
Local Numerics



Local Numerics Continuation of equilibria

Problem

Parameter-dependent ODE

ẋ = f(x, λ),

x ∈ Rd, λ ∈ R, f “smooth” enough.

Goal: compute (“follow”) equilibrium solutions as λ varies, i.e. com-

pute solutions (x, λ) to

0 = f(x, λ).

Oliver Junge, Institute for Mathematics, University of Paderborn 2



Local Numerics Continuation of equilibria

Structure of the Solution

Let u0 = (x0, λ0) s.t.

f(u0) = 0 and rank(f ′(u0)) = N.

Then locally f−1(0) is a one-dimensional manifold in Rd+1.

f−1(0)

u0

λ

x
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Local Numerics Continuation of equilibria

Tangent vector

Let c : (−1, 1) → Rd+1 be a local parametrization of f−1(0). Then

f(c(s)) = 0,

i.e.

f ′(c(s)) c′(s) = 0.

In other words

Tc(s)f
−1(0) = ker f ′(c(s)).

f−1(0)

u0 ker f ′(u0)
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Local Numerics Continuation of equilibria

Fixing the orientation

We will use ker f ′(c(s)) to “move along c”.

In order to fix a consistent direction, we require that

|c′(s)| = 1

and

det

 f ′(c(s))

c′(s)T

 > 0.

Exercise 1 Show that

 f ′(c(s))

c′(s)T

 is regular.
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Local Numerics Continuation of equilibria

The induced tangent vector

For a d× d+ 1-matrix A with rank(A) = d let t = t(A) ∈ Rd+1 be the

unique vector such that

(i) At = 0;

(ii) |t| = 1;

(iii) det

 A

tT

 > 0.

We call t(A) the tangent vector induced by A.

Exercise 2 Show that the set of all d× (d+ 1)-matrices with full rank

is open.
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Local Numerics Continuation of equilibria

The associated differential equation

Consider the ODE

c′ = t(f ′(c)). (1)

Since d
ds
f(c(s)) = f ′(c(s)) c′(s) = 0, f is constant along solutions of

(1).

Idea: in order to compute the “path” c, solve (1).

Given data: vector field t(f ′(·)) and condition f(c(s)) = 0.

 predictor-corrector methods.
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Local Numerics Continuation of equilibria

Predictor-corrector scheme

Given u0 with |f(u0)| < ε, find sequence u1, u2, . . . of points such that

|f(ui)| < ε for some prescribed accuracy ε > 0.

f−1(0)

u0

u1

u2

(i) Predictor: solve the initial value problem u′ = t(f ′(u)), u(0) = ui,

by an explicit scheme, e.g. one Euler-step:

ũi+1 = ui + ht(f ′(ui)),

where h is the stepsize.
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Local Numerics Continuation of equilibria

(ii) Corrector: compute

ui+1 = argminf(u)=0|u− ũi+1|

by some iteration scheme, e.g. Newton’s method.

ui

ui+1

ũi+1

t(f ′(ui+1))

A necessary condition for ui+1 is

f(ui+1) = 0,

t(f ′(ui+1))(ui+1 − ũi+1) = 0.
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Local Numerics Computation of bifurcation points

Saddle-node bifurcation

λ

x

λ
∗

x
∗

Example 1

ẋ = λ+ x2

0
√
−λ−

√
−λ

λ < 0

0

λ = 0

0

λ > 0
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Local Numerics Computation of bifurcation points

Saddle-node bifurcation

Condition:

dim ker fx(x
∗, λ∗) = 1

(but still rank(f ′(x∗, λ∗)) = d).

Detection: during path-following, check sign of

det fx(x(s), λ(s)).

Computation: Solve (Moore, Spence, 1980)

f(x, λ) = 0

fx(x, λ)φ = 0

`Tφ− 1 = 0, ` ∈ Rd.
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Local Numerics Computation of bifurcation points

Saddle-node bifurcation

Let

ψ∗fx(x
∗, λ∗) = 0.

Theorem 1 If

dim ker f ′(x∗, λ∗) = d and dim ker fx(x
∗, λ∗) = 1,

then (x∗, φ∗, λ∗) is a regular zero of the extended system, if and only if

ψ∗fxx(x
∗, λ∗)φ∗φ∗ 6= 0.

