
Why are we learning/developing this

mathematics?

Two major scientific developments of the past 50 years:

• Complexity of nonlinear dynamical systems

• Development of information technologies
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Structural stability is not generic

Homoclinic tangencies

• Newhouse Phenomenon - strange attractors and arbitrarily

long stable periodic orbits intertwined in parameter space.
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Structures or patterns at multiple scales

• Chaos

• Continuously changing patterns
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Structures or patterns at multiple scales

• Turbulence - spatial-temporal chaos
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Structures or patterns at multiple scales

• Fractals - topography
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Structures or patterns at multiple scales

• Microstructures in materials - transient complexity
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We need rigorous mathematical techinques that can do two

things:

• Capture those structures that persist under perturbation.

• Identify structures down to a particular scale.
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Conley theory (topological generalization of Morse theory) pro-

vides us with appropriate tools.
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• Existence of periodic orbits
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Conley theory (topological generalization of Morse theory) pro-
vides us with appropriate tools.

1. Structure Theorems

• Existence of periodic orbits

• Structure of connecting orbits

• Existence of symbolic dynamics

• Existence of homoclinic tangencies

• Singular perturbations

• Time series
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2. Bifurcation Theorems

• Homoclinic and heteroclinic orbits
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2. Bifurcation Theorems

• Homoclinic and heteroclinic orbits

• Resolution or Data Compression
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2. Bifurcation Theorems

• Homoclinic and heteroclinic orbits

• Resolution or Data Compression

• Computer Graphics
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Limiting factors in applying the Conley index

1. Finding index pairs
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Limiting factors in applying the Conley index

1. Finding index pairs

2. Computing the Conley index
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Computer Assisted Proof in Dynamics

1. Chaotic dynamics in Lorenz equations
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Computer Assisted Proof in Dynamics

1. Chaotic dynamics in Lorenz equations

2. Homoclinic tangencies in Henon

3. Infinite Dimensional Systems

• Bifurcation diagrams (Swift-Hohenberg, Kuramoto-Sivashinsky,

FitzHugh-Nagumo)
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Computer Assisted Proof in Dynamics

1. Chaotic dynamics in Lorenz equations

2. Homoclinic tangencies in Henon

3. Infinite Dimensional Systems

• Bifurcation diagrams (Swift-Hohenberg, Kuramoto-Sivashinsky,

FitzHugh-Nagumo)

• Global attractors for gradient systems (Swift-Hohenberg)
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Computer Assisted Proof in Dynamics

1. Chaotic dynamics in Lorenz equations

2. Homoclinic tangencies in Henon

3. Infinite Dimensional Systems

• Bifurcation diagrams (Swift-Hohenberg, Kuramoto-Sivashinsky,
FitzHugh-Nagumo)

• Global attractors for gradient systems (Swift-Hohenberg)

• Chaotic dynamics (Kot-Schaffer)

4. Geometric approximations of vector fields.
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Conley Index

f : X → X a continuous function on a locally compact metric

space

S ⊂ X is invariant if for every x ∈ S there exists a full trajectory

γx : Z → S such that

γx(0) = x, and γx(n + 1) = f(x).

N ⊂ X is an isolating neighborhood if

Inv(cl(N), f) := {x ∈ N | ∃ γx : Z → N} ⊂ int(N)
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Let P = (P1, P0) with P0 ⊂ P1 be a pair of sets in X. Define

fP : P1/P0 → P1/P0

by

fP (x) =

{
f(x) if x, f(x) ∈ P1 \ P0

[P0] otherwise.

29



Let P = (P1, P0) with P0 ⊂ P1 be a pair of sets in X. Define

fP : P1/P0 → P1/P0

by

fP (x) =

{
f(x) if x, f(x) ∈ P1 \ P0

[P0] otherwise.

A pair of compact sets P = (P1, P0) is an index pair for f if

• P1 \ P0 is an isolating neighborhood

• fP is continuous.

In order for fP to be continuous, P0 must be an exit set for P1.
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Theorem: (Ważewski Principle) If fP is not homotopically trivial,

then

Inv(cl(P1 \ P0), f) 6= ∅.
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Theorem: (Ważewski Principle) If fP is not homotopically trivial,

then

Inv(cl(P1 \ P0), f) 6= ∅.

Remark: Homotopy theory is hard to compute with.
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Theorem: (Ważewski Principle) If fP is not homotopically trivial,

then

Inv(cl(P1 \ P0), f) 6= ∅.

Remark: Homotopy theory is hard to compute with.

Theorem: (Ważewski Principle) If

fP∗ : H∗(P1/P0, [P0]) → H∗(P1/P0, [P0])

is not nilpotent, then

Inv(cl(P1 \ P0), f) 6= ∅.
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Shift Equivalence

The homology Conley index of Inv(cl(P1 \ P0), f) is the shift

equivalence class of fP∗ : H∗(P1/P0, [P0]) → H∗(P1/P0, [P0]).

Two group homomorphisms f : X → X and g : Y → Y are shift

equivalent if there exist group homomorphisms r : X → Y and

s : Y → X and a natural number m such that

r ◦ f = g ◦ r, s ◦ g = f ◦ s, r ◦ s = gm, s ◦ r = fm
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Prop: Let f : X → X and g : Y → Y be group homomorphisms

that are shift equivalent. Then f is nilpotent if and only if g is

nilpotent.

Proof: Assume f is not nilpotent. Since s◦ r = fm, neither r nor

s are trivial. Assume that gk = 0. Then

r ◦ f = g ◦ r,

s ◦ r ◦ f ◦ (s ◦ r)k = s ◦ g ◦ r ◦ (s ◦ r)k,

fm ◦ f ◦ (fm)k = s ◦ g ◦ (r ◦ s)k ◦ r,

fm(k+1)+1 = s ◦ g ◦ (gm)k ◦ r,

fm(k+1)+1 = 0.

This contradicts the assumption that f is not nilpotent.

Exercise: f(x) = 2x is not shift equivalent to g(x) = x.
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