Local Numerics



Local Numerics Continuation of equilibria

Problem

Parameter-dependent ODE

jj — f(x7 A)?
r € RY XN eER, f “smooth” enough.

Goal: compute (“follow”) equilibrium solutions as A varies, i.e. com-

pute solutions (z, \) to

0= f(z,\).



Local Numerics Continuation of equilibria
Structure of the Solution

Let ug = (xg, A\o) s.t.
f(ug) =0 and rank(f'(ug)) = N.

Then locally f~1(0) is a one-dimensional manifold in R*!,
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Local Numerics Continuation of equilibria
Tangent vector

Let ¢: (—1,1) — R%"! be a local parametrization of f~!(0). Then

1.e.

In other words




Local Numerics Continuation of equilibria

Fixing the orientation

We will use ker f'(c(s)) to “move along ¢”.

In order to fix a consistent direction, we require that

and

det > ().

Exercise 1 Show that Is regular.




Local Numerics

The induced tangent vector

Continuation of equilibria

For a d x d + 1-matrix A with rank(A) = d let t = t(A) € R be the

unique vector such that

(i) At =0;
(i) [t =1
et | A
(iii) det 7

We call £(A) the tangent vector induced by A.

> 0.

Exercise 2 Show that the set of all d x (d + 1)-matrices with full rank

IS open.



Local Numerics Continuation of equilibria
The associated differential equation

Consider the ODE
¢ =t(f'(c)). (1)
Since £ f(c(s)) = f'(c(s)) (s) = 0, f is constant along solutions of

(1.

Idea: in order to compute the “path” ¢, solve (1.
Given data: vector field t(f'(-)) and condition f(c(s)) = 0.

~+ predictor-corrector methods.



Local Numerics Continuation of equilibria

Predictor-corrector scheme

Given ug with |f(ug)| < €, find sequence uy, us, . .. of points such that
| f(u;)| < e for some prescribed accuracy £ > 0.

f71(0) U1
[
\g—/\g‘\
® "2
7%

(i) Predictor: solve the initial value problem u = t(f'(u)), u(0) = u,,
by an explicit scheme, e.g. one Euler-step:

”LNLZ'_|_1 — Uy -+ ht(f’(uz)),

where h is the stepsize.



Local Numerics Continuation of equilibria

(ii) Corrector: compute
Uil = argmin p(,,)_o|u — Uit

by some iteration scheme, e.g. Newton’s method.

U;

Uj4-1
A necessary condition for u;,q is

f(uH—l) — 07
LS (wig1)) (Uigr — Uipr) = 0.



Local Numerics Computation of bifurcation points

Saddle-node bifurcation
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Local Numerics

Saddle-node bifurcation

Condition:

Computation of bifurcation points

dim ker f,(z*, \*) =1

(but still rank(f'(z*, \*)) = d).

Detection: during path-following, check sign of
det fo(z(s), A(s)).

Computation: Solve (Moore, Spence, 1980)

flz,A)
fu(@, A)o
o —1

0
0
0,

¢ e RY



Local Numerics Computation of bifurcation points
Saddle-node bifurcation

Let
Y* fo(x™, N") = 0.

Theorem 1 If
dimker f(z*,\*) =d and dimker f.(x*, \*) =1,
then (x*, ¢*, \*) is a reqular zero of the extended system, if and only if
" faa (27, A7) 970" # 0.

The point (z*, \*) is a quadratic turning point.



Local Numerics Computation of bifurcation points
Hopft bifurcation

Consider the system

for various \ € R.
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Eigenvalue movement

Linearization in 0, eigenvalues:

Df(0)
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Local Numerics Computation of bifurcation points

The Theorem of Hopf

e (10, \g) equilibrium,

e iw # 0 simple eigenvalue of f,(xg, \g),

o iIRNao(f.(xg, o)) = {iw, —iw},

o (' ={(x(AN),\)} local path of equilibria,

o 1(A) +iv(N) eigenvalue of f,(x(A),A) with p(Ag) + iv(Ag) = iw,

It

dps
5()\0) # 0,

then there exists a unique one-parameter family of periodic solutions

(with positive period) in a neighborhood of (xg, \g).



Local Numerics Computation of bifurcation points
Computing Hopf points

Consider an eigenvector v + iw at iw of D := d, f(xg, o), i.e.
D(v + iw) = w(v + iw)

& Dv=—ww and Dw = wo.

Exercise 3 Show that v and w are linearly independent.

Thus

D?v = —w?v and D*w = —w w.



Local Numerics Computation of bifurcation points
Computing Hopf points

Consider the extended system

fla, A)

d, f(x, \)? + 121
(e, o\ ) = (def(z, A)* + v 0
Lo

If ¢ is not orthogonal to span{v,w}, then there exists a unique (up to
its sign) vector oo € span{v,w}, such that (g, @0, Ao, w) is a regular?]
solution of this system.

