Irreducible tensor products for alternating groups in characteristic 5

Lucia Morotti

Abstract

In this paper we study irreducible tensor products of representations of alternating groups and classify such products in characteristic 5.

1 Introduction

Let D_1 and D_2 be irreducible representations of a group G. In general the tensor product $D_1 \otimes D_2$ is not irreducible. We say that $D_1 \otimes D_2$ is a non-trivial irreducible tensor product if $D_1 \otimes D_2$ is irreducible and neither D_1 nor D_2 has dimension 1. The classification of non-trivial irreducible tensor products is relevant to the description of maximal subgroups in finite groups of Lie type, see [1] and [2].

Non-trivial irreducible tensor product of representations of symmetric groups have been fully classified (see [6], [13], [12], [28] and [30]). In particular non-trivial irreducible tensor products for S_n only exist if p = 2 and $n \equiv 2 \mod 4$. For alternating groups, non-trivial irreducible tensor products have been classified in characteristic 0 in [5] and in characteristic $p \geq 7$ in [7]. For covering groups of symmetric and alternating groups a partial classification of non-trivial irreducible tensor products can be found in [4], [8] and [24]. When considering groups of Lie type in defining characteristic, non-trivial irreducible tensor products are not unusual, due to Steinberg tensor product theorem. In non-defining characteristic however it has been proved that in almost all cases no non-trivial irreducible tensor products exist, see [25] and [26].

In this paper we will consider the case where $G = A_n$ is an alternating groups. Also we will mostly consider the case p = 5 in this paper, although some results hold in general, provided $p \neq 2$. Our main result is the following and extends the main theorem of [7]:

Theorem 1.1. Let p = 5 and D_1 and D_2 be irreducible representations of A_n of dimension greater than 1. If $D_1 \otimes D_2$ is irreducible if and only if $n \neq 0 \mod 5$ and, up to exchange, $D_1 \cong E_{\pm}^{\lambda}$ with $\lambda = \lambda^{\mathbb{M}}$ a JS-partition and $D_2 \cong E^{(n-1,1)}$ with $\mu \neq \mu^{\mathbb{M}}$. In this case $E_{\pm}^{\lambda} \otimes E^{\mu} \cong E^{\nu}$, where ν is obtained from λ by removing the top removable node and adding the bottom addable node.

To prove the theorem we need to consider three cases:

- (i) $D_1 = E^{\lambda}$ and $D_2 = E^{\mu}$: in this case $D_1 \otimes D_2$ is not irreducible by [6].
- (ii) $D_1 = E_{\pm}^{\lambda}$ and $D_2 = E^{\mu}$: the proof of this case is covered by Theorems 7.3 and 7.4.
- (iii) $D_1 = E_{\pm}^{\lambda}$ and $D_2 = E_{\pm}^{\mu}$: in this case $D_1 \otimes D_2$ is not irreducible by Theorem 8.3.

The first case in Theorem 1.1 appears also in larger characteristic (see [7] and Lemma 6.1). In smaller characteristic irreducible tensor products of the form $E_{\pm}^{\lambda} \otimes E_{\pm}^{\mu}$ exists. For example $E_{\pm}^{(3,2)} \otimes E_{\pm}^{(3,2)} \cong E^{(4,1)}$ if p = 2 and $E_{\pm}^{(4,1^2)} \otimes E_{\pm}^{(4,1^2)} \cong E^{(4,2)}$ if p = 3 (see [7]). For p = 2 and p = 3 partial classifications of irreducible tensor products can be found in [29].

2 Notations and basic results

Let F be an algebraically closed field of characteristic p.

For a partition $\lambda \vdash n$ let S^{λ} be the corresponding Specht module, $M^{\lambda} := \mathbf{1} \uparrow_{\Sigma_{\alpha}}^{\Sigma_n}$ to be the permutation module induced from the Young subgroup $\Sigma_{\alpha} = \Sigma_{\alpha_1} \times \Sigma_{\alpha_2} \times \ldots \subseteq \Sigma_n$ and let Y^{λ} to be the corresponding Young module. (Notice that M^{λ} can be defined also for unordered partitions). If λ is a *p*-regular partition (that is a partition where no part is repeated *p* or more times) we define D^{λ} to be the irreducible $F\Sigma_n$ -module indexed by λ . The modules D^{λ} , M^{λ} and Y^{λ} are known to be self-dual. Further, from their definition we have that $D^{(n)} \cong S^{(n)} \cong M^{(n)} \cong \mathbf{1}_{\Sigma_n}$. For more informations on such modules see [14], [15] and Section 4.6 of [27].

We have the following results about permutation and Young modules. For $\lambda \vdash n$ let $A_{\lambda} = \Sigma_{\lambda} \cap A_n$.

Lemma 2.1. If $\lambda \vdash n$ with $\lambda \neq (1^n)$, then $M^{\lambda} \downarrow_{A_n} \cong 1 \uparrow_{A_1}^{A_n}$.

It follows from Mackey's theorem

Lemma 2.2. There exist indecomposable $F\Sigma_n$ -modules $\{Y^{\lambda} \mid \lambda \vdash n\}$ such that $M^{\lambda} \cong Y^{\lambda} \oplus \bigoplus_{\mu \vDash \lambda} (Y^{\mu})^{\oplus m_{\mu,\lambda}}$ for some $m_{\mu,\lambda} \in \mathbb{Z}_{\geq 0}$. Moreover, Y^{λ} can be characterized as the unique direct summand of M^{λ} such that $S^{\lambda} \subseteq Y^{\lambda}$. Finally, we have $(Y^{\lambda})^* \cong Y^{\lambda}$ for all $\lambda \vdash n$.

For a proof see [15] and $[27, \S4.6]$.

For any partition λ let $h(\lambda)$ be the number of parts of λ . For λ *p*-regular let $\lambda^{\mathbb{M}}$ be the Mullineux dual of λ , that is the partition with $D^{\lambda^{\mathbb{M}}} \cong D^{\lambda} \otimes \operatorname{sgn}$,

where sgn is the sign representation of S_n . It is well known that, for $p \neq 2$, if $\lambda \neq \lambda^{\mathbb{M}}$ then $D^{\lambda} \downarrow_{A_n} = E^{\lambda}$ is irreducible (and in this case $E^{\lambda} \cong E^{\lambda^{\mathbb{M}}}$), while if $\lambda = \lambda^{\mathbb{M}}$ then $D^{\lambda} \downarrow_{A_n} = E^{\lambda}_+ \oplus E^{\lambda}_-$ is the direct sum of two non-isomorphic irreducible representations of A_n . Further all irreducible representations of A_n are of one of these two forms (see for example [11]).

