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Applications Kuramoto-Sivashinsky

The Kuramoto-Sivashinski equation

ut = −νuxxxx − uxx + 2uux

on [0,∞) × (−π, π) with periodic boundary conditions: u(t,−π) =

u(t, π).

• Jolly, Kevrekidis and Titi, ’90: bifurcation diagram for ν ∈ (0.057,∞)

for a 12 mode Galerkin approximation;

• here: rigorous proof of existence and localization of several of these

equilibria.
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Prototype Result

Theorem 1 (Mischaikow,Zgliczyński,01) Let u(x) =∑28
k=1 ak sin(kx), with the ak as below. Then, for ν = 0.1 there exists

an equilibrium u∗(x) for the KS-equation such that

‖u∗ − u‖L2 < 2.8 · 10−13, ‖u∗ − u‖C0 < 2.1 · 10−13.
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Line of reasoning

• Consider the evolution equation

u̇ = F (u)

on some Hilbert space H.

• Decompose

H = Xm ⊕ Ym,

with dim Xm < ∞.

• Let Pm : H → Xm and Qm : H → Ym be the associated orthogonal

projections.
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• With p = Pmu and q = Qmu we rewrite the system as

ṗ = PmF (p, q)

q̇ = QmF (p, q).

• Consider a restricted domain W ⊕ V ⊂ Xm ⊕ Ym.

• Draw conclusions about the dynamics of the differential inclusion

ṗ ∈ PmF (p, V )

by using Conley index arguments.

• Lift the information to the original system (by e.g. using compact-

ness/continuity arguments).
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Restricted domain

• Consider a complete orthogonal basis (ϕk)k∈N of H.

• Let Xm = span{ϕ0, . . . , ϕm−1} and Ak : H → span{ϕk}.

• Let W ⊂ Xm be compact, a−k , a+
k ∈ R, k = 0, 1, . . . and

V =
∞∏

k=m

[a−k , a+
k ].

• The bounds W and {a±k } are self-consistent, if

(i) a−k < 0 < a+
k for k > M ;

(ii) u =
∑

k akϕk ∈ H if ak ∈ [a−k , a+
k ] for all k.

(iii) F is continuous on W ⊕ V .
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Equivalent countable system

If W and {a±k } are self-consistent bounds, W ⊕ V is compact and a

function u : [0, T ] → W ⊕ V ,

u(t) =
∞∑

k=0

uk(t)ϕk,

solves u̇ = F (u), iff it solves

u̇k = AkF (u)

on [0, T ] for all k.
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Countable system for Kuramoto-Sivashinsky

• We consider

H = {u ∈ L2(−π, π) | u(t,−π) = u(t, π), u(t,−x) = −u(t, x)}.

• Fourier expansion of u ∈ H:

u(t, x) =
∑
k∈Z

bk(t) exp(ikx),

which yields

ḃk = (k2 − νk4)bk + ik
∑
m∈Z

bmbk−m, k ∈ Z.

• Since u ∈ H is real-valued, bk = b−k.
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• Since u ∈ H is odd, bk = iak.

• Thus ak = −a−k, a0 = 0 and we arrive at

ȧk = k2(1− νk2)ak − k

k−1∑
n=1

anak−n + 2k
∞∑

n=1

anan+k,

k = 1, 2, . . ..
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Isolating blocks

• ϕ : R× Rm → Rm continuous flow, generated by ż = f(z).

• If N ⊂ Rm is a compact set such that

Inv(N, ϕ) ⊂ int N,

then N is an isolating neighborhood.

• If in addition for any z ∈ ∂N there exists tz > 0 such that

ϕ((0, tz), z) ∩N = ∅ or ϕ((−tz, 0), z) ∩N = ∅,

then N is an isolating block.
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Local sections

• Isolating blocks can be constructed via local sections:

• Ξ ⊂ Rm is a local section for ϕ, if

ϕ : (−ε, ε)× Ξ → ϕ((−ε, ε), Ξ)

is a homeomorphism and ϕ((−ε, ε), Ξ) is open.

