Eva Zerz Kristina Schindelar

> Control Theory – Tutorial 8 To be handed in till: Monday, Jun. 22

To be discussed on: Tuesday, Jun. 23

Exercise 1[2+2+3] Consider two state space systems

$$\dot{x}_i = A_i x_i + B_i u_i y_i = C_i x_i + D_i u_i,$$

where i = 1, 2. Define the series connection of the two systems as the system arising from taking the output of the first system as the input of the second system (assuming $p_1 = m_2$). The parallel connection is defined by giving the same input to the two systems and summing their outputs (assuming $m_1 = m_2$ and $p_1 = p_2$).

Putting $x := [x_1^T, x_2^T]^T$, set up state space systems for both interconnections. Show the following:

- (a) If the series connection is controllable, then both systems are controllable.
- (b) Controllability of both systems is not sufficient for controllability of the series connection. However, it becomes sufficient under the additional assumption that for all $\lambda \in \operatorname{spec}(A_2)$, the matrix

$$\begin{bmatrix} A_1 - \lambda I & B_1 \\ C_1 & D_1 \end{bmatrix}$$

has full row rank.

(c) If the parallel connection is controllable, then both systems are controllable. The converse holds as well if we assume additionally that the spectra of A_1 , A_2 are disjoint. **Exercise 2**[2+3+2] Robust stability: Consider $\dot{x} = Ax$, where $A \in \mathbb{R}^{n \times n}$ is asymptotically stable. In practice, the entries of A are only known with a certain degree of accuracy, and thus we consider $\dot{x} = (A + \Delta)x$, where $\Delta \in \mathbb{C}^{n \times n}$ represents a perturbation of A. How large can Δ be without destroying the system's stability? Define

$$\mathfrak{U} := \{ M \in \mathbb{C}^{n \times n} \mid \operatorname{spec}(M) \cap \overline{\mathbb{C}}_+ \neq \emptyset \},\$$

where $\overline{\mathbb{C}}_+ := \{\lambda \in \mathbb{C} \mid \operatorname{Re}(\lambda) \geq 0\}$. Thus \mathfrak{U} is the set of complex matrices that are not asymptotically stable. Set

$$r(A) := \operatorname{dist}(A, \mathfrak{U}) := \inf\{ \|A - M\| \mid M \in \mathfrak{U} \}$$

where $\|\cdot\|$ denotes the matrix norm associated to the Euclidean norm. Since r(A) is the infimum of all $\|\Delta\|$ such that $A + \Delta$ is not asymptotically stable, one calls r(A) the *stability radius* of A. Show that

$$r(A) = \frac{1}{\max_{\lambda \in \overline{\mathbb{C}}_{+}} \|G(\lambda)\|},\tag{1}$$

where $G := (sI - A)^{-1} \in \mathbb{R}(s)^{n \times n}$, along the following steps:

(a) If Δ is such that $A + \Delta \in \mathfrak{U}$, then there exists $\lambda_0 \in \overline{\mathbb{C}}_+$ such that

$$\det(I - G(\lambda_0)\Delta) = 0.$$

Thus $0 = \min_{\|z\|=1} \| (I - G(\lambda_0) \Delta) z \|.$

(b) For all $A, B \in \mathbb{C}^{n \times n}$, we have

$$\min_{\|z\|=1} \|(A-B)z\| \ge \min_{\|z\|=1} \|Az\| - \max_{\|z\|=1} \|Bz\|.$$

Conclude that $\|\Delta\| \ge \frac{1}{\max_{\lambda \in \overline{\mathbb{C}}_+} \|G(\lambda)\|}$ for all Δ as in (a). Thus we have shown the inequality \ge of (1).

(c) Now let $\lambda_0 \in \overline{\mathbb{C}}_+$ be such that

$$\max_{\lambda \in \overline{\mathbb{C}}_+} \|G(\lambda)\| = \|G(\lambda_0)\|.$$

Let $\mu > 0$ be the largest eigenvalue of $G(\lambda_0)G(\lambda_0)^*$. Show that

$$\Delta_0 := \frac{G(\lambda_0)}{\mu}$$

is such that $A + \Delta_0 \in \mathfrak{U}$ and $\|\Delta_0\| = \frac{1}{\|G(\lambda_0)\|}$, thus showing that equality is achieved in (1).

Exercise 3[3+3] From Exercise 3 of Tutorial 7, we know that the following are equivalent for a discrete system x(t+1) = Ax(t) + Bu(t) with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$:

- (a) The system is completely controllable to zero.
- (b) If λ is an uncontrollable mode of (A, B), then $\lambda = 0$.

Show that these conditions are also equivalent to

(c) There exists $F \in \mathbb{R}^{m \times n}$ such that A + BF is nilpotent.

Prove (c) \Rightarrow (a) directly, using the feedback law u(t) = Fx(t) (give also an explicit formula for u(t)), and (b) \Rightarrow (c) using the pole shifting theorem.

Remark: This shows that the feedback law u(t) = Fx(t) guarantees that x(t) = 0 for all $t \ge n$, independently of x_0 . This strong type of feedback stabilization is called *deadbeat control*.

Compute all deadbeat controllers $F \in \mathbb{R}^{1 \times 3}$ for

$$A = \begin{bmatrix} 0 & 1 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$$

where $a_3, \ldots, a_6 \in \mathbb{R}$ are arbitrary.