Let M be a $F\Sigma_n$ -module corresponding to a unique block B with content (b_0, \ldots, b_{p-1}) (see [21]). For $0 \leq i \leq p-1$, define e_iM as the restriction of $M\downarrow_{\Sigma_{n-1}}$ to the block with content $(b_0, \ldots, b_{i-1}, b_i - 1, b_{i+1}, \ldots, b_{p-1})$. Similarly, for $0 \leq i \leq p-1$, define f_iM as the restriction of $M\uparrow^{\Sigma_{n+1}}$ to the block with content $(b_0, \ldots, b_{i-1}, b_i + 1, b_{i+1}, \ldots, b_{p-1})$. Extend then the definition of e_iM and f_iM to arbitrary $F\Sigma_n$ -modules additively. The following result holds for example by Theorems 11.2.7 and 11.2.8 of [21].

Lemma 2.3. For M a $F\Sigma_n$ -module we have that

$$M\downarrow_{\Sigma_{n-1}} \cong e_0 M \oplus \ldots \oplus e_{p-1} M$$
 and $M\uparrow^{\Sigma_{n+1}} \cong f_0 M \oplus \ldots \oplus f_{p-1} M.$

For $r \geq 1$ let $e_i^{(r)} : F\Sigma_n \mod \to F\Sigma_{n-r} \mod \operatorname{and} f_i^{(r)} : F\Sigma_n \mod \to F\Sigma_{n+r} \operatorname{mod} \operatorname{denote}$ the divided power functors (see Section 11.2 of [21] for the definitions). For r = 0 define $e_i^{(0)}D^{\lambda}$ and $f_i^{(0)}D^{\lambda}$ to be equal to D^{λ} . The modules $e_i^r D^{\lambda}$ and $e_i^{(r)}D^{\lambda}$ (and similarly $f_i^r D^{\lambda}$ and $f_i^{(r)}D^{\lambda}$) are closely connected as we can be seen in the next two lemmas. For a partition λ and $0 \leq i \leq 1$ let $\varepsilon_i(\lambda)$ be the number of normal nodes of λ of residue *i* and $\varphi_i(\lambda)$ be the number of conormal nodes of λ of residue *i* (see Section 11.1 of [21] or Section 2 of [7] for two different but equivalent definitions of normal and conormal nodes). Normal and conormal nodes of partitions will play a crucial role throughout the paper.

If $\varepsilon_i(\lambda) \geq 1$ denote by $\tilde{e}_i(\lambda)$ the partition obtained from λ by removing the bottom normal node of residue *i*. Similarly, if $\varphi_i(\lambda) \geq 1$ denote by $\tilde{f}_i(\lambda)$ the partition obtained from λ by adding the top conormal node of residue *i*.

Lemma 2.4. Let $\lambda \vdash n$ be a *p*-regular partition. Also let $0 \leq i \leq p-1$ and $r \geq 0$. Then $e_i^r D^{\lambda} \cong (e_i^{(r)} D^{\lambda})^{\oplus r!}$. Further $e_i^{(r)} D^{\lambda} \neq 0$ if and only if $\varepsilon_i(\lambda) \geq r$. In this case

- (i) $e_i^{(r)} D^{\lambda}$ is a self-dual indecomposable module with head and socle isomorphic to $D^{\tilde{e}_i(\lambda)}$,
- (*ii*) $[e_i^{(r)}D^{\lambda}: D^{\tilde{e}_i(\lambda)}] = {\varepsilon_i(\lambda) \choose r} = \dim \operatorname{End}_{\Sigma_{n-1}}(e_i^{(r)}D^{\lambda}),$
- (iii) if D^{ψ} is a composition factor of $e_i^{(r)}D^{\lambda}$ then $\varepsilon_i(\psi) \leq \varepsilon_i(\lambda) r$, with equality holding if and only if $\psi = \tilde{e}_i(\lambda)$.

Lemma 2.5. Let $\lambda \vdash n$ be a p-regular partition. Also let $0 \leq i \leq p-1$ and $r \geq 0$. Then $f_i^r D^{\lambda} \cong (f_i^{(r)} D^{\lambda})^{\oplus r!}$. Further $f_i^{(r)} D^{\lambda} \neq 0$ if and only if $\varphi_i(\lambda) \geq r$. In this case

- (i) $f_i^{(r)} D^{\lambda}$ is a self-dual indecomposable module with head and socle isomorphic to $D^{\tilde{f}_i(\lambda)}$,
- (*ii*) $[f_i^{(r)}D^{\lambda}: D^{\tilde{f}_i(\lambda)}] = {\varphi_i(\lambda) \choose r} = \dim \operatorname{End}_{\Sigma_{n+1}}(f_i^{(r)}D^{\lambda}),$
- (iii) if D^{ψ} is a composition factor of $f_i^{(r)}D^{\lambda}$ then $\varphi_i(\psi) \leq \varphi_i(\lambda) r$, with equality holding if and only if $\psi = \tilde{f}_i(\lambda)$.

For proofs see Theorems 11.2.10 and 11.2.11 of [21] (the case r = 0 holds trivially). In particular, for r = 1, we have that $e_i = e_i^{(1)}$ and $f_i = f_i^{(1)}$. In this case there are other compositions factors of $e_i D^{\lambda}$ and $f_i D^{\lambda}$ which are known (see Remark 11.2.9 of [21]).

Lemma 2.6. Let λ be a p-regular partition. If A is a normal node of λ of residue i and $\lambda \setminus A$ is p-regular then $[e_i D^{\lambda} : D^{\lambda \setminus A}]$ is equal to the number of normal nodes of λ of residue i weakly above A.

Similarly if B is a conormal node of λ of residue i and $\lambda \cup B$ is p-regular then $[f_i D^{\lambda} : D^{\lambda \cup B}]$ is equal to the number of conormal nodes of λ of residue i weakly below B.

The following properties of e_i and f_i are just a special cases of Lemma 8.2.2(ii) and Theorem 8.3.2(i) of [21].

Lemma 2.7. If M is self dual then so are e_iM and f_iM .

Lemma 2.8. The functors e_i and f_i are left and right adjoint of each others.

The first part of the next lemma follows from Lemma 5.2.3 of [21]. The second part follows by the definition of \tilde{e}_i^r and \tilde{f}_i^r and from Lemmas 2.4(iii) and 2.5(iii).

Lemma 2.9. For $r \geq 0$ and p-regular partitions λ, ν we have that $\tilde{e}_i^r(\lambda) = D^{\nu}$ if and only if $\tilde{f}_i^r(\nu) = \lambda$. Further in this case $\varepsilon_i(\nu) = \varepsilon_i(\lambda) - r$ and $\varphi_i(\nu) = \varphi_i(\lambda) + r$.

