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Multivalued maps on grids

Definition [Mrozek]: A grid on a compact space X is a finite
collection of subsets G for which

•
⋃

G∈G
G = X,

• G = cl(int(G)),

• G
⋂

int(H) = ∅ if G 6= H.

A multivalued map F on G maps a point G ∈ G to a set of
elements of G (and hence maps sets to sets), and we will write
F : G −→→G. The geometric realizations of a subset of S ⊂ G and
the map F will be denoted by

|S| =
⋃

G∈S
G and F (S) = |F(S)|.
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Outer approximations

A multivalued map F is an outer approximation to the dynam-

ical system ϕ : T ×X → X if for some k > 0

ϕ((0,1], G) ⊂ int(F [0,k](G)) and ϕ([−1,0), G) ⊂ int(F [−k,0](G))

where F [a,b](S) = ∪n∈[a,b]Fn(S).

In the case of a map f : X → X, there is a natural (minimal) outer

approximation on any grid G, namely H ∈ F(G) iff f(G)∩H 6= ∅.

For flows one can of course use this approximation on the time-τ

map to obtain an outer approximation. In practice, this may not

be desirable in certain situations.
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Dynamics of (combinatorial) multivalued maps

Definition: A set A ∈ G is an attractor if F(A) = A and B is a

repeller if F−1(B) = B. If S = A ∩ B for some attractor A and

some repeller B, then S is a Morse set.

Theorem [K., Mischaikow, VanderVorst]: If F is an outer

approximation of ϕ and S is a Morse set of F, then |S| is an

isolating block for a Morse set of ϕ.

Key fact: The combinatorics of finding Morse sets is easy. The

complexity of the computation of the finest Morse decomposition

of F is linear in the number of elements of G plus the number

of images of F.
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Recurrence

Definition: The recurrent set is

R(G) = {G : G ∈ Fn(G) for some n > 0}.

On R(G), G ∼ H if ∃m, n > 0 such that G ∈ Fm(H) and H ∈
Fn(G).

Equivalence classes of ∼ are the recurrent components of F.

The recurrent components are the finest Morse decomposition

for F, i.e. the intersection of all attractor/repeller pairs.
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Lyapunov functions

The graph algorithms also yield a discrete ’Lyapunov function’

L for the graph, i.e. L(G) = L(H) iff G ∼ H and L(G) > L(H)

whenever H ∈ F(G).

This function obviously does not contain any topological infor-

mation. However, a function V can be constructed which is

piecewise constant on the grid and approximates a true Lya-

punov function for the dynamics of ϕ, under certain conditions,

[K., Mischaikow, and VanderVorst; Ban].
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Flows and polygons [Eidenschink and Mischaikow]

Given:

• Ω ∈ Rd a polygonal (rectangular) region

• f : Ω → Rd a vector field on Ω

Find:

• P a polygonal decomposition of a full finite simplicial complex

K with |K| = Ω

• F : P −→→P a multivalued map which is an outer approximation

to the flow of ẋ = f(x) on Ω
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Definition: A simplex L ∈ Kd−1 is a flow transverse face if
ν(L) ·f(x) 6= 0 for all x ∈ L where ν(L) is normal to L. A polygon
P ∈ P is a flow transverse polygon if every face L ∈ ∂P is flow
transverse.

Definition: Given a simplicial complex K the minimal flow
transverse polygonal decomposition P of Ω consists of the
equivalence classes of ∼ defined by K1 ∼ K2 in Kd if K1 ∩K2 =
L ∈ Kd−1 and ν(L) · f(x) = 0 for some x ∈ L and extended by
transitivity.

K  ~ K 1 2

K

K

1

2
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Flow induced multivalued map

Definition: The flow induced multivalued map F : P −→→P is

defined by:

• P ∈ F(P ) iff P contains an equilibrium point (necessarily in its

interior)

• Q ∈ F(P ) if P ∩ Q = L ∈ Kd−1 and νP (L) · f(x) > 0 for x ∈ L

where νP (L) is normal to L pointing out of P , i.e. Q ∈ F (P ) if

Q is adjacent to P along an exit face L of P .

P

F(P)
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Isolating blocks

A compact set N ⊂ Ω is an isolating block if every point on ∂|S|
immediately leaves |S| in either forward or backward time. Then

an exit set for N can be taken as a subset of ∂N for computing

the Conley index.

Theorem: If S is a Morse set of F : P −→→P and either |S|∩Ω = ∅
or Ω is an isolating block, then |S| is an isolating block.

Essentially, F is an outer approximation of the flow on the interior

grid elements (after suitable rescaling of time).

In fact, ϕ(t, x) ∈ int(|Fω(P )|) for any P containing x as long as

ϕ([0, t], x) ⊂ Ω.
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Note: to be an isolating block a polygonal set must not only

be flow transverse on its boundary (automatic), but it must also

have no re-entrant points on its boundary.
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Recap 1

[1] We have a license to start computing. Any simplicial complex
will yield a multivalued map which can be made rigorous.