2Roose,Hlavacek, 85




Local Numerics Computation of periodic solutions
Computation of periodic solutions

Goal: compute periodic solution of
' = f(z), x¢cRY

i.e. a solution z(t) with z(¢t) = (¢t + T) for some unknown period
T =27/w.

The transformation y(t) = z(t/w) yields the system

V=1,

for which 4(t) = z(t/w) is a 2m-periodic solution.



Local Numerics Computation of periodic solutions

Boundary value problem:

y = éf (v)
y(0) y(2T).

Let ©'(-,w) denote the flow of this ode.

Shooting method: solve
S(va) — 90271'(57('0) o f = 0.

Because of the S'-symmetry of each periodic solution we need an ad-

ditional phase condition. Simple choice:

&=64



Local Numerics Computation of periodic solutions
The variational equation

In order to solve S(&,w) = 0, & = & by Newton’s method, we need to
compute DS.

DeS(€,w) = Dep®™(€,w) — I can be computed via the variational

equation

0

£ Dep!(€,0) = —Df(#'(€,0) Ded(€,w),  Deg(€,w) =1

For 22(£,w) we compute

o , t. 0
7 = —Eaj(t/w) = —— f(z(t/w)),



Local Numerics Computation of periodic solutions

thus

0

85 2t 2T 27
a_w(g’w) - a—wgp (&,w) = —Ef(#? (& w)).

Advantage of shooting: stability of the periodic solution is directly

given by the eigenvalues of

D§¢27T(§7 w)'



Local Numerics Computation of periodic solutions
Galerkin approach

Let

o= {ue C"(R,RY) : u(s +27) = u(s)}.

Consider the operator F': C;_ x R — CY

T

dy 1

F(yaw) — E o ; (y)

A zero of this operator is a periodic solution of the boundary value

problem.



Local Numerics Computation of periodic solutions

Line of Reasoning

(i) Choose a suitable, countable basis of the underlying space ~-

countable system of equations;

(ii) using finitely many modes, numerically compute an approximate

solution (Galerkin);

(iii) construct a restricted domain for I’ that isolates the numerical

Z€T0;

(iv) using topological arguments, show that there actually exists a zero

in the restricted domain.



Local Numerics Computation of periodic solutions

Setting

Fly,y,...,y") =0, y(t) €R,

F : R — R smooth. We look for functions y : R — R,y €&
C", y(t) =y(t + 27 /w) for some w € R such that

Fy,y,...,y") =0.
Rescaling time, :c(t) = y(t/w), yields the map

RXCTHCO

F:(wz)— Flz,wd,. .. "z



Local Numerics Computation of periodic solutions

[ induces a map on the Fourier coefficients (cx)gez of z. Note that
C_k — C_ka ke Z)
so it suffices to consider

(% = {(ck)zoo cCV: Z cn]? < oo} .

k=0

Correspondingly

02 ={(ck)2p € L7 | Ju € CY : ¢4 is the k-th Fourier coefficient of u} .

T

Induced map
F:Rx -2



Local Numerics Computation of periodic solutions

Phase Condition

Since the original ODE is autonomous:
r € C] solution = z(- +t) solutionVt € [0, 1].
Numerically more favorable: regularize by phase condition
©o(c) = 0.
Full system:

d:Rx /2 —Rx /L

O(w, ¢) = (p(c), Fw, c)).



Local Numerics Computation of periodic solutions

We look for (w, ¢) such that ®(w,c) = 0. Equivalently: look for fixed
points of

G =1id+ .
Define
Ap(w,c) = ¢
Pilw,c) = (w,co,...,c)
Qr(w,c) = (Cps1,Crazy---)

and consider the sets
Zr = A(w,¢): PbG(w,c) = Py(w,c)}

Z:ﬂZk

k>0



Local Numerics Computation of periodic solutions

Proposition 1 If G is continuous, Zy is compact for some M and

7. # 0 for k> M, then Z is nonempty and all points in Z are fixed
points of G.

Proof of Existence

(i) Find compact restricted domain for G;

(ii) Show that Z,; is nonempty for some (small) M;

)

(iii) Show that Zj is nonempty for k > M.



Local Numerics Computation of periodic solutions

(i) Construction of the Restricted Domain

(i) Use Newton’s method on a Galerkin projection of G in order to

estimate a fixed point;
(iil) FeC"=2e(C" =
k| = O(k™)  as k — oc.

Restricted domain: compact set @ x D C R x £2, where

D=Dyx % Dy 1 x [[{en€C: lal <
k=M

where Dy x -+ x Djy;—; C CM contains the numerically computed fixed

point.



Local Numerics Computation of periodic solutions
(ii) Zy; is nonempty

Define the multivalued map

Gv - Pu (2 x D) = Py (R x %)

(w,¢) — {PyoG(w,c): Pylw,c) = (w,¢) and (w,c) € Q x D}.
We will show that every continuous selector of G,; has a fixed point.

