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Exercise 1[3] Consider an observable system x(t + 1) = Ax(t), y(t) = Cx(t),
x(0) = x0. Clearly, 
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and thus, x0 = (OT O)−1OT z. In practice however, z will be subject to distur-
bance (recall that it usually represents a measurement vector), say, we measure
some ẑ = [ŷ(0)T , . . . , ŷ(n − 1)T ]T , and then the linear system Ox0 = ẑ will not
have a solution, in general. Show that it still makes sense to compute

x̂0 := (OT O)−1OT ẑ,

as it is the “best estimate” for the true initial state x0 in the sense that for all
x0 ∈ Rn, we have

‖Ox̂0 − ẑ‖ ≤ ‖Ox0 − ẑ‖

with equality iff x̂0 = x0, where ‖ · ‖ denotes the Euclidean norm on Rnp. Thus,
the output vector arising from starting in x̂0 is the best approximation of ẑ.

Exercise 2[7] Now consider an observable system ẋ = Ax, y = Cx, x(0) = x0.
Let ε > 0 be given. Define the observability operator

L : Rn → Y := L2([0, ε], Rp), x0 7→
{

[0, ε] → Rp

t 7→ CeAtx0,

which is linear and bounded (since ‖Lx0‖2
Y :=

∫ ε

0
‖(Lx0)(t)‖2dt = . . .). Observ-

ability amounts to the injectivity of L. Show that

L∗ : Y → Rn, z(·) 7→
∫ ε

0

eAT tCT z(t)dt

is the adjoint of L, that is, for all x0 ∈ Rn, z(·) ∈ Y ,

〈Lx0, z(·)〉Y = 〈x0, L
∗z(·)〉Rn .



Moreover, L∗L = W (ε), the observability Gramian. Conclude that Lx0 = y(·)
implies

x0 = W (ε)−1L∗y(·).

Again, when we measure ŷ(·) instead of y(·), we set

x̂0 := W (ε)−1L∗ŷ(·).

Then we have for all x0 ∈ Rn:

‖Lx̂0 − ŷ‖Y ≤ ‖Lx0 − ŷ‖Y

with equality iff x̂0 = x0.

Exercise 3[2+4+4] Let P := Wc(ε) and Q := Wo(ε) be the controllability
and observability Gramians of the controllable and observable system ẋ(t) =
Ax(t) + Bu(t), y(t) = Cx(t) + Du(t). Recall that xT

0 P−1x0 is the input energy
needed for steering the system from 0 to x0 in time ε > 0. Similarly, xT

0 Qx0 is
the output energy (when u ≡ 0 and x(0) = x0) on [0, ε].

A state x0 is “good” w.r.t. controllability issues if xT
0 P−1x0 is “small”, and “bad”

w.r.t. observability questions if xT
0 Qx0 is “small” (an initial state producing a

low energy output is hard to distinguish from zero). It is desirable to have a
system representation in which any state ei ∈ Rn is either “good” w.r.t. both
criteria, or “bad” w.r.t. both criteria, thus making it easy to decide about the
“quality” of a state component. For this, we wish to transform (A, B, C,D) into
(Ã, B̃, C̃, D̃) = (T−1AT, T−1B, CT,D) such that the Gramians of the new system
are both diagonal and equal to each other. This procedure is called balancing.

1. Show that P̃ , Q̃ can be expressed in terms of P, Q via the congruence rela-
tions

P̃ = T−1PT−T and Q̃ = T T QT.

Conclude that PQ and P̃ Q̃ are similar.

2. Show that the eigenvalues of PQ are real and positive.

3. Show that there exists an invertible matrix T such that

P̃ = Q̃ = diag(σ1, . . . , σn),

where σi > 0 are the square roots of the eigenvalues of PQ. The σi are
called the Hankel singular values of the system (at time ε).



Hints: Decompose P = RRT ; set S := RT QR; then S > 0 and spec(S) =
spec(PQ); let UT SU = Λ, U orthogonal, Λ diagonal. Set T := RUΛ−1/4.

How would you define the quality (as explained above) of a state ei ∈ Rn in the
new model?