The point (x∗, λ∗) is a quadratic turning point.
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Local Numerics Computation of bifurcation points

Hopf bifurcation

Consider the system

ẋ = λx− y − x3

ẏ = x

for various λ ∈ R.
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Local Numerics Computation of bifurcation points

Eigenvalue movement

Linearization in 0, eigenvalues:

Df(0) =

 λ −1

1 0
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Local Numerics Computation of bifurcation points

The Theorem of Hopf

• (x0, λ0) equilibrium,

• iω 6= 0 simple eigenvalue of fx(x0, λ0),

• iR ∩ σ(fx(x0, λ0)) = {iω,−iω},

• C = {(x(λ), λ)} local path of equilibria,

• µ(λ) + iν(λ) eigenvalue of fx(x(λ), λ) with µ(λ0) + iν(λ0) = iω,

If
dµ

dλ
(λ0) 6= 0,

then there exists a unique one-parameter family of periodic solutions

(with positive period) in a neighborhood of (x0, λ0).
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Local Numerics Computation of bifurcation points

Computing Hopf points

Consider an eigenvector v + iw at iω of D := dxf(x0, λ0), i.e.

D(v + iw) = iω(v + iw)

⇔ Dv = −ωw and Dw = ωv.

Exercise 3 Show that v and w are linearly independent.

Thus

D2v = −ω2v and D2w = −ω2w.

Oliver Junge, Institute for Mathematics, University of Paderborn 16



Local Numerics Computation of bifurcation points

Computing Hopf points

Consider the extended system

F (x, ϕ, λ, ν) =


f(x, λ)

(dxf(x, λ)2 + ν2I)ϕ

(ϕ, ϕ)− 1

`Tϕ

 = 0.

If ` is not orthogonal to span{v, w}, then there exists a unique (up to

its sign) vector ϕ0 ∈ span{v, w}, such that (x0, ϕ0, λ0, ω) is a regulara

solution of this system.
aRoose,Hlavacek, 85
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Local Numerics Computation of periodic solutions

Computation of periodic solutions

Goal: compute periodic solution of

x′ = f(x), x ∈ Rd,

i.e. a solution x̄(t) with x̄(t) = x̄(t + T ) for some unknown period

T = 2π/ω.

The transformation y(t) = x(t/ω) yields the system

y′ =
1

ω
f(y),

for which ȳ(t) = x̄(t/ω) is a 2π-periodic solution.
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Local Numerics Computation of periodic solutions

Boundary value problem:

y′ =
1

ω
f(y)

y(0) = y(2π).

Let ϕt(·, ω) denote the flow of this ode.

Shooting method: solve

S(ξ, ω) = ϕ2π(ξ, ω)− ξ = 0.

Because of the S1-symmetry of each periodic solution we need an ad-

ditional phase condition. Simple choice:

ξ1 = ξ̄1
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Local Numerics Computation of periodic solutions

The variational equation

In order to solve S(ξ, ω) = 0, ξ1 = ξ̄1 by Newton’s method, we need to

compute DS.

DξS(ξ, ω) = Dξϕ
2π(ξ, ω) − I can be computed via the variational

equation

∂

∂t
Dξϕ

t(ξ, ω) =
1

ω
Df(ϕt(ξ, ω))Dξϕ

t(ξ, ω), Dξϕ
0(ξ, ω) = I.

For ∂S
∂ω

(ξ, ω) we compute

∂

∂ω
ϕt = − t

ω2
ẋ(t/ω) = − t

ω2
f(x(t/ω)),
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Local Numerics Computation of periodic solutions

thus
∂S

∂ω
(ξ, ω) =

∂

∂ω
ϕ2π(ξ, ω) = −2π

ω2
f(ϕ2π(ξ, ω)).

Advantage of shooting: stability of the periodic solution is directly

given by the eigenvalues of

Dξϕ
2π(ξ, ω).
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Local Numerics Computation of periodic solutions

Galerkin approach

Let

Cr
2π = {u ∈ Cr(R,Rd) : u(s+ 2π) = u(s)}.

Consider the operator F : C1
2π × R → C0

2π,

F (y, ω) =
dy

dt
− 1

ω
f(y).

A zero of this operator is a periodic solution of the boundary value

problem.
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Local Numerics Computation of periodic solutions

Line of Reasoning

(i) Choose a suitable, countable basis of the underlying space  

countable system of equations;

(ii) using finitely many modes, numerically compute an approximate

solution (Galerkin);

(iii) construct a restricted domain for F that isolates the numerical

zero;

(iv) using topological arguments, show that there actually exists a zero

in the restricted domain.
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Local Numerics Computation of periodic solutions

Setting

F (y, y′, . . . , y(r)) = 0, y(t) ∈ R,

F : Rr+1 → R smooth. We look for functions y : R → R, y ∈
Cr, y(t) = y(t+ 2π/ω) for some ω ∈ R such that

F (y, y′, . . . , y(r)) = 0.