• Example: hypersurface Ξ which is transversal to the flow, i.e. for

each z ∈ Ξ,

n(z) · f(z) 6= 0,

where n(z) is a normal vector at z ∈ Ξ.
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Isolating blocks for linear systems

Consider  ż1

ż2

 =

 λ1 0

0 λ2

 z1

z2


with λ1, λ2 6= 0. Then

[a−1 , a+
1 ]× [a−2 , a+

2 ]

with a−i < 0 < a+
i is an isolating block.
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Robust isolating blocks

Consider the nonlinear, perturbed system ż1

ż2

 =

 λ1 0

0 λ2

 z1

z2

+

 f1(z)

f2(z)

+

 ε1(z)

ε2(z)

 (1)

where |fi|(z) = O(‖z‖2) and maxz∈N |εi(z)| ≤ ci.

If

λia
±
i + fi(z) + εi(z) (2)

has the same sign as λia
±
i on the sets {z ∈ N, zi = a±i }, then N is an

isolating block for (1).

(2)  system of inequalities
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Conley index

• Let N be an isolating block for ϕ. Let L be the closed subset of

∂N such that for all z ∈ L

ϕ((0, ε), z) ∩N = ∅

for a sufficiently small ε > 0. The Conley index of Inv(N, ϕ) is

CH∗(Inv(N,ϕ)) = H∗(N,L).

• McCord, 88: If the Conley index has the form

CHj(Inv(N,ϕ)) ∼=

 Z if j = q

0 otherwise,

for some q, then N contains a fixed point.
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Lifting to higher order modes

• Idea: construct isolating block N for the m-mode system

ṗ = PmF (p, q) (3)

such that it is robust for all q ∈ V .

• Definition: The compact sets N ⊂ W and the bounds {a±k } are

topologically self-consistent, if W and {a±k } are self-consistent

(i) for u ∈ W ⊕ V and k > m

AkF (u) < 0 if Aku = a+
k ,

AkF (u) > 0 if Aku = a−k ,

(ii) and N is an isolating block for (3) for all q ∈ V .
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Lifting to higher order modes

Let N ⊂ W and {a±k } be topologically self-consistent. Consider

N̂ = N ×
r∏

k=m+1

[a−k , a+
k ].

Then N̂ is an isolating block for the system

ȧk = AkF

(
r∑

i=1

aiϕi

)
, k = 1, . . . , r,

and

CH∗(Inv(N̂)) ∼= CH∗(Inv(N)).
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Lifting to higher order modes

Theorem 2 (Mischaikow,Zgliczyński,01) Let N ⊂ W and {a±k }
be topologically self-consistent. Suppose that

CHj(Inv(N)) ∼=

 Z if j = q

0 otherwise,

for some q, then there exists a fixed point

u∗ ∈ N × V

for the partial differential equation u̇ = F (u).
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Estimates

(i) 1 ≤ k ≤ m: actual variables,

W =
m∏

k=1

[a−k , a+
k ];

(ii) m < k ≤ M : explicit bounds (intervals)

(iii) M < k: asymptotic bounds,

[a−k , a+
k ] =

C

ks
[−1, 1]

for some C > 0 and some integer s > 1.
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Prototype estimates

• For 1 ≤ k ≤ m,

∞∑
n=m−k+1

anan+k ⊂
M−k∑

n=m−k+1

anan+k + C

∞∑
n=M−k+1

|an|
(k + n)s

[−1, 1]

+
C2

(k + M + 1)s(s− 1)M s−1
[−1, 1]

• For k > M

∞∑
n=1

anan+k ⊂
C

ks−1(M + 1)

(
C

(M + 1)s−1(s− 1)
+

M∑
n=1

|an]

)
[−1, 1]
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Example

For ν = 0.75 and m = 2 we obtain the Galerkin system

ȧ1 =
1

4
a1 + 2a1a2

ȧ2 = −8a2 − 2a2
1.