When considering the number of normal and conormal nodes of a partition we have the following result (see Lemma 2.8 of [28], for *p*-regular partitions it also follows from Lemmas 2.3, 2.4, 2.5 and Corollary 4.2 of [20]):

Lemma 2.10. Any partition has 1 more conormal node than it has normal nodes.

Since the modules $e_i D^{\lambda}$ (or the modules $f_i D^{\lambda}$) correspond to pairwise distinct blocks we have the following result by Lemmas 2.3, 2.4 and 2.5.

Lemma 2.11. For a p-regular partition $\lambda \vdash n$ we have that

 $\dim \operatorname{End}_{\Sigma_{n-1}}(D^{\lambda}\downarrow_{\Sigma_{n-1}}) = \varepsilon_0(\lambda) + \ldots + \varepsilon_{p-1}(\lambda)$

and

$$\dim \operatorname{End}_{\Sigma_{n+1}}(D^{\lambda}\uparrow^{\Sigma_{n+1}}) = \varphi_0(\lambda) + \ldots + \varphi_{p-1}(\lambda).$$

A *p*-regular partition $\lambda \vdash n$ for which $D^{\lambda} \downarrow_{\Sigma_{n-1}}$ is irreducible is called a JS-partition. JS-partitions can be classified as follow (see Section 4 of [17] and Theorem D of [18])

Lemma 2.12. Let $\lambda = (a_1^{b_1}, \ldots, a_h^{b_h})$ with $a_1 > a_2 > \ldots > a_h \ge 1$ and $1 \le b_i \le p-1$ for $1 \le i \le h$. Then λ is a JS-partition if and only if $a_i - a_{i+1} + b_i + b_{i+1} \equiv 0 \mod p$ for each $1 \le i < h$.

For arbitrary modules M_1, \ldots, M_h we will write $M \sim M_1 | \ldots | M_h$ if M has a filtration with factors M_1, \ldots, M_h counted from the bottom. For irreducible modules D_1, \ldots, D_h we will write $M = D_1 | \ldots | D_h$ if M is a uniserial module with composition factors D_1, \ldots, D_h counted from the bottom.

3 Module structure

In the first part of this section we will consider the structure of certain permutation modules M^{α} .

Lemma 3.1. Let
$$1 \le k < p$$
 and $2k \le n$. Then
 $M^{(n-k,k)} \sim S^{(n-k,k)} | M^{(n-k+1,k-1)}$

Proof. See Lemmas 3.1 and 3.2 of [10].

Lemma 3.2. Let p = 5 and $n \equiv 1 \mod 5$ with $n \ge 6$. Then

$$Y^{(n)} = D^{(n)} = S^{(n)},$$

$$Y^{(n-1,1)} = D^{(n-1,1)} = S^{(n-1,1)},$$

$$Y^{(n-2,2)} = \overbrace{D^{(n)} | D^{(n-2,2)}}^{S^{(n-2,2)}} | \overbrace{D^{(n)}}^{S^{(n)}},$$

$$Y^{(n-3,3)} = D^{(n-3,3)} = S^{(n-3,3)},$$

$$Y^{(n-2,1^2)} = D^{(n-2,1^2)} = S^{(n-2,1^2)},$$

$$S^{(n-3,2,1)} \sim \overbrace{D^{(n-2,2)} | D^{(n-3,2,1)}}^{S^{(n-3,2,1)}} | \overbrace{D^{(n)} | D^{(n-2,2)}}^{S^{(n-2,2)}},$$

$$Y^{(n-3,1^3)} = D^{(n-3,1^3)} = S^{(n-3,1^3)},$$

Further

$$\begin{split} M^{(n)} &\cong Y^{(n)}, \\ M^{(n-1,1)} &\cong Y^{(n-1,1)} \oplus Y^{(n)}, \\ M^{(n-2,2)} &\cong Y^{(n-2,2)} \oplus Y^{(n-1,1)}, \\ M^{(n-3,3)} &\cong Y^{(n-3,3)} \oplus Y^{(n-2,2)} \oplus Y^{(n-1,1)}, \\ M^{(n-2,1^2)} &\cong Y^{(n-2,1^2)} \oplus Y^{(n-2,2)} \oplus (Y^{(n-1,1)})^2, \\ M^{(n-3,2,1)} &\cong Y^{(n-3,2,1)} \oplus Y^{(n-2,1^2)} \oplus Y^{(n-3,3)} \oplus Y^{(n-2,2)} \oplus (Y^{(n-1,1)})^2, \\ M^{(n-3,1^3)} &\cong Y^{(n-3,1^3)} \oplus (Y^{(n-3,2,1)})^2 \oplus (Y^{(n-2,1^2)})^3 \oplus Y^{(n-3,3)} \\ &\oplus Y^{(n-2,2)} \oplus (Y^{(n-1,1)})^3. \end{split}$$

Proof. Notice first that all the considered simple modules correspond to pairwise distinct blocks, apart for $D^{(n)}$, $D^{(n-2,2)}$ and $D^{(n-3,2,1)}$ all three of which correspond to a single block. From Theorem 24.15 of [14] and from [16] we have that $[S^{(n-2,2)} : D^{(n)}] = 1$, $[S^{(n-3,2,1)} : D^{(n)}] = 0$ and $[S^{(n-3,2,1)} : D^{(n-2,2)}] = 1$. It follows that the structure of the Specht modules is as given in the lemma. Further, since the Young modules are indecomposable and self-dual it is easy to see that the Structure of $Y^{(n-3,2,1)}$.

From block decomposition we have that $D^{(n-3,2)} \cong S^{(n-3,2)}$ is a direct summand of $M^{(n-3,2)}$. In particular $D^{(n-3,2)}\uparrow^{S_n}$ is a direct summand of $M^{(n-3,2,1)}$. Notice that since $n \equiv 1 \mod 5$,

$$(n-3,2) = \underbrace{\begin{bmatrix} 0 & 1 & 2 & 2 \\ 4 & 0 & 1 \\ 3 \end{bmatrix}^3}_{3}$$

So, from Lemmas 2.3 and 2.5, from Corollary 17.14 of $\left[14\right]$ and from block decomposition we have that

$$D^{(n-3,2)}\uparrow^{S_n} \cong S^{(n-3,2)}\uparrow^{S_n} \\ \sim S^{(n-3,2,1)}|S^{(n-3,3)}|S^{(n-2,2)} \\ \sim \underbrace{(S^{(n-3,2,1)}|S^{(n-2,2)})}_{f_3D^{(n-3,2)}} \oplus \underbrace{f_1D^{(n-3,2)}}_{S^{(n-3,3)}}$$

Since $f_3 D^{(n-3,2)}$ is indecomposible by Lemma 2.5, it follows that $f_3 D^{(n-3,2)} \cong Y^{(n-3,2,1)}$ by Lemma 2.2.