[2] The results of the computation can be arbitrarily bad. How-
ever it will not give a wrong result. If a Morse set is found
which contains no invariant set for the flow, it will have trivial
Conley index.

[3] The advantage of using the vector field directly is avoiding
problems which can arise in approximating the time-τ map on a
cubical grid: how long to integrate, large errors/ small cubes,
lack of transversality...

[4] The disadvantage is of course the geometry of simplicial
complexes can be complicated.
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Outstanding issues 1

[1] How closely can we approximate the dynamics of the flow

with this type of multivalued map?

[2] What (computable) properties of the base simplicial complex

are sufficient to guarantee a close approximation?

[3] Does such an approximating complex always exist?

[4] What are the algorithms to compute such a complex?

14



Parallel flow

Consider the flow on Rd of ẋ = Π = (1,0, . . .0).

Let K be a full finite simplicial complex and Ω = |K|.

What type of triangulation gives the best approximation?

Intuitively, triangles should be long in the direction of the vector

field and thin in directions orthogonal to it.
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Delaunay triangulations

Definition: A d-simplex satisfies the Delaunay property if its

open circumball contains no vertices. A simplicial complex in

which every d-simplex satisfies the Delaunay property is a

Delaunay complex (triangulation).

Theorem: Given any finite set S ⊂ Rd, there exists a trian-

gulation of the convex hull of S which is a Delaunay complex.

Moreover, if no set of d+2 points in S lie on a d−1 sphere, the

Delaunay complex of S is unique.

Remark: In R2, the Delaunay triangulation maximizes the min-

imum angle over all possible triangulations.
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Voronoi diagrams

Definition: Given a finite set S ⊂ Rd, the locus of the set of

all points in Rd which are closer to x0 ∈ S than any other point

in S is called the Voronoi polygon at x0. The collection of

all Voronoi polygons is a polygonal decomposition of the plane

called the Voronoi diagram.
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Delaunay-Voronoi duality

Remark: The Delaunay triangulation is dual to the Voronoi
diagram of a generic set of points.
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Computing Delaunay triangulations

There are many methods for computing a Delaunay triangulation

(or Voronoi diagram) especially in 2 dimensions:

•Delaunay (or Bowyer-Watson) (or Incremental) insertion

•Bistellar flip methods

•Polytope methods. . .

The Delaunay insertion method works in any dimension and is

readily generalizable to our situation.
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Delaunay insertion

Given K the Delaunay triangulation of a finite set S ⊂ Rd, a new

point p in the convex hull of S can be inserted to compute the

Delaunay triangulation of S ∪ {p} as follows:

[1] Delete all simplices of K whose open circumball contains p.

[2] The union of all such simplices, called the Delaunay kernel,

is a polygon which is star-shaped at p.

[3] Retriangulate the Delaunay kernel by simplices composed of

a face of the boundary and p.

[4] The new complex is a Delaunay triangulation of S ∪ {p}.
21
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Anisotropic Delaunay triangulations

Implementation of Delaunay insertion requires only the circum-

scription test:

Does point p lie inside the circumball of simplex K?

Let M be a symmetric, positive definite matrix and

gM(u, v) = 〈Mu, v〉

the corresponding bilinear form.

The circumballs in this metric are ellipsoids, and the circumscrip-

tion test is just linear algebra.
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Theorem: If S ⊂ Rd is a finite set of points. Then generically

there is a unique triangulation of the convex hull of S which sat-

isfies the Delaunay property using circumballs in (Rd, gM), which

therefore can properly be called an (anisotropic) Delaunay com-

plex in (Rd, gM).

This constant metric situation will work for parallel flow with

M = Λ(µ) =


1 0 0 . . . 0
0 µ−1 0 . . . 0
. . .

0 0 0 . . . µ−1


but what about arbitrary flows?

Is there such a concept as a Delaunay complex on an arbitrary

Riemannian manifold (X, g)? How can it be computed?
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Riemannian-Delaunay triangulations

Theorem/Conjecture: Let (X, g) be a compact Riemannian

manifold. Let S ⊂ X be a finite set satisfying the density condi-

tion that every ball of sufficiently small radius (some fraction of

the convexity radius) contains a point of S. Then there exists a

triangulation of K of (M, g) with K0 = S and every K ∈ Kd has

a (unique?) strongly convex (minimal radius?) circumball which

contains no points of S. Generically, this Delaunay triangulation

is unique.

Proved for 2-dimensional manifolds. [Libon]

Proof for any dimension?
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Flow-induced Riemannian metric

Let E be the equilibrium set in Ω.

Choose a vector field f⊥(x) orthogonal to f(x) on Ω \ E and let

Dh(x) = [f(x)|f⊥(x)].

For R(x) 6= 0, define

Mf
µ(x) =

1

R(x)‖f(x)‖2
Dh(x) · Λ(µ) ·DhT (x).

Let g
f
µ(x)(u, v) =

〈
M

f
µ(x)u, v

〉
be the corresponding bilinear form.