Fixed points are ā± = (± 1√
2
,−1

8
).

The full equations reads

ȧ1 =
1
4
a1 + 2

∞∑
n=1

anan+1

ȧ2 = −8a2 − 2a2
1 + 4

∞∑
n=1

anan+2.
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We choose

W = ā+ + [−0.1, 0.1]× [−0.1, 0.1]

and suitable bounds a±k , in particular

[a−k , a+
k ] =

10285.3

k10
[−1, 1]

for k > 10.

By estimating the contributions of the neglected modes we obtain the

inclusion

ȧ1 ∈ 1

4
a1 + 2a1a2 + ε1

ȧ2 ∈ −8a2 − 2a2
1 + ε2.
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with

ε1 = [−1 · 10−2, 8 · 10−10]

ε2 = [−2 · 10−8, 7 · 10−2].
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Applications Kot-Schaffer

infinite dimensional mapyGalerkin + truncation estimate

finite dimensional multivalued mapyspatial discretization (GAIO)

combinatorial multivalued map (directed graph)ygraph algorithms

combinatorial index pairycomputational homology (CHomP)

Conley index for finite dimensional continuous selectorylifting

Conley index for original map
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The map

The Kot-Schaffer growth-dispersal model for plants:

Φ : L2 → L2, Φ(a)(y) =
1

2π

∫ π

−π

b(x, y) µ a(x)

(
1− a(x)

c(x)

)
dx,

a, b, c ∈ L2([−π, π]), µ > 0, b(x, y) = b(x− y).
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Equivalent countable system

Using a basis of Fourier-modes ϕk = exp(ik·) for L2 one obtains the

countable system of maps:

fk(a) = µbk

[
ak −

∑
j+l+n=k

cjalan

]
, k ∈ Z,

ak, bk, ck Fourier coefficients of a, b, c−1.

Regularity of the solution

|〈Φ(a), ϕk〉| ≤ Cg,a|bk|
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Line of reasoning

• Let Pm : L2 → Xm = span{ϕ0, . . . , ϕm−1} be the projection onto

the first m modes and consider the finite dimensional map

f (m) : Xm → Xm, f (m) = Pm ◦ f ;

• What is the relation between the dynamics of f and of f (m)?

• Write f(a) = f(Pma) + (f(a)− f(Pma)) and suppose that we can

bound f(a)− f(Pma) on a compact subset

Z = W × V, W ⊂ Xm,

of L2:

|f(a)− f(Pma)| < ε(m) for all a ∈ Z.
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• Now consider a multivalued map F (m) : W ⇒ Xm with the prop-

erty that for all a ∈ Z

Pmf(a) ∈ F (m)(Pma).

• Compute objects of interest for F (m) via a rigorous set-oriented

approach in combination with the Conley-index theory:

– cover the maximal invariant set of F (m) in W ;

– compute approximate locations of objects of interest (periodic

points, connecting orbits, chain recurrent sets);

– construct a corresponding index pair;

– compute its Conley index;

• Lift the information on F (m), resp. f (m), to the full system Φ.
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Finite dimensional multivalued map

F
(m)
k (a0, . . . , am−1) = µbk

ak −
∑

j+l+n=k
0≤j,l,n≤m−1

cjalan

+ ε
(m)
k [−1, 1] ,

k = 0, 1, . . . ,m− 1.

The error ε
(m)
k has been computed in such a way that∣∣∣fk(a)− f

(m)
k (a0, . . . , am−1)

∣∣∣ ∈ ε
(m)
k [−1, 1]

for all a in some compact set Z = W × V ⊂ L2.
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Computing F

• Write

f(x + h) = f(x) + Df(x)h + fnl(x, h).