The multiplicities of the Young modules as direct summands of the modules M^{α} follow by comparing multiplicities of composition factors and from 14.1 of [14].

Lemma 3.3. Let p = 5 and $n \equiv 4 \mod 5$ with $n \ge 9$. Then

$$\begin{split} Y^{(n)} &= D^{(n)} = S^{(n)}, \\ Y^{(n-1,1)} &= D^{(n-1,1)} = S^{(n-1,1)}, \\ Y^{(n-2,2)} &= D^{(n-2,2)} = S^{(n-2,2)}, \\ Y^{(n-3,3)} &= \overbrace{D^{(n-2,2)}|D^{(n-3,3)}|}^{S^{(n-2,2)}} \overbrace{D^{(n-2,2)}}^{S^{(n-2,2)}}, \\ Y^{(n-2,1^2)} &= D^{(n-2,1^2)} = S^{(n-2,1^2)}, \\ Y^{(n-3,2,1)} &= D^{(n-3,2,1)} = S^{(n-3,2,1)}, \\ Y^{(n-3,1^3)} &= D^{(n-3,1^3)} = S^{(n-3,1^3)}. \end{split}$$

Further

$$\begin{split} M^{(n)} &\cong Y^{(n)}, \\ M^{(n-1,1)} &\cong Y^{(n-1,1)} \oplus Y^{(n)}, \\ M^{(n-2,2)} &\cong Y^{(n-2,2)} \oplus Y^{(n-1,1)} \oplus Y^{(n)}, \\ M^{(n-3,3)} &\cong Y^{(n-3,3)} \oplus Y^{(n-1,1)} \oplus Y^{(n)}, \\ M^{(n-2,1^2)} &\cong Y^{(n-2,1^2)} \oplus Y^{(n-2,2)} \oplus (Y^{(n-1,1)})^2 \oplus Y^{(n)}, \\ M^{(n-3,2,1)} &\cong Y^{(n-3,2,1)} \oplus Y^{(n-2,1^2)} \oplus Y^{(n-3,3)} \oplus Y^{(n-2,2)} \oplus (Y^{(n-1,1)})^2 \oplus Y^{(n)}, \\ M^{(n-3,1^3)} &\cong Y^{(n-3,1^3)} \oplus (Y^{(n-3,2,1)})^2 \oplus (Y^{(n-2,1^2)})^3 \oplus Y^{(n-3,3)} \oplus (Y^{(n-2,2)})^2 \\ & \oplus (Y^{(n-1,1)})^3 \oplus Y^{(n)}. \end{split}$$

Proof. Notice first that all the considered simple modules correspond to pairwise distinct blocks, apart for $D^{(n-2,2)}$ and $D^{(n-3,3)}$ which correspond to the same block. From Theorem 24.15 of [14] we have that $[S^{(n-3,3)}: D^{(n-2,2)}] = 1$. It follows that the structure of the Specht modules is as given in the lemma. Further, since the Young modules are indecomposable and self-dual it is easy to see that the Young modules structure is also as given in the lemma. The multiplicities of the Young modules as direct summands of the modules M^{α} follow by comparing multiplicities of composition factors and from 14.1 of [14].

Lemma 3.4. Let p = 5 and $n \equiv 0 \mod 5$ with $n \ge 10$. Then

$$\begin{split} Y^{(n)} &= D^{(n)} = S^{(n)}, \\ Y^{(n-1,1)} &= \overbrace{D^{(n)} | D^{(n-1,1)}}^{S^{(n-1,1)}} | \overbrace{D^{(n)}}^{S^{(n)}}, \\ Y^{(n-2,2)} &= D^{(n-2,2)} = S^{(n-2,2)}, \\ Y^{(n-3,3)} &= D^{(n-3,3)} = S^{(n-3,3)}, \\ Y^{(n-4,4)} &= \overbrace{D^{(n-2,2)} | D^{(n-4,4)}}^{S^{(n-2,2)}} | \overbrace{D^{(n-2,2)}}^{S^{(n-2,2)}}, \\ Y^{(n-4,4)} &= \overbrace{D^{(n-1,1)} | D^{(n-2,1^2)}}^{S^{(n-2,1^2)}} | \overbrace{D^{(n)} | D^{(n-1,1)}}^{S^{(n-1,1)}}, \\ Y^{(n-3,2,1)} &= D^{(n-3,2,1)} = S^{(n-3,2,1)}, \\ Y^{(n-4,3,1)} &= \overbrace{D^{(n-3,2,1)} | D^{(n-4,3,1)}}^{S^{(n-3,2,1)}} | \overbrace{D^{(n-3,2,1)}}^{S^{(n-3,2,1)}}, \\ Y^{(n-4,2^2)} &= D^{(n-4,2^2)} = S^{(n-4,2^2)}. \end{split}$$

Further

$$\begin{split} M^{(n)} &\cong Y^{(n)}, \\ M^{(n-1,1)} &\cong Y^{(n-1,1)}, \\ M^{(n-2,2)} &\cong Y^{(n-2,2)} \oplus Y^{(n-1,1)}, \\ M^{(n-3,3)} &\cong Y^{(n-3,3)} \oplus Y^{(n-2,2)} \oplus Y^{(n-1,1)}, \\ M^{(n-4,4)} &\cong Y^{(n-4,4)} \oplus Y^{(n-3,3)} \oplus Y^{(n-1,1)}, \\ M^{(n-2,1^2)} &\cong Y^{(n-2,1^2)} \oplus Y^{(n-2,2)} \oplus Y^{(n-1,1)}, \\ M^{(n-3,2,1)} &\cong Y^{(n-3,2,1)} \oplus Y^{(n-2,1^2)} \oplus Y^{(n-3,3)} \oplus (Y^{(n-2,2)})^2 \oplus Y^{(n-1,1)}, \\ M^{(n-4,3,1)} &\cong Y^{(n-4,3,1)} \oplus Y^{(n-2,1^2)} \oplus Y^{(n-4,4)} \oplus (Y^{(n-3,3)})^2 \oplus Y^{(n-2,2)} \\ &\oplus Y^{(n-1,1)}, \\ M^{(n-4,2^2)} &\cong Y^{(n-4,2^2)} \oplus Y^{(n-4,3,1)} \oplus Y^{(n-3,2,1)} \oplus Y^{(n-2,1^2)} \oplus Y^{(n-4,4)} \\ &\oplus (Y^{(n-3,3)})^2 \oplus (Y^{(n-2,2)})^2 \oplus Y^{(n-1,1)}. \end{split}$$

Proof. We have the following subsets of pairwise distinct blocks: $\{D^{(n)}, D^{(n-1,1)}, D^{(n-1^2)}\}, \{D^{(n-2,2)}, D^{(n-4,4)}\}, \{D^{(n-3,3)}\}, \{D^{(n-3,2,1)}, D^{(n-4,3,1)}\}$ and $\{D^{(n-4,2^2)}\}$. The structure of the Specht modules then follows by Theorems 24.1 and 24.15 of [14] and by [16]. Further, since the Young modules are

indecomposable and self-dual it is easy to see that the Young modules structure is also as given in the lemma. The multiplicities of the Young modules as direct summands of the modules M^{α} follow by comparing multiplicities of composition factors and from 14.1 of [14].