Note that the set

determines the size of the images of G,,.



Local Numerics Computation of periodic solutions

(iii) Z; is nonempty for k > M

Definition 1 A map f : Q@ x D — C is linearly dominated on the ball
Bo(r) C Ap(Q2 x D) if
f(w7 C) — L(w)ck T g<w7 C)a

for all (w,c) € Q@ x D, |cp| <71, where L : I — C, Q C I, and g are

continuous functions, such that

sup |g(w, c)| < rinf |L(w)| — r. (2)
QxD wel
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B

(a) Linearly dominated. (b) Not linearly domi-

nated.

R =rinf ¢ |L(w)|, D' = D N{|cx| =1}.

Oliver Junge, Institute for Mathematics, University of Paderborn 32
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Existence Theorem

Theorem 2 Let ) X D be compact. Suppose that there exists a star-

shaped enclosure Gy; for Ga such that (N, L) is an index pair for G
and

A((N, L),Gn) #0,

where A is the Lefschetz number of the index pair (N,L). Assume
furthermore that the maps A,G are linearly dominated for all k > M,
then there exists a fixed point for the map G.



Local Numerics Computation of periodic solutions

Example

Consider
y”’+y”+0y’ o 5y_|_y2 _ O,
o=2,0=3.
Induced map on Fourier coeflicients
ALF : (w,¢) = (=i — WPk + owik — 8) e + Z C1Cx—1,
(e

k > 0. Computations: real version.
Phase condition

p(c) = imag(c1) = 0.
v G(w, ¢) = (w,¢) + (¢(c), F(w,c)) as above.



Local Numerics Computation of periodic solutions

Numerical fixed point

w = 1.39,

co = 2.46,

1 = 0.813,

Co = 0.0130 — i 0.0361,

c3 = — 7.79-100% — 4§ 5.13-107%,
cs = — 131-107°> 4+ i 1.23-107°,
c5 = 1.55-107" + i 2.64-1077,
cg = 455-107° — ¢ 1.46-1077,
c; = — 6.51-10712 — 4§ 7.04-10711,
cgs = — 995-107Y — 4 1.25-10713,

co = — 465-107% 4+ 4 1.29-107™",



Local Numerics Computation of periodic solutions

Numerical fixed point: decay of coefficients

o
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Restricted domain

Q = [1.36,1.44],

D = Dyx DyxDyx || Bo(Bah),

k=3
witha = 01, f=115
and Dy = [2.43,2.49],
D, = [0.8,0.8285],
Dy = [~0.003,0.04] — [0.005,0.06]i,

imag(Dy) = 0, since the Fourier series is real valued.

imag (D) = 0 due to the phase condition.
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Linear domiation for k& > 2

e Lemma:

E ClCk—1

leZ

< ot L :

—

2+k—4.

¢ Lemma: The map A, G is linearly dominated on the ball By(3a*)
for k > 2.

e Proof: By the estimate we need to verify that

2
2ak[ 2+k—1] <ﬁakmin(]—iwgkg—w2k2+awik—5+1]—1).
l -« wes

e Rewrite the rhs, use 2 = |w, @], plug in w and W where appropriate,

e ~~ function k — e(k,w,w,d, o) such that Ay is linearly dominated,
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if e(k) > 0.

e Result: e(k) is increasing and e(3) > 0. i

Index pair for lower modes

e We need to numerically construct an index pair for Gy (with, hope-

fully, a non-zero Lefschetz number).

e 7d — 3d by exploiting the structure of the map;
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Explicit multivalued map

a, — (=% =0+ 1Day + 2a1as + 2apa; + |ca| Iy +0.01 I
ay > (—4w® — 6+ 1)ay + (8w® — 200)by + 2agay + aj
4+ (lea| 0.1 4 e ) Ip + 1072 I,
by — (—8w® 4 20w)as + (—4w® — § + 1)by + 2agbs
+ |e2]0.1 I + |ey | Ly + 1072 14,

where
Iy =0.023-[-1,1], I, =267172-107*-[-1,1],

and ag = ag(ay, as, bs) and w = w(ay, as, by) are intervals.
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Isolating neighborhood

-0.005—

0.8285




Local Numerics Computation of periodic solutions

Index pair

(N, L) == (IGu(Z)], |G (L),

where G, : P = P (P a partition of the “search box”) such that for
C € P we have Go(C) C |G (C)].

Induced homology map:

| k=3
Je =4

0 else.

= A((N,L),G,) = 1.
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Theorem 3 The differential equation with parameters o = 2 and 0 =

3 possesses a periodic orbit

with c_, = ¢, and

W€ [1.36,1.44

co € [2.43,2.49)

e, € [0.8,0.8285]

e € [—0.003,0.04] — [0.005,0.06]i

c, € {2z€Cl|z|<p-a"}, B=115 a=0.1, k>2
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