
Eva Zerz SS 2009
Kristina Schindelar

Control Theory – Tutorial 6
To be handed in till: Monday, Jun. 08
To be discussed on: Tuesday, Jun. 09

Exercise 1[1+1+2+2+2] Show that the minimal “energy” needed to steer a
controllable system ẋ = Ax + Bu from 0 to x̄ in time ε > 0 is given by

min{E(u) | ϕ(ε, 0, 0, u(·)) = x̄} = x̄T W (ε)−1x̄,

where E(u) =
∫ ε

0
‖u(t)‖2dt and W (·) denotes the controllability Gramian

W (t) =
∫ t

0
eAτBBT eAT τdτ.

Proceed along the following steps:

1. Show that Ẇ (t) = AW (t) + W (t)AT + BBT .

2. Show that d
dt

(X(t)−1) = −X(t)−1Ẋ(t)X(t)−1 for every invertible matrix
(simply differentiate XX−1 = I using the product rule).

3. Consider V (t) := x(t)T W (t)−1x(t), where x(·) is a solution of ẋ = Ax+Bu,
and compute V̇ (t).

4. Rewrite the result of step 3 as (omitting the argument t)

V̇ = −‖BT W−1x‖2 + 2〈u, BT W−1x〉.

Now use quadratic completion, integrate from 0 to ε, and conclude that for
all u with ϕ(ε, 0, 0, u(·)) = x̄, we must have

x̄T W (ε)−1x̄ ≤ E(u).

5. Finally, show that equality is achieved for

u(t) = BT eAT (ε−t)W (ε)−1x̄.

Remark: This explains the trade-off between the speed and the energy consump-
tion of control: the smaller ε is, the larger is x̄T W (ε)−1x̄.

Exercise 2[3+4] The following physical explanations are just for those who are
interested. One may just as well ignore them and go directly to the mathematical
model.



1. An electric water kettle: Let v be the voltage applied to the kettle, and let
x1, x2 be the temperatures of the heater coil and of the water, respectively.
The change of x1 is proportional to the electrical power fed into the system
minus the coil’s heat loss to the water; the electrical power is proportional
to v2; the heat loss is proportional to the temperature difference x1 − x2.
The change of x2 is proportional to the heat loss of the coil. This leads to
the model

ẋ1(t) = av(t)2 − b(x1(t)− x2(t))

ẋ2(t) = c(x1(t)− x2(t)),

where a, b, c ∈ R. Setting u := v2, this is a state space system. Discuss its
stability and controllability in terms of a, b, c.

2. The “bipendulum”: Consider a horizontal rod with a pendulum attached
to each end. If the rod is moved horizontally, the two pendula will begin
to swing. After some simplifications (pendulum = point mass, no friction,
linearization for small oscillations of the pendula), the dynamics of this
mechanical system is described by

ÿ1 + ω2
1y1 = u

ÿ2 + ω2
2y2 = u,

where u is proportional to the acceleration of the rod (and can be seen as
the input), yi is the angle between the i-th pendulum and the vertical axis
(y = [y1, y2]

T takes the role of the output), and ωi =
√

g/Li > 0 (g . . .
gravity constant, Li . . . length of i-th pendulum).

Transform the system into a state space system of size 4 (setting x =
[y1, y2, ẏ1, ẏ2]

T will do) and investigate the stability and controllability of
this system. (Can you give a physical interpretation?)

Exercise 3[2+1+2]

1. With the notation introduced in the lecture, show that

R(t, x) = ϕ(t, 0, x, 0) +R(t)

and
C(t, x) = Φ(t)−1(x +R(t)),

where Φ(t)x = ϕ(t, 0, x, 0).



2. Conclude that in discrete time, C = (An)−1R ⊇ R. Thus, a discrete state
space system is completely controllable to zero if and only if im(An) ⊆
im(K), where K is the Kalman matrix.

Remark: (·)−1 denotes the inverse image in (a) and (b).

3. Consider P ( d
dt

)y = u, where P is a scalar monic polynomial of degree n.
Transform this into a state space system of size n and show that the system
is controllable.