We will now prove that in certain cases there exists $\psi : M^{(n-4,2^2)} \to \operatorname{End}_F(D^{\lambda})$ which does not vanish on $S^{(n-4,2^2)}$.

Lemma 3.5. Let $p \ge 3$, $n \ge 6$ and V be a FS_n -module. If

$$\begin{aligned} x_{2^2} &= (2,5)(3,6) - (3,5)(2,6) - (1,5)(3,6) + (1,6)(3,5) - (2,5)(1,6) \\ &+ (1,5)(2,6) - (2,4)(3,6) + (3,4)(2,6) + (1,4)(3,6) - (1,6)(3,4) \\ &+ (2,4)(1,6) - (1,4)(2,6) - (2,5)(3,4) + (3,5)(2,4) + (1,5)(3,4) \\ &- (1,4)(3,5) + (2,5)(1,4) - (1,5)(2,4) \end{aligned}$$

and $x_{2^2}V \neq 0$ then there exists $\psi : M^{(n-4,2^2)} \to \operatorname{End}_F(V)$ which does not vanish on $S^{(n-4,2^2)}$.

Proof. Let $\{v_{\{x,y\},\{z,w\}\}}|x, y, z, w \in \{1, \dots, n\}$ distinct be the standard basis of $M^{(n-4,2^2)}$. Define $\psi: M^{(n-4,2^2)} \to \operatorname{End}_F(V)$ through

$$\psi(v_{\{x,y\},\{z,w\}})(a) = (x,y)(z,w)a$$

for each $a \in V$. Let e be the basis element of $S^{(n-4,2^2)}$ corresponding to the tableau

(see [14, Section 8] for definition of e). Then $\psi(e)(a) = 2x_{2^2}a$, from which the lemma follows.

Lemma 3.6. Let p = 5, $n \ge 6$ and $\lambda \vdash n$ be 5-regular with $h(\lambda), h(\lambda^{\mathbb{M}}) \ge 3$. Then there exists $\psi : M^{(n-4,2^2)} \to \operatorname{End}_F(D^{\lambda})$ which does not vanish on $S^{(n-4,2^2)}$.

Proof. From Theorem 2.8 of [10] we have that $D^{(4,1^2)}$ or $D^{(3,1^3)}$ is a composition factor of $D^{\lambda}\downarrow_{\Sigma_6}$. So it is enough to prove that $x_{2^2}D^{(4,1^2)}$ and $x_{2^2}D^{(3,1^3)}$ are non-zero, where x_{2^2} is as in Lemma 3.5. Notice that $D^{(4,1^2)} \cong S^{(4,1^2)}$ and $D^{(3,1^3)} \cong S^{(3,1^3)}$. Let $\{v_{a,b}\}, \{e_{a,b}\}, \{v_{a,b,c}\}$ and $\{e_{a,b,c}\}$ be the standard bases of $M^{(4,1^2)}, S^{(4,1^2)}, M^{(3,1^3)}$ and $S^{(3,1^3)}$ respectively. It can be checked that $x_{2^2}e_{2,4}$ has non-zero coefficient for $v_{2,5}$ and that $x_{2^2}e_{2,3,4}$ has non-zero coefficient on $v_{1,5,6}$ and so the lemma holds.

We will now consider certain submodules of $D^{\lambda} \downarrow_{S_{n-2,2}}$. The next lemma generalizes Lemma 1.2 of [7] and will used in studying such restrictions.

Lemma 3.7. Let M_1, \ldots, M_h, X, Y be FG modules. Assume that $M_1 \oplus \ldots \oplus M_h \subseteq X \oplus Y$ and that M_i has simple socle for each $1 \le i \le h$. Then there exist I_X, I_Y disjoint with $I_X \cup I_Y = \{1, \ldots, h\}$ such that, up to isomorphism, $\sum_{i \in I_X} M_i \subseteq X$ and $\sum_{i \in I_Y} M_i \subseteq Y$.

Proof. Let π_X and π_Y be the projections to X and Y respectively. Since $\pi_X + \pi_Y = \text{id}$ and the modules M_i have simple socles, we can find disjoint sets I_X, I_Y with $I_X \cup I_Y = \{1, \ldots, h\}$ such that π_X and π_Y are injective on $\sum_{i \in I_X} \text{soc}(M_i)$ and $\sum_{i \in I_Y} \text{soc}(M_i)$ respectively. It follows that π_1 and π_2 are injective on $\sum_{i \in I_X} M_i$ and $\sum_{i \in I_Y} M_i$ respectively and so the lemma holds.

Lemma 3.8. Let $p \geq 3$ and $\lambda \vdash n$ be p-regular. For $0 \leq i < p$ we have that $e_i^{(2)}(D^{\lambda}) \otimes (D^{(2)} \oplus D^{(1^2)})$ is a direct summand of $D^{\lambda} \downarrow_{S_{n-2,2}}$.

Proof. From Lemma 2.4 we can assume that $\varepsilon_i(\lambda) \ge 2$ (else $e_i^{(2)} D^{\lambda} = 0$).

