Eva Zerz Kristina Schindelar

Control Theory – Tutorial 4

To be handed in till: Monday, May 18 To be discussed on: Tuesday, May 19

Exercise 1 (2+2) Consider the following electrical circuit:

Here, U, I are the overall voltage/current of the network, whereas u_j, i_j for j = 1, 2, 3 represent the voltages/currents along the various components of the circuit as indicated in the sketch. There are 3 physical parameters which are real and positive constants (r is a resistance, c is a capacitance, l is an inductance). Kirchhoff's laws imply that

$$u_1 + u_2 + u_3 + U = 0$$
 and $i_1 = i_2 = i_3 = I$.

Ohm's law says

$$u_1 = ri_1$$

and finally, we have the differential equations

$$c\frac{du_2}{dt} = i_2$$
 and $l\frac{di_3}{dt} = u_3$.

Determine the differential equation that describes the relation between U and I alone. Do this

- 1. by hand, i.e., by manipulating the equations such that all u_j , i_j disappear;
- 2. systematically, using the elimination of latent variables and maybe a computer algebra system.

Exercise 2 (2+2+2+2+2) Let $\lambda \in \mathbb{C}$.

1. Show that for all $m, k \in \mathbb{N}$

$$\frac{d^m}{dt^m}t^k e^{\lambda t} = e^{\lambda t} (\frac{d}{dt} + \lambda)^m t^k.$$

2. Conclude that for all $P \in \mathbb{C}[s], a \in \mathbb{C}[t]$

$$P(\frac{d}{dt})a(t)e^{\lambda t} = e^{\lambda t}P(\frac{d}{dt} + \lambda)a(t).$$

3. Consider $P = (s - \lambda)^m \in \mathbb{C}[s]$, and $a \in \mathbb{C}[t]$. Show that $y(t) = a(t)e^{\lambda t}$ is a solution to $P(\frac{d}{dt})y = 0$ if and only if $\deg(a) \leq m - 1$.

Remark: If $\lambda \in \mathbb{R}$ and y is required to be real-valued, a has to have real coefficients. The exercise shows that a solution is uniquely determined by choosing the $m = \deg(P)$ real coefficients of a.

- 4. Suppose that $\lambda_1 \neq \lambda_2$. Show that $(\frac{d}{dt} \lambda_1)^{m_1}(\frac{d}{dt} \lambda_2)^{m_2}y = 0$ if and only if y can be written in the form $y = y_1 + y_2$, where $(\frac{d}{dt} \lambda_1)^{m_1}y_1 = 0$ and $(\frac{d}{dt} \lambda_2)^{m_2}y_2 = 0$.
- 5. Conclude that for $\lambda \notin \mathbb{R}$ and $P = (s \lambda)^m (s \overline{\lambda})^m$, the function $y(t) = a(t)e^{\lambda t} + b(t)e^{\overline{\lambda}t}$ is a real-valued solution to $P(\frac{d}{dt})y = 0$ if and only if $\deg(a) \leq m 1$ and $b = \overline{a}$.

Remark: This shows that for $\lambda \notin \mathbb{R}$, a real-valued solution is uniquely determined by choosing the *m* complex coefficients of *a*, corresponding to a real vector space dimension of $2m = \deg(P)$.

Exercise 3 (2+2+2) Consider the system given by

$$\ddot{y}_1 + \dot{y}_1 + \ddot{y}_2 + \dot{y}_2 + y_2 = 0 \dot{y}_1 + 2y_1 + y_2 = 0.$$

Compute the dimension of its solution space. Confirm the result by manipulating the system equations (hint: add suitable consequences of the second equation to the first equation such that the highest derivative disappears). Compute a first order latent variable description of this system

- 1. in the "naive" way, i.e., setting $\xi = [y_1, y_2, \dot{y}_1, \dot{y}_2, \ddot{y}_1, \ddot{y}_2]^T$, which gives a representation of size 6;
- 2. by applying Theorem 2.22 to each of the two equations and by combining the results (this should give a representation of size 4).
- 3. Using the result of the manipulation above, find an even smaller representation.