Rescaling time, x(t) = y(t/ω), yields the map

F̂ : R× Cr
1 → C0

1

F̂ : (ω, x) 7→ F (x, ωx′, . . . , ωrx(r))
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Local Numerics Computation of periodic solutions

F̂ induces a map on the Fourier coefficients (ck)k∈Z of x. Note that

c−k = ck, k ∈ Z,

so it suffices to consider

`2 =

{
(ck)

∞
k=0 ∈ CN :

∞∑
k=0

|ck|2 <∞

}
.

Correspondingly

`2r =
{
(ck)

∞
k=0 ∈ `2 | ∃u ∈ Cr

1 : ck is the k-th Fourier coefficient of u
}
.

Induced map

F̃ : R× `2r → `20.
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Local Numerics Computation of periodic solutions

Phase Condition

Since the original ODE is autonomous:

x ∈ Cr
1 solution ⇒ x(·+ t) solution∀t ∈ [0, 1].

Numerically more favorable: regularize by phase condition

ϕ(c) = 0.

Full system:

Φ : R× `2r → R× `20

Φ(ω, c) = (ϕ(c), F̃ (ω, c)).
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Local Numerics Computation of periodic solutions

We look for (ω, c) such that Φ(ω, c) = 0. Equivalently: look for fixed

points of

G = id+ Φ.

Define

Ak(ω, c) = ck

Pk(ω, c) = (ω, c0, . . . , ck)

Qk(ω, c) = (ck+1, ck+2, . . .)

and consider the sets

Zk = {(ω, c) : PkG(ω, c) = Pk(ω, c)}
Z =

⋂
k≥0

Zk
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Local Numerics Computation of periodic solutions

Proposition 1 If G is continuous, ZM is compact for some M and

Zk 6= ∅ for k ≥ M , then Z is nonempty and all points in Z are fixed

points of G.

Proof of Existence

(i) Find compact restricted domain for G;

(ii) Show that ZM is nonempty for some (small) M ;

(iii) Show that Zk is nonempty for k > M .
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Local Numerics Computation of periodic solutions

(i) Construction of the Restricted Domain

(i) Use Newton’s method on a Galerkin projection of G in order to

estimate a fixed point;

(ii) F ∈ Cr ⇒ x ∈ Cr ⇒

|ck| = O(k−r) as k →∞.

Restricted domain: compact set Ω×D ⊂ R× `2r, where

D = D0 × · · · ×DM−1 ×
∞∏

k=M

{ck ∈ C : |ck| ≤ rk},

where D0×· · ·×DM−1 ⊂ CM contains the numerically computed fixed

point.
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Local Numerics Computation of periodic solutions

(ii) ZM is nonempty

Define the multivalued map

GM : PM(Ω×D)⇒ PM(R× `2)

(ω, c̄) 7→ {PM ◦G(ω, c) : PM(ω, c) = (ω, c̄) and (ω, c) ∈ Ω×D}.

We will show that every continuous selector of GM has a fixed point.

Note that the set

QM(Ω×D)

determines the size of the images of GM .
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Local Numerics Computation of periodic solutions

(iii) Zk is nonempty for k ≥M

Definition 1 A map f : Ω×D → C is linearly dominated on the ball

B0(r) ⊂ Ak(Ω×D) if

f(ω, c) = L(ω)ck + g(ω, c),

for all (ω, c) ∈ Ω × D, |ck| ≤ r, where L : I → C, Ω ⊂ I, and g are

continuous functions, such that

sup
Ω×D

|g(ω, c)| < r inf
ω∈I

|L(ω)| − r. (2)
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Local Numerics Computation of periodic solutions

f(    ,D’)Ω

r

R

(a) Linearly dominated.

f(    ,D’)Ω

r

R

(b) Not linearly domi-
nated.

R = r infω∈I |L(ω)|, D′ = D ∩ {|ck| = r}.
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Local Numerics Computation of periodic solutions

Existence Theorem

Theorem 2 Let Ω×D be compact. Suppose that there exists a star-

shaped enclosure ĜM for GM such that (N,L) is an index pair for ĜM

and

Λ((N,L), ĜM) 6= 0,

where Λ is the Lefschetz number of the index pair (N,L). Assume

furthermore that the maps AkG are linearly dominated for all k > M ,

then there exists a fixed point for the map G.
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Local Numerics Computation of periodic solutions

Example

Consider

y′′′ + y′′ + σy′ − δy + y2 = 0,

σ = 2, δ = 3.

Induced map on Fourier coefficients

AkF̃ : (ω, c) 7→ (−iω3k3 − ω2k2 + σωik − δ)ck +
∑
`∈Z

clck−l,

k ≥ 0. Computations: real version.