By definition $e_i^2 D^{\lambda}$ is a block component of $D^{\lambda} \downarrow_{S_{n-2}}$. Comparing block decomposition of $D^{\lambda} \downarrow_{S_{n-2}}$ and $D^{\lambda} \downarrow_{S_{n-2,2}}$, there exist a module M which is a direct sum of $D^{\lambda} \downarrow_{S_{n-2,2}}$ with $M \downarrow_{S_{n-2}} \cong e_i^2 D^{\lambda}$. Notice that M is the sum of the block components of $D^{\lambda} \downarrow_{S_{n-2,2}}$ corresponding to the blocks of $D^{\tilde{e}_i^2(\lambda)} \otimes D^{(2)}$ and of $D^{\tilde{e}_i^2(\lambda)} \otimes D^{(1^2)}$. From Lemmas 2.4 and Lemma 1.1 of [7] we have that

$$\operatorname{soc}(M)\downarrow_{S_{n-2}} \cong \operatorname{soc}(e_i^2 D^{\lambda}) \cong D^{\tilde{e}_i^2(\lambda)} \oplus D^{\tilde{e}_i^2(\lambda)}$$

We will first show that $\operatorname{soc}(M) \cong D^{\tilde{e}_i^2(\lambda)} \otimes (D^{(2)} \oplus D^{(1^2)})$. By definition of M, in order to do this it is enough to prove that

$$[\operatorname{soc}(D^{\lambda}\downarrow_{S_{n-2,2}}): D^{\tilde{e}_i^2(\lambda)} \otimes D^{(2)}] = 1.$$

From Lemma 2.5, by definition of $f_i^{(2)}$ and considering block decomposition we have that

$$\dim \operatorname{Hom}_{S_{n-2,2}}(D^{\tilde{e}_i^2(\lambda)} \otimes D^{(2)}, D^{\lambda} \downarrow_{S_{n-2,2}}) = \dim \operatorname{Hom}_{S_n}((D^{\tilde{e}_i^2(\lambda)} \otimes D^{(2)}) \uparrow^{S_n}, D^{\lambda})$$
$$= \dim \operatorname{Hom}_{S_n}(f_i^{(2)}(D^{\tilde{e}_i^2(\lambda)}), D^{\lambda})$$
$$= 1.$$

So $\operatorname{soc}(M) \cong D^{\tilde{e}_i^2(\lambda)} \otimes (D^{(2)} \oplus D^{(1^2)})$. Since $D^{(2)}$ and $D^{(1^2)}$ correspond to distinct blocks of S_2 and since S_2 is semisimple (as $p \geq 3$), we have that

 $M \cong (M_1 \otimes D^{(2)}) \oplus (M_2 \otimes D^{(1^2)})$ for some modules M_1, M_2 with socle $D^{\tilde{e}_i^2(\lambda)}$. In particular

$$M_1 \oplus M_2 \cong M \downarrow_{S_{n-2}} \cong e_i^{(2)} D^{\lambda} \oplus e_i^{(2)} D^{\lambda}.$$

From Lemma 2.4 we have that $e_i^{(2)}D^{\lambda}$ is indecomposable. From Lemma 3.7 it follows that M_1 and M_2 are isomorphically contained in $e_i^{(2)}D^{\lambda}$ and so, comparing dimensions, that $M_1, M_2 \cong e_i^{(2)}D^{\lambda}$.

Lemma 3.9. Let $p \geq 3$ and $\lambda \vdash n$ be p-regular. For each j with $\varepsilon_j(\lambda) > 0$ and for each $i \neq j$ there exists $b_{i,j} \in \{D^{(2)}, D^{(1^2)}\}$ such that

$$\sum_{j:\varepsilon_j(\lambda)>0\atop{i\neq j}} e_i(D^{\tilde{e}_j(\lambda)}) \otimes b_{i,j}$$

is both a submodule and a quotient of $D^{\lambda} \downarrow_{S_{n-2,2}}$.

Proof. Since $D^{\lambda} \downarrow_{S_{n-2,2}}$, $e_i(D^{\tilde{e}_j(\lambda)})$, $D^{(2)}$ and $D^{(1^2)}$ are self-dual it is enough to show that there exist $b_{i,j}$ such that

$$\sum_{\substack{j:\varepsilon_j(\lambda)>0\\i\neq j}} e_i(D^{\tilde{e}_j(\lambda)}) \otimes b_{i,j} \subseteq D^{\lambda} \downarrow_{S_{n-2,2}}.$$

Since $p \geq 3$, there exist M_1, M_2 with $D^{\lambda} \downarrow_{S_{n-2,2}} \cong (M_1 \otimes D^{(2)}) \oplus (M_2 \otimes D^{(1^2)})$. From Lemmas 2.3 and 2.4

$$\sum_{\substack{j:\varepsilon_j(\lambda)>0\\i\neq j}} e_i(D^{\tilde{e}_j(\lambda)}) \subseteq \sum_{i\neq j} e_i e_j D^{\lambda} \subseteq D^{\lambda} \downarrow_{S_{n-2}} \cong M_1 \oplus M_2.$$

and the modules $e_i(D^{\tilde{e}_j(\lambda)})$ have simple socle, if they are non-zero. The lemma then follows by Lemma 3.7.

4 Dimensions of homomorphism rings

In this section we study the size of certain homomorphism rings, which will allow us later in Sections 7 and 8 to prove that in almost all cases the tensor product of two irreducible representations of A_n is not irreducible.

Lemma 4.1. For any FS_n -module V and any $\alpha \vdash n$ we have that

$$\dim \operatorname{Hom}_{S_n}(M^{\alpha}, \operatorname{End}_F(V)) = \dim \operatorname{End}_{S_{\alpha}}(V \downarrow_{S_{\alpha}})$$

Proof. This follows by Frobenius reciprocity, since $M^{\alpha} = 1 \uparrow_{S_{\alpha}}^{S_n}$.

Lemma 4.2. Let $G = S_n$ or $G = A_n$ and let V and W be FG-modules. For $\alpha \vdash n$ let $m_{V^*,\alpha}$ and $m_{W,\alpha}$ be such that there exist $\varphi_1^{\alpha}, \ldots, \varphi_{m_{V^*,\alpha}}^{\alpha} \in \operatorname{Hom}_G(M^{\alpha}, V^*)$ with $\varphi_1^{\alpha}|_{S^{\alpha}}, \ldots, \varphi_{m_{V^*,\alpha}}^{\alpha}|_{S^{\alpha}}$ linearly independent and that similarly there exist $\psi_1^{\alpha}, \ldots, \psi_{m_{W,\alpha}}^{\alpha} \in \operatorname{Hom}_G(M^{\alpha}, W)$ with $\psi_1^{\alpha}|_{S^{\alpha}}, \ldots, \psi_{m_{V^*,\alpha}}^{\alpha}|_{S^{\alpha}}$ linearly independent. Then

$$\dim \operatorname{Hom}_{G}(V, W) \geq \sum_{\alpha \in A} m_{V^{*}, \alpha} m_{W, \alpha},$$

where A is the set of all p-regular partitions of n if $G = S_n$ or A is the set of p-regular partitions $\alpha \vdash n$ with $\alpha > \alpha^{\mathbb{M}}$ if $G = A_n$.

The order on partitions appearing in the lemma is the lexicographic order.

