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Exercise 1 (6 points)
A door-closing mechanism is supposed to automatically shut a door after it has
been pulled open. In its simplest form, it consists of a mass-spring-damper system
that can be modelled by

mθ̈(t) + cθ̇(t) + kθ(t) = u(t),

where m is the mass of the door (plus door-closing mechanism), c is the damping
coefficient, k is the spring constant, θ(·) is the door’s opening angle, and u(·)
corresponds to an external force (e.g., someone pushing the door). In this exercise,
we study the autonomous case u ≡ 0, that is, the desired movement of the door
after the external force is no longer acting. The designer of the mechanism can
(to some extent) choose the parameters m, c, k, which are all real and positive,
for physical reasons.

Let ζ := c
2
√

mk
and ω :=

√
k
m

. The “characteristic frequencies” of the system are

the λ ∈ C such that eλt solves the differential equation. Check that

λ1,2 = ω(−ζ ±
√

ζ2 − 1).

By rescaling the time axis, we can reduce to the case where ω = 1, without
loss of generality. Discuss the qualitative behavior of θ(·) for ζ > 1, ζ = 1,
and ζ < 1 (called the overdamped, critically damped, and underdamped case,
respectively), e.g., by plotting the solutions for θ(0) = 1, θ̇(0) = 0 for various
values of ζ around 1. What would you call a “good” door closing mechanism?
Possible issues to be considered: how many times does the door swing consid-
erably, how far does the door open to the opposite side (overshoot), is the con-
vergence to zero monotone, how long does it take till the door can be considered
closed?

Exercise 2 (2+4 points)

(a) Let R be a commutative ring, and let n, m be positive integers. Let A ∈
Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m be given, and let A be
invertible. Show that

det

[
A B
C D

]
= det(A) · det(D − CA−1B).



(b) Now let R = R0[t] for a commutative ring R0 and let d, p be positive
integers. Let P0, . . . , Pd ∈ Rp×p be given. Define the dp× dp matrices

K :=


I

. . .

I
Pd

 and L :=


0 I
...

. . .

0 I
−P0 −P1 . . . −Pd−1


Show that det(K − tL) = det(P0t

d + P1t
d−1 + . . . + Pd−1t + Pd) ∈ R0[t].

Conclude that det(sK − L) = det(P0 + P1s + . . . + Pds
d) ∈ R0[s] for

P0, . . . , Pd ∈ Rp×p
0 .

Exercise 3 (2+2+4 points)

(a) Let D be a distribution and let a be a smooth function. Show that ˙(aD) =
ȧD + aḊ.

(b) Let a be a smooth function. Show that aδ = a(0)δ, where δ is the Dirac
delta distribution. Compute aδ̇.

(c) Compute the second derivative (in the distributional sense) of the functions
given by

(i) f(t) = |t|
(ii) f(t) = sin(t)h(t), where h is the Heaviside function.

(iii) f(t) = cos(t)h(t), where h is the Heaviside function.

(iv) f(t) = btc, where btc denotes the greatest integer less than or equal t.

Test your result using Maple, for example,
simplify(diff(sin(t)*Heaviside(t),t$2));