Then (Ω \ E, g
f
µ) is a Riemannian manifold.
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Fix M
f
µ(x0) at some x0 and µ < 1.

Then the unit ball in the metric determined by this constant

matrix is an ellipsoid with:

•major axis in the direction of the vector field f(x0),

• the eccentricity determined by µ,

• and the size determined by R(x0).

Remark: The function R(x) is related to the curvature of the

vector field at x0.



Practical Riemannian-Delaunay triangulations

In practice a triangulation can be constructed from approxima-
tions by constant metrics.[Borouchaki, George, Hecht, Laug, and Saltel]

Using the constant metrics determined by p and the vertices of
K, a star-shaped kernel can be constructed by modifying the
circumscription condition to require that p lie inside one or all
such circumballs or satisfy some average condition.

Example: Let

αp = dp(p, Op)/dp(v, Op) and αv = dv(p, Ov)/dv(v, Ov)

be the ratios of the distances from p to the circumcenter of K
to the circumradii of K measured in the constant metrics at p
and at some vertex v of K.

Then K is in the Delaunay kernel of p if αp + αv < 2.
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Recap 2

[1] Given any finite set of vertices S in Ω\E we can (in principle)
compute a Riemannian-Delaunay triangulation of the convex hull
of S which is aligned to the flow.

[2] The insertion algorithm is dimension independent and com-
putational geometers have developed very fast algorithms.

[3] There are a number of computational issues:
•Early in the insertion, the metric approximation is bad.
• In dimensions higher than 2, the Delaunay kernel must be re-
duced to ensure that it is star-shaped with respect to the inser-
tion point.
• If simplices get too thin, then multiple precision arithmetic may
be needed.
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Outstanding issues 2

[1] If the location of the vertices is bad, then the triangulation

can be bad.

[2] Is there an algorithm to choose the vertices?

[3] How closely can we approximate the dynamics of the flow?

[4] Are there computable properties of the base simplicial com-

plex are sufficient to guarantee a close approximation?

[5] Does such an approximating complex always exist/ can al-

ways be computed?
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Centroidal Voronoi diagrams

Strategy: Place vertices so that each vertex is located at the

centroid of its Voronoi region. [Du, Faber, Gunzberger, and Ju]
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•Resulting elements are high quality, i.e. close to equilateral.

•There are naturally parallelizable algorithms involving probab-

listic averaging.
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Overall procedure

[1] Choose a set of initial vertices randomly with respect to the
curvature density R(x).

[2] Perform probablistic centroidal averaging using distances in
the Riemannian metric to obtain a final set of vertices.

[3] Compute Riemannian-Delaunay triangulation.

[4] (Rigorously) compute the flow transverse polygonal decom-
position and multivalued map.

[5] Apply graph algorithms to obtain rigorous isolating blocks.

[6] Extract isolating blocks and repeat with a smaller µ if nec-
essary.
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Reverse Van der Pol

ẋ = −y

ẏ = (x2 − 1)y + x.

The next figure will show the minimal flow transverse decom-

position of a triangulation containing 20,000 vertices, 39,9940

triangles, and 27,552 polygons.
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From this triangulation, we can extract the recurrent component

the multivalued map which contains the periodic orbit. This set

contains 8,093 triangles in 5,812 polygons.
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This triangulation can be refined to approximate the periodic

orbit more closely. The next figure shows a recurrent set for the

multivalued map containing 20,119 triangles.
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3-d connecting orbit

ẋ = −x(x + 1)− z

ẏ = y(2 + 6x− y) + 3
(
x +

z

3

)
ż = z(2− x + 5y)

This 3-dimensional system, related to the ground state problem

for a system of coupled semilinear Poisson equations with critical

exponents, has a connecting orbit between the equilibria (0,0,0)

and (−1,−1,0) as the intersection of a 2-dimensional unstable

manifold and a 2-dimensional stable manifold. The connect-

ing orbit is also proven in [Hulshof and VanderVorst] to be a

parabola over the line x = y, z = 0. An isolating neighborhood

of this connecting orbit with 12,326 simplices is shown in the

next figure.
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Current/ future work

•There are implementation, algorithmic, and parallelization is-

sues to resolve.

•Automate the (human) choices to be made in performing any

given computation: R(x), µ, # vertices, # averaging points,

metric approximation...

•4-d fast/slow system [Gameiro and Mischaikow]

•PDE bifurcation diagrams [Day, Hiraoka, Junge, Mischaikow,

Ogawa, Wanner]

•Theoretical results
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Flow oriented triangulations and chain recurrence

Definition: A simplex K is δ-oriented to the flow if every en-

trance face L has the following property:

∃ y ∈ L such that v − y ∈ C(f(y), δ) = {w : w · f(y) ≥ δ‖w‖‖f(y)‖}

where v is the vertex opposite L in K.

Theorem: For every ε > 0, there exists δ > 0 so that if K is

δ-oriented and diam(K) is sufficiently small, then the recurrent

set of the multivalued map R(P) is contained in Rε(|K|, ϕ).
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