Proof. Notice first that if $\alpha \in A$ then M^{α} has a unique composition factor isomorphic to D^{α} (which is the head of S^{α}) and all other composition factors are of the form D^{β} with $\beta > \alpha$ (Corollary 12.2 of [14]) if $G = S_n$. If $G = A_n$ and $\alpha \in A$ then M^{α} has a unique composition factor isomorphic to E^{α} (which is the head of S^{α}) since in this case $\alpha > \alpha^{\mathbb{M}}$ and all other composition factors of M^{α} are of the form E^{β} or E^{β}_{\pm} for some $\beta > \alpha$.

Fix $\alpha \in A$ and let $0 \neq \varphi \in \langle \varphi_i^{\alpha} \rangle$ and $0 \neq \psi \in \langle \psi_j^{\alpha} \rangle$. Then φ and ψ do not vanish on S^{α} , in particular D^{α} or E^{α} is a composition factor of $\operatorname{Im}(\varphi)$ and of $\operatorname{Im}(\psi)$. It then follows that D^{α} or E^{α} is a composition factor of $\operatorname{Im}(\psi \circ \varphi^*)$ (in particular $\psi \circ \varphi^*$ is non-zero) and all other composition factors of $\operatorname{Im}(\psi \circ \varphi^*)$ are of the form D^{β} or E^{β} , E_{\pm}^{β} with $\beta > \alpha$.

It then follows that the functions $\psi_j^{\alpha} \circ (\varphi_i^{\alpha})^*$, with $\alpha \in A$, $1 \leq i \leq m_{V^*,\alpha}$, $1 \leq j \leq m_{W,\alpha}$ are linearly independent and so the lemma holds. \Box

The following lemmas will be used to prove that in certain cases there exists $\varphi \in \operatorname{Hom}_{S_n}(M^{\alpha}, \operatorname{End}_F(D^{\lambda}))$ which does not vanish on S^{α} .

Lemma 4.3. Let p = 5 and $n \equiv \pm 1 \mod 5$ with $n \ge 6$. If $\lambda \vdash n$ and

$$\dim \operatorname{End}_{S_{n-3}}(D^{\lambda} \downarrow_{S_{n-3}}) > 2 \dim \operatorname{End}_{S_{n-3,2}}(D^{\lambda} \downarrow_{S_{n-3,2}}) + \dim \operatorname{End}_{S_{n-2}}(D^{\lambda} \downarrow_{S_{n-2}}) - \dim \operatorname{End}_{S_{n-3,3}}(D^{\lambda} \downarrow_{S_{n-3,3}}) - \dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) - \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 1,$$

then there exists $\psi \in \operatorname{Hom}_{S_n}(M^{(n-3,1^3)}, \operatorname{End}_F(D^{\lambda}))$ which does not vanish on $S^{(n-3,1^3)}$.

Proof. It follows from Lemmas 3.2 and 3.3.

Lemma 4.4. Let p = 5 and $n \equiv 0 \mod 5$ with $n \ge 10$. If $\lambda \vdash n$ and

$$\begin{split} \dim \operatorname{End}_{S_{n-4,3}}(D^{\lambda} \downarrow_{S_{n-4,3}}) + \dim \operatorname{End}_{S_{n-3,2}}(D^{\lambda} \downarrow_{S_{n-3,2}}) + \dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) \\ - \dim \operatorname{End}_{S_{n-3,3}}(D^{\lambda} \downarrow_{S_{n-3,3}}) - \dim \operatorname{End}_{S_{n-2}}(D^{\lambda} \downarrow_{S_{n-2}}) \\ < \dim \operatorname{End}_{S_{n-4,2^2}}(D^{\lambda} \downarrow_{S_{n-4,2^2}}) \end{split}$$

then there exists $\psi \in \operatorname{Hom}_{S_n}(M^{(n-4,2^2)}, \operatorname{End}_F(D^{\lambda}))$ which does not vanish on $S^{(n-4,2^2)}$.

Proof. It follows from Lemma 3.4.

Lemma 4.5. Let $p \ge 3$, $n \ge 4$ and $\lambda \vdash n$ with $\lambda \ne (n), (n)^{\mathbb{M}}$. Then

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) > \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}})$$

Proof. See Theorem 3.3 of [22].

We will now prove that, in most cases, the inequality in the previous lemma can be improved.

Lemma 4.6. Let α and β be partitions such that α is obtained from β by removing an *j*-node. If $i \neq j$ then all normal *i*-nodes of β are also normal in α and all conormal *i*-nodes of α are also conormal in β .

Proof. As $i \neq j$ all removable *i*-nodes of β are also removable in α and all addable *i*-nodes of α are also addable in β . The lemma then follows from the definition of normal and conormal nodes.

Lemma 4.7. Let $p \geq 3$ and $\lambda \vdash n$ be p-regular. If $\varepsilon_j(\lambda) > 0$. Then

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) \geq \sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 1) + \sum_{j:\varepsilon_{j}(\lambda)>0 \atop i \neq j} \varepsilon_{i}(\tilde{e}_{j}(\lambda))$$
$$\geq \sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 2 + |\{j:\varepsilon_{j}(\lambda)>0\}|).$$

Proof. From Lemma 2.3 we have that

$$D^{\lambda}\downarrow_{S_{n-2}} = \sum_{i,j} e_j e_i(D^{\lambda}) = \sum_i e_i^2(D^{\lambda}) \oplus \sum_{i \neq j} e_i e_j(D^{\lambda}).$$

From block decomposition and from Lemmas 3.8 and 3.9 we have that, for certain $b_{i,j} \in \{D^{(2)}, D^{(1^2)}\}$

$$B := \sum_{i} (e_i^{(2)} \otimes (D^{(2)} \oplus D^{(1^2)})) \oplus \sum_{\substack{j:\varepsilon_j(\lambda) > 0 \\ i \neq j}} e_i(D^{\tilde{e}_j(\lambda)}) \otimes b_{i,j}$$

is both a submodule and a quotient of $D^{\lambda} \downarrow_{S_{n-2,2}}$. In particular, from Lemma 2.4,

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) \geq \dim \operatorname{End}_{S_{n-2,2}}(B)$$

$$\geq \sum_{i} \dim \operatorname{End}_{S_{n-2,2}}(e_{i}^{(2)} \otimes (D^{(2)} \oplus D^{(1^{2})}))$$

$$+ \sum_{j:\varepsilon_{j}(\lambda)>0} \dim \operatorname{End}_{S_{n-2,2}}(e_{i}(D_{j}^{\lambda}) \otimes b_{i,j})$$

$$= \sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 1) + \sum_{j:\varepsilon_{j}(\lambda)>0} \varepsilon_{i}(\tilde{e}_{j}(\lambda)).$$

From Lemma 4.6 we also have that if $\varepsilon_j(\lambda) > 0$ then $\varepsilon_i(\tilde{e}_j(\lambda)) \ge \varepsilon_i(\lambda)$. So

$$\sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 1) + \sum_{j:\varepsilon_{j}(\lambda)>0 \atop i \neq j} \varepsilon_{i}(\tilde{e}_{j}(\lambda))$$

$$\geq \sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 1) + \sum_{j:\varepsilon_{j}(\lambda)>0 \atop i \neq j} \varepsilon_{i}(\lambda)$$

$$= \sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 2) + \sum_{j:\varepsilon_{j}(\lambda)>0 \atop i} \sum_{i} \varepsilon_{i}(\lambda)$$

$$= \sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 2 + |\{j:\varepsilon_{j}(\lambda)>0\}|).$$

A proof of the next lemma could also be obtained using Theorems 4.2 and 4.7 of [19].

