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Exercise 1[2+2+3] Consider two state space systems

ẋi = Aixi + Biui

yi = Cixi + Diui,

where i = 1, 2. Define the series connection of the two systems as the system
arising from taking the output of the first system as the input of the second
system (assuming p1 = m2). The parallel connection is defined by giving the
same input to the two systems and summing their outputs (assuming m1 = m2

and p1 = p2).
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Putting x := [xT
1 , xT

2 ]T , set up state space systems for both interconnections.
Show the following:

(a) If the series connection is controllable, then both systems are controllable.

(b) Controllability of both systems is not sufficient for controllability of the
series connection. However, it becomes sufficient under the additional as-
sumption that for all λ ∈ spec(A2), the matrix[

A1 − λI B1

C1 D1

]
has full row rank.

(c) If the parallel connection is controllable, then both systems are controllable.
The converse holds as well if we assume additionally that the spectra of A1,
A2 are disjoint.



Exercise 2[2+3+2] Robust stability: Consider ẋ = Ax, where A ∈ Rn×n is
asymptotically stable. In practice, the entries of A are only known with a certain
degree of accuracy, and thus we consider ẋ = (A + ∆)x, where ∆ ∈ Cn×n repre-
sents a perturbation of A. How large can ∆ be without destroying the system’s
stability? Define

U := {M ∈ Cn×n | spec(M) ∩ C+ 6= ∅},

where C+ := {λ ∈ C | Re(λ) ≥ 0}. Thus U is the set of complex matrices that
are not asymptotically stable. Set

r(A) := dist(A, U) := inf{‖A−M‖ | M ∈ U},

where ‖ · ‖ denotes the matrix norm associated to the Euclidean norm. Since
r(A) is the infimum of all ‖∆‖ such that A + ∆ is not asymptotically stable, one
calls r(A) the stability radius of A. Show that

r(A) =
1

maxλ∈C+
‖G(λ)‖

, (1)

where G := (sI − A)−1 ∈ R(s)n×n, along the following steps:

(a) If ∆ is such that A + ∆ ∈ U, then there exists λ0 ∈ C+ such that

det(I −G(λ0)∆) = 0.

Thus 0 = min‖z‖=1 ‖(I −G(λ0)∆)z‖.

(b) For all A, B ∈ Cn×n, we have

min
‖z‖=1

‖(A−B)z‖ ≥ min
‖z‖=1

‖Az‖ − max
‖z‖=1

‖Bz‖.

Conclude that ‖∆‖ ≥ 1
maxλ∈C+

‖G(λ)‖ for all ∆ as in (a). Thus we have shown

the inequality ≥ of (1).

(c) Now let λ0 ∈ C+ be such that

max
λ∈C+

‖G(λ)‖ = ‖G(λ0)‖.

Let µ > 0 be the largest eigenvalue of G(λ0)G(λ0)
∗. Show that

∆0 :=
G(λ0)

µ

is such that A + ∆0 ∈ U and ‖∆0‖ = 1
‖G(λ0)‖ , thus showing that equality is

achieved in (1).



Exercise 3[3+3] From Exercise 3 of Tutorial 7, we know that the following
are equivalent for a discrete system x(t + 1) = Ax(t) + Bu(t) with A ∈ Rn×n,
B ∈ Rn×m:

(a) The system is completely controllable to zero.

(b) If λ is an uncontrollable mode of (A, B), then λ = 0.

Show that these conditions are also equivalent to

(c) There exists F ∈ Rm×n such that A + BF is nilpotent.

Prove (c) ⇒ (a) directly, using the feedback law u(t) = Fx(t) (give also an
explicit formula for u(t)), and (b) ⇒ (c) using the pole shifting theorem.

Remark: This shows that the feedback law u(t) = Fx(t) guarantees that x(t) = 0
for all t ≥ n, independently of x0. This strong type of feedback stabilization is
called deadbeat control.

Compute all deadbeat controllers F ∈ R1×3 for

A =

 0 1 a3

a4 a5 a6

0 0 0

 and B =

 0
1
0

 ,

where a3, . . . , a6 ∈ R are arbitrary.