• For the box B = B(c, r) ∈ B (c: center, r: radius) compute εnl(c)

such that

max
|h|≤r

∣∣fnl(c, h)
∣∣ ≤ εnl(c)

• For x ∈ B set

F (m)(x) = B(f(c), |Df(c)|r + εnl(c) + ε(m))

• Finally define

F(B(c, r)) = {B′ ∈ B | F (c) ∩B′ 6= ∅}.
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• Note: the set F(B) can be determined by a single depth first

search of the tree:

F = cap(B, C, k)

if B ∩ C 6= ∅
if depth(B) = k

F := F ∪ {B}
else

F := F ∪ cap(B+, C, k) ∪ cap(B−, C, k)

return F

Control of round off via interval arithmetic (BIAS, Profil, b4m, GAIO);
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Lifting to the full system

The compact set Z = W × V ⊂ L2 is of the form

Z =
∞∏

k=0

[a−k , a+
k ].

Theorem 3 Let I(m) be an isolating neighborhood for F (m). If

fk(Z) ⊂ (a−k , a+
k ), k ≥ m,

then

I = I(m) ×
∞∏

k=m

[a−k , a+
k ]

is an isolating neighborhood for Φ. In particular, the Conley index for

a corresponding index pair is the same as for I(m).
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Truncation estimates

Consider a polynomial nonlinearity c(x)a(x)p in Φ. The corresponding

terms in the associated countable system read

ak 7→
∑

n0,...,np−1∈Z

cn0an1 . . . anp−1ak−(n0+···+np−1).

Regularity assumptions. Suppose that for some constants A, B, C >

0, b, s > 1, |ak| ≤ A
s|k|

, |bk| ≤ B
b|k|

, |ck| ≤ C
s|k|

, k ∈ Z, then

|
∑

n1,...,np−1∈Z

cn0an1 . . . anp−1ak−(n1+...+np−1)| ≤
αpApC

s|k|

( b

β

)|k|
where β is such that b/s < β < b and α = α(s, b, β).
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Example computation

We consider the parameters µ = 3.5, bk = 2−k, c0 = 0.8, c1 = −0.2 and

ck = 0 for k > 1.

(i) Running a simulation for m = 50:
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(ii)  exponential estimate for the ak; initial bounds:

k a−k a+
k

0 0.2 1.5

1 0.05 0.5

2 −0.001 0.1

2 < k < M −2−k 2−k

(iii) Covering of the maximal invariant set in the chosen region:
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(iv) Connecting orbit from a fixed point to a period two point:

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32
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(v) Isolating neighborhood:
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(vi) Homology of the corresponding index pair:

H∗(N1, N0) ∼= (0, Z8, 0, 0, . . .)

and the map in homology:

F1 :=



0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0


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Theorem 4 The map Φ possesses an orbit

(aj)j∈Z, aj ∈ L2([−π, π]),

connecting a neighborhood of a fixed point p1 ∈ L2([−π, π]) of Φ to a

neighborhood of a period two point p2 ∈ L2([−π, π]) of Φ, such that for

the coordinates (p1), (p2) and (aj), j ∈ Z,

(p1), (p2), (aj) ∈ |I(12)| ×
49∏

k=12

[a−k , a+
k ]×

∞∏
k=50

1

2k
[−1, 1], j ∈ Z.

Here the a±k are the final bounds.
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2. Example computation
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Theorem. For the parameter values [...] there is an

invariant set, contained in [...], on which Φ is semi-

conjugate to the subshift given by the transition graph.
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Software

• CHomP — Computational Homology Program

http://http://www.math.gatech.edu/~chom/

Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, Pawel

Pilarczyk.

• GAIO — Global analysis of invariant objects

http://www.upb.de/math/~agdellnitz/gaio

Michael Dellnitz, O.J.

• Scripts for these computations:

http://www.upb.de/math/~junge/kot_schaffer/code
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