Eva Zerz Kristina Schindelar

Control Theory – Tutorial 11

To be handed in till: Monday, July 13 To be discussed on: Tuesday, July 14

Exercise 1[3] Consider an observable system $x(t + 1) = Ax(t), y(t) = Cx(t), x(0) = x_0$. Clearly,

$$\underbrace{\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}}_{=:Q} x_0 = \underbrace{\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(n-1) \end{bmatrix}}_{=:z},$$

and thus, $x_0 = (O^T O)^{-1} O^T z$. In practice however, z will be subject to disturbance (recall that it usually represents a measurement vector), say, we measure some $\hat{z} = [\hat{y}(0)^T, \dots, \hat{y}(n-1)^T]^T$, and then the linear system $Ox_0 = \hat{z}$ will not have a solution, in general. Show that it still makes sense to compute

$$\hat{x}_0 := (O^T O)^{-1} O^T \hat{z},$$

as it is the "best estimate" for the true initial state x_0 in the sense that for all $x_0 \in \mathbb{R}^n$, we have

$$||O\hat{x}_0 - \hat{z}|| \le ||Ox_0 - \hat{z}||$$

with equality iff $\hat{x}_0 = x_0$, where $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^{np} . Thus, the output vector arising from starting in \hat{x}_0 is the best approximation of \hat{z} .

Exercise 2[7] Now consider an observable system $\dot{x} = Ax$, y = Cx, $x(0) = x_0$. Let $\varepsilon > 0$ be given. Define the observability operator

$$L: \mathbb{R}^n \to \mathcal{Y} := \mathcal{L}^2([0,\varepsilon], \mathbb{R}^p), \quad x_0 \mapsto \begin{cases} [0,\varepsilon] \to \mathbb{R}^p \\ t \mapsto Ce^{At}x_0, \end{cases}$$

which is linear and bounded (since $||Lx_0||_{\mathcal{Y}}^2 := \int_0^{\varepsilon} ||(Lx_0)(t)||^2 dt = \ldots$). Observability amounts to the injectivity of L. Show that

$$L^*: \mathcal{Y} \to \mathbb{R}^n, \quad z(\cdot) \mapsto \int_0^\varepsilon e^{A^T t} C^T z(t) dt$$

is the adjoint of L, that is, for all $x_0 \in \mathbb{R}^n$, $z(\cdot) \in \mathcal{Y}$,

$$\langle Lx_0, z(\cdot) \rangle_{\mathcal{Y}} = \langle x_0, L^*z(\cdot) \rangle_{\mathbb{R}^n}$$

Moreover, $L^*L = W(\varepsilon)$, the observability Gramian. Conclude that $Lx_0 = y(\cdot)$ implies

$$x_0 = W(\varepsilon)^{-1} L^* y(\cdot).$$

Again, when we measure $\hat{y}(\cdot)$ instead of $y(\cdot)$, we set

$$\hat{x}_0 := W(\varepsilon)^{-1} L^* \hat{y}(\cdot).$$

Then we have for all $x_0 \in \mathbb{R}^n$:

$$||L\hat{x}_0 - \hat{y}||_{\mathcal{Y}} \le ||Lx_0 - \hat{y}||_{\mathcal{Y}}$$

with equality iff $\hat{x}_0 = x_0$.

Exercise 3[2+4+4] Let $P := W_c(\varepsilon)$ and $Q := W_o(\varepsilon)$ be the controllability and observability Gramians of the controllable and observable system $\dot{x}(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)$. Recall that $x_0^T P^{-1} x_0$ is the input energy needed for steering the system from 0 to x_0 in time $\varepsilon > 0$. Similarly, $x_0^T Q x_0$ is the output energy (when $u \equiv 0$ and $x(0) = x_0$) on $[0, \varepsilon]$.

A state x_0 is "good" w.r.t. controllability issues if $x_0^T P^{-1} x_0$ is "small", and "bad" w.r.t. observability questions if $x_0^T Q x_0$ is "small" (an initial state producing a low energy output is hard to distinguish from zero). It is desirable to have a system representation in which any state $e_i \in \mathbb{R}^n$ is either "good" w.r.t. both criteria, or "bad" w.r.t. both criteria, thus making it easy to decide about the "quality" of a state component. For this, we wish to transform (A, B, C, D) into $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}) = (T^{-1}AT, T^{-1}B, CT, D)$ such that the Gramians of the new system are both diagonal and equal to each other. This procedure is called *balancing*.

1. Show that \tilde{P},\tilde{Q} can be expressed in terms of P,Q via the congruence relations

 $\tilde{P} = T^{-1}PT^{-T}$ and $\tilde{Q} = T^TQT$.

Conclude that PQ and $\tilde{P}\tilde{Q}$ are similar.

- 2. Show that the eigenvalues of PQ are real and positive.
- 3. Show that there exists an invertible matrix T such that

$$\tilde{P} = \tilde{Q} = \operatorname{diag}(\sigma_1, \dots, \sigma_n),$$

where $\sigma_i > 0$ are the square roots of the eigenvalues of PQ. The σ_i are called the *Hankel singular values* of the system (at time ε).

Hints: Decompose $P = RR^T$; set $S := R^T QR$; then S > 0 and spec(S) =spec(PQ); let $U^T SU = \Lambda$, U orthogonal, Λ diagonal. Set $T := RU\Lambda^{-1/4}$.

How would you define the quality (as explained above) of a state $e_i \in \mathbb{R}^n$ in the new model?