Phase condition

ϕ(c) = imag(c1) = 0.

 G(ω, c) = (ω, c) + (ϕ(c), F̃ (ω, c)) as above.
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Local Numerics Computation of periodic solutions

Numerical fixed point

ω = 1.39,

c0 = 2.46,

c1 = 0.813,

c2 = 0.0130 − i 0.0361,

c3 = − 7.79 · 10−4 − i 5.13 · 10−4,

c4 = − 1.31 · 10−5 + i 1.23 · 10−5,

c5 = 1.55 · 10−7 + i 2.64 · 10−7,

c6 = 4.55 · 10−9 − i 1.46 · 10−9,

c7 = − 6.51 · 10−12 − i 7.04 · 10−11,

c8 = − 9.95 · 10−13 − i 1.25 · 10−13,

c9 = − 4.65 · 10−15 + i 1.29 · 10−14.
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Local Numerics Computation of periodic solutions

Numerical fixed point: decay of coefficients
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Local Numerics Computation of periodic solutions

Restricted domain

Ω = [1.36, 1.44],

D = D0 ×D1 ×D2 ×
∞∏

k=3

B0(βα
k),

with α = 0.1, β = 11.5,

and D0 = [2.43, 2.49],

D1 = [0.8, 0.8285],

D2 = [−0.003, 0.04]− [0.005, 0.06]i,

imag(D0) = 0, since the Fourier series is real valued.

imag(D1) = 0 due to the phase condition.
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Local Numerics Computation of periodic solutions

Linear domiation for k > 2

• Lemma: ∣∣∣∣∣∑
l∈Z

clck−l

∣∣∣∣∣ ≤ β2αk

[
2

1− α2
+ k − 1

]
.

• Lemma: The map AkG is linearly dominated on the ball B0(βα
k)

for k > 2.

• Proof: By the estimate we need to verify that

β2αk

[
2

1− α2
+ k − 1

]
< βαk min

ω∈Ω

(
| − iω3k3 − ω2k2 + σωik − δ + 1| − 1

)
.

• Rewrite the rhs, use Ω = [ω, ω], plug in ω and ω where appropriate,

•  function k 7→ e(k, ω, ω, δ, σ) such that Ak is linearly dominated,

Oliver Junge, Institute for Mathematics, University of Paderborn 38



Local Numerics Computation of periodic solutions

if e(k) > 0.

• Result: e(k) is increasing and e(3) > 0.

Index pair for lower modes

• We need to numerically construct an index pair for Ĝ2 (with, hope-

fully, a non-zero Lefschetz number).

• 7d→ 3d by exploiting the structure of the map;
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Local Numerics Computation of periodic solutions

Explicit multivalued map

a1 7→ (−ω̄2 − δ + 1)a1 + 2a1a2 + 2ā0a1 + |c2| I0 + 0.01 I1

a2 7→ (−4ω̄2 − δ + 1)a2 + (8ω̄3 − 2σω̄)b2 + 2ā0a2 + a2
1

+ (|c2| 0.1 + |c1|)I0 + 10−3 I1

b2 7→ (−8ω̄3 + 2σω̄)a2 + (−4ω̄2 − δ + 1)b2 + 2ā0b2

+ |c2|0.1 I0 + |c1|I0 + 10−3 I1,

where

I0 = 0.023 · [−1, 1], I1 = 2.67172 · 10−4 · [−1, 1],

and ā0 = ā0(a1, a2, b2) and ω̄ = ω̄(a1, a2, b2) are intervals.
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Local Numerics Computation of periodic solutions

Isolating neighborhood
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Local Numerics Computation of periodic solutions

Index pair

(N,L) := (|GM(I)|, |GM(I)\I|),

where GM : P ⇒ P (P a partition of the “search box”) such that for

C ∈ P we have Ĝ2(C) ⊂ |GM(C)|.

Induced homology map:

fk =

 1 k = 3,

0 else.

⇒ Λ((N,L), Ĝ2) = 1.
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Local Numerics Computation of periodic solutions

Theorem 3 The differential equation with parameters σ = 2 and δ =

3 possesses a periodic orbit

y(t) =
∑
k∈Z

cke
ikωt

with c−k = ck and

ω ∈ [1.36, 1.44]

c0 ∈ [2.43, 2.49]

c1 ∈ [0.8, 0.8285]

c2 ∈ [−0.003, 0.04]− [0.005, 0.06]i

ck ∈ {z ∈ C | |z| ≤ β · αk}, β = 11.5, α = 0.1, k > 2.
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	Tangent vector

