak—(nl—l—...—l—np_l)‘ S S|k| (B)

nl,...,np_1€Z

where (3 is such that b/s < § < b and a = a(s, b, §).
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Example computation

We consider the parameters ;= 3.5,b, = 27", cg = 0.8,¢; = —0.2 and
c, =0 for k> 1.

(i) Running a simulation for m = 50:

032 0.05
0.3
0.4
028
026 amb
0.24
o ' 0.02
022
0.z 0.01
0.18
n =
016 |-
a14 1 1 1 1 1 1 ] _un-l 1 1 1 1 ] 1 ]
a4 Q.5 Q.8 Qv a8 ag9 1 11 1.2 13 0.14 Q.18 0.8 a2 Q.22 0.24 Q.26 0.28 0.3 a3z
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(ii) ~» exponential estimate for the ay; initial bounds:

k a, a,;"
0 0.2 1.5
1 0.05 | 0.5
2 —0.001 | 0.1
2<k< M| —27F | 27F

Kot-Schaffer

(iii) Covering of the maximal invariant set in the chosen region:

s
rrrrr

HH

005 T | T
EEEiE: EEECEes
0045 : SEst
Wessessecs EESosEeeest .
oo i;::: : 1 1
= I I o
| i EniEan
Eeee : EEEEiics
om| FEE s Easg
woosl  CEE e
ocz| £ gEsiises
! e
g i
H
o1t i=E= s
i =
005 - ===
T === s e=ea]
o =
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(iv) Connecting orbit from a fixed point to a period two point:

0.32

0.3

0.28

0.26

0.24

My

0.22

0.2

T
O

0.18

0.16

0.14 . 1 I I I I I I I |
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
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(v) Isolating neighborhood:

032 -
03-
028"

026 -

Kot-Schaffer

0.24 -

0224

0.2-

0.18 -

0.16

0.14 = ! ,

0.4 0.5 0.6

0.7 08 0.9 1 1.1 1.2 13
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(vi) Homology of the corresponding index pair:

H,(Ny, No) = (0, Z°, 0, 0,

and the map in homology:

o o o o o O

o o O o o o O

o o O = o O O ©

o O B O O o O O

o O O O o o o o+

o O O o o o = O

)

o o O o o o = O

Kot-Schaffer
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Theorem 4 The map ® possesses an orbit
(aj)jez, a; € L*([~m, 7)),

connecting a neighborhood of a fixed point p; € L*([—7,7]) of ® to a
neighborhood of a period two point ps € L*([—m, m]) of ®, such that for
the coordinates (p1), (p2) and (a;), j € Z,

49 00
_ 1 ,
(1), (p2): (a) € [T [ [ log . o) < [ 55-1.1, e
k=12 k=50

Here the af are the final bounds.


file:ex1_12d_bounds.txt
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2. Example computation

0.8

0.4

K/\

o 0.2f

Q

~
— >0—>0—>0

&

-0.2 ' ' !
G 0.4 08 0.8 1 1.2 14
a

.<—O<—Q<—Q<—.
&

.Q}—>.
s

Theorem. For the parameter values |...| there is an
invariant set, contained in [...], on which ® is semi-

conjugate to the subshift given by the transition graph.
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Software

e CHomP — Computational Homology Program
http://http://www.math.gatech.edu/"chom/

Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, Pawel
Pilarczyk.

o GAIO — Global analysis of invariant objects
http://www.upb.de/math/“agdellnitz/gaio
Michael Dellnitz, O.J.

e Scripts for these computations:

http://www.upb.de/math/~ junge/kot_schaffer/code



