Control Theory – Tutorial 9

To be handed in till: Monday, Jun. 29 To be discussed on: Tuesday, Jun. 30

Exercise 1[2+2+2] Let (A, b) be a controllable matrix pair with $b \in \mathbb{R}^n$ ("single input").

1. Show that there exists an invertible matrix $T \in \mathbb{R}^{n \times n}$ and a feedback matrix $F \in \mathbb{R}^{1 \times n}$ such that

$$\tilde{A} = T^{-1}AT + T^{-1}bF = \begin{bmatrix} 0 & 1 & & \\ \vdots & \ddots & \\ 0 & & 1 \\ 0 & 0 & \cdots & 0 \end{bmatrix} \text{ and } \tilde{b} := T^{-1}b = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}.$$

Remark: This means that by a coordinate transform x = Tz and a feedback law u = Fz + v, the system $\dot{x} = Ax + bu$ can be brought into the form $\dot{z} = \tilde{A}z + \tilde{b}v$. This is a special case of the so-called *Brunovsky form*.

2. Show that $z_{n-i}^{(i+1)} = v$ for i = 0, ..., n-1, that is, if z(0) = 0, then

$$z_{n-i}(t) = \int_0^t \int_0^{t_i} \cdots \int_0^{t_1} v(\tau) d\tau dt_1 \cdots dt_i \text{ for } i = 0, \dots, n-1.$$

3. Show that for a system in Brunovsky form, the optimal energy control function that steers the system from z(0) = 0 to $z(t_f) = z_f$ has the form $v(t) = c_0 + c_1 t + \ldots + c_{n-1} t^{n-1}$ for some $c_i \in \mathbb{R}$.

Remark: Thus, it is particularly simple to compute an input v that steers a system in Brunovsky form from z(0) = 0 to $z(t_f) = z_f$: It amounts to solving a linear system of equations for the coefficients c_i . We have used this in Exercise 1 of Tutorial 1 already (for n = 2). From this v, one can then recompute u which steers the original system from x(0) = 0 to $x(t_f) = x_f = Tz_f$.

Exercise 2[3+2] Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, and $b \in im(B)$ be given. Let $k \ge 1$ be the smallest integer such that

$$A^k b \in \mathcal{R}_k := \operatorname{im}[B, AB, \dots, A^{k-1}B].$$

In particular, there exist $\hat{b}_i \in im(B)$ such that

$$A^{k}b = \hat{b}_{k} + A\hat{b}_{k-1} + \ldots + A^{k-1}\hat{b}_{1}.$$

Define

$$x_1 := b$$
 and $x_{i+1} := Ax_i - \hat{b}_i$ for $1 \le i \le k$.

- 1. Show that x_1, \ldots, x_k are linearly independent and $x_{k+1} = 0$.
- 2. Conclude that there exists a matrix $F \in \mathbb{R}^{m \times n}$ such that $(A + BF)^i b$ for $0 \le i \le k 1$ are linearly independent, and $(A + BF)^k b = 0$. Hint: Write $\hat{b}_i = Bu_i$ and choose F such that $Fx_i = -u_i$ for $1 \le i \le k$.

Exercise 3[3] An expression of the type $sK - L \in \mathbb{R}[s]^{k \times l}$, where $K, L \in \mathbb{R}^{k \times l}$, is called a *pencil* of matrices. Two pencils sK - L and $s\tilde{K} - \tilde{L}$ are called *equivalent* if there exist invertible matrices $U \in \mathbb{R}^{k \times k}, V \in \mathbb{R}^{l \times l}$ such that $s\tilde{K} - \tilde{L} = U(sK - L)V$. Consider the matrix pencil

$$s[I,0] - [A,B] = [sI - A, -B]$$

associated to $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$. Show that two matrix pairs (A, B), (\tilde{A}, \tilde{B}) are feedback equivalent if and only if their associated pencils are equivalent.

Exercise 4[6]

Consider $\mathcal{S} = \{(A, B) \in \mathbb{R}^{3 \times 3} \times \mathbb{R}^{3 \times 2} \mid (A, B) \text{ controllable, rank}(B) = 2\}$. Show that all elements of \mathcal{S} are feedback equivalent. Compute T, F, G that transform

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$

into Brunovsky form.