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Exercise 1[1+1+2+2+2] Show that the minimal “energy” needed to steer a
controllable system & = Az 4+ Bu from 0 to Z in time € > 0 is given by

min{E(u) | ¢(¢,0,0,u(-)) =7} =" W(e)"'z,
where E(u) = [; |lu(t)||*dt and W(-) denotes the controllability Gramian
W(t) = fot eA"BBTeA 7.

Proceed along the following steps:

1. Show that W (t) = AW (t) + W(t)A” + BBT.

2. Show that 4(X(t)™!) = —X(t)"'X ()X (t)"" for every invertible matrix
(simply differentiate X X! = I using the product rule).

3. Consider V(t) := x(t)" W (t) " x(t), where x(-) is a solution of & = Az + Bu,
and compute V().

4. Rewrite the result of step 3 as (omitting the argument ¢)
V = —||BTWtz|* + 2(u, BTW'z).

Now use quadratic completion, integrate from 0 to ¢, and conclude that for
all v with ¢(e,0,0,u(-)) = Z, we must have

TTW(e) 'z < E(u).

5. Finally, show that equality is achieved for
u(t) = BTeA 0w (e) 'z

Remark: This explains the trade-off between the speed and the energy consump-
tion of control: the smaller ¢ is, the larger is z7 W (e)~'z.

Exercise 2[3+4]| The following physical explanations are just for those who are
interested. One may just as well ignore them and go directly to the mathematical
model.



1. An electric water kettle: Let v be the voltage applied to the kettle, and let
x1,T9 be the temperatures of the heater coil and of the water, respectively.
The change of z; is proportional to the electrical power fed into the system
minus the coil’s heat loss to the water; the electrical power is proportional
to v?; the heat loss is proportional to the temperature difference x; — .
The change of x5 is proportional to the heat loss of the coil. This leads to
the model

w1 (t) = av(t)” — blxi(t) — 2a(t))
To(t) = ol (t) — z2(t)),

where a,b, ¢ € R. Setting u := v, this is a state space system. Discuss its
stability and controllability in terms of a, b, c.

2. The “bipendulum”: Consider a horizontal rod with a pendulum attached
to each end. If the rod is moved horizontally, the two pendula will begin
to swing. After some simplifications (pendulum = point mass, no friction,
linearization for small oscillations of the pendula), the dynamics of this
mechanical system is described by

i+ win

y2 + W§y2 = U,
where u is proportional to the acceleration of the rod (and can be seen as
the input), y; is the angle between the i-th pendulum and the vertical axis

(y = [y1, )" takes the role of the output), and w; = /g/L; > 0 (g
gravity constant, L; ... length of i-th pendulum).

Transform the system into a state space system of size 4 (setting z =
(Y1, Y2, U1, U2)7 will do) and investigate the stability and controllability of
this system. (Can you give a physical interpretation?)

Exercise 3[2+1+2]

1. With the notation introduced in the lecture, show that
R(t,xz) = (t,0,2,0) + R(¢)

and

C(t,z) = ®(t) (z + R(t)),
where ®(t)x = ¢(t,0,z,0).



2. Conclude that in discrete time, C = (A")"'R O R. Thus, a discrete state
space system is completely controllable to zero if and only if im(A™) C
im(K), where K is the Kalman matrix.

Remark: (-)~! denotes the inverse image in (a) and (b).
3. Consider P(%)y = u, where P is a scalar monic polynomial of degree n.

Transform this into a state space system of size n and show that the system
is controllable.