Lemma 4.8. For any partition λ and for any residue *i*,

$$\begin{split} \varepsilon_i(\lambda) &= \varepsilon_{-i}(\lambda^{\mathtt{M}}) \quad and \quad \varphi_i(\lambda) = \varphi_{-i}(\lambda^{\mathtt{M}}). \\ If \, \varepsilon_i(\lambda) &> 0 \ then \ \tilde{e}_i(\lambda)^{\mathtt{M}} = \tilde{e}_{-i}(\lambda^{\mathtt{M}}), \ while \ if \, \varphi_i(\lambda) > 0 \ then \ \tilde{f}_i(\lambda^{\mathtt{M}}) = \tilde{f}_{-i}(\lambda^{\mathtt{M}}). \end{split}$$

Proof. This follows from Lemma 2.4 and by comparing block decomposition of $D^{\lambda} \downarrow_{S_{n-1}}$ and of $D^{\lambda^{\mathbb{M}}} \downarrow_{S_{n-1}} \cong D^{\lambda} \downarrow_{S_{n-1}} \otimes \operatorname{sgn}$ (or of $D^{\lambda} \uparrow^{S_{n+1}}$ and of $D^{\lambda^{\mathbb{M}}} \uparrow^{S_{n+1}} \cong D^{\lambda} \uparrow^{S_{n+1}} \otimes \operatorname{sgn}$).

Lemma 4.9. Let $p \geq 3$ and λ be p-regular. If λ has at least 3 normal nodes then

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\mu} \downarrow_{S_{n-2,2}}) > \dim \operatorname{End}_{S_{n-1}}(D^{\mu} \downarrow_{S_{n-1}}) + 1.$$

If further $\lambda = \lambda^{\mathbb{M}}$ then

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\mu} \downarrow_{S_{n-2,2}}) > \dim \operatorname{End}_{S_{n-1}}(D^{\mu} \downarrow_{S_{n-1}}) + 2.$$

Proof. From Lemmas 2.11 and 4.7 it is enough to prove that

$$\sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 3 + |\{j : \varepsilon_{j}(\lambda) > 0\}|) > 1$$

or

$$\sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 3 + |\{j : \varepsilon_{j}(\lambda) > 0\}|) > 2$$

when λ has at least 3 normal nodes (the last inequality only when $\lambda = \lambda^{\mathbb{M}}$).

Assume first that $|\{j : \varepsilon_j(\lambda) > 0\}| = 1$ and let k with $\varepsilon_k(\lambda) > 0$. Then $\varepsilon_i(\lambda) \ge 3$ and so

$$\sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 3 + |\{j : \varepsilon_{j}(\lambda) > 0\}|) = \varepsilon_{k}(\lambda)(\varepsilon_{k}(\lambda) - 2) \ge \varepsilon_{k}(\lambda) \ge 3.$$

Assume next that $|\{j : \varepsilon_j(\lambda) > 0\}| = 2$ and let $k \neq l$ with $\varepsilon_k(\lambda), \varepsilon_l(\lambda) > 0$. We can assume that $\varepsilon_k(\lambda) \ge 2$. Then

$$\sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 3 + |\{j : \varepsilon_{j}(\lambda) > 0\}|) = \varepsilon_{k}(\lambda)(\varepsilon_{k}(\lambda) - 1) + \varepsilon_{l}(\lambda)(\varepsilon_{l}(\lambda) - 1)$$
$$\geq \varepsilon_{k}(\lambda)$$
$$\geq 2.$$

Assume now that $\lambda = \lambda^{\mathbb{M}}$. Then from Lemma 4.8, we have that k = -l and $\varepsilon_k(\lambda) = \varepsilon_l(\lambda) \ge 2$. In this case

$$\sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 3 + |\{j : \varepsilon_{j}(\lambda) > 0\}|) = \varepsilon_{k}(\lambda)(\varepsilon_{k}(\lambda) - 1) + \varepsilon_{l}(\lambda)(\varepsilon_{l}(\lambda) - 1)$$
$$\geq 2\varepsilon_{k}(\lambda)$$
$$\geq 4.$$

Assume last that $|\{j : \varepsilon_j(\lambda) > 0\}| \ge 3$ and let k, l, h pairwise different with $\varepsilon_k(\lambda), \varepsilon_l(\lambda), \varepsilon_h(\lambda) > 0$. Then

$$\sum_{i} \varepsilon_{i}(\lambda)(\varepsilon_{i}(\lambda) - 3 + |\{j : \varepsilon_{j}(\lambda) > 0\}|) \ge \varepsilon_{k}(\lambda)^{2} + \varepsilon_{l}(\lambda)^{2} + \varepsilon_{h}(\lambda)^{2} \ge 3.$$

Lemma 4.10. Let $p \geq 3$, $n \geq 4$ and $\lambda = \lambda^{\mathsf{M}} \vdash n$ be a partition with exactly 2 normal nodes. If there exist $i \neq j$ with $\varepsilon_i(\lambda), \varepsilon_j(\lambda) \neq 0$ then $\tilde{e}_i(\lambda)$ and $\tilde{e}_j(\lambda)$ are not JS-partitions.

Proof. Assume instead that $\tilde{e}_i(\lambda)$ and $\tilde{e}_j(\lambda)$ are JS-partitions. Then, from Lemmas 2.3 and 2.4, $D^{\lambda} \downarrow_{S_{n-2}}$ has only two composition factors. Since $\lambda = \lambda^{\mathsf{M}}$ it follows that

$$D^{\lambda} \downarrow_{S_{n-2,2}} \cong (D^{\nu} \otimes D^{(2)}) \oplus (D^{\nu^{\mathsf{M}}} \otimes D^{(1^2)})$$

for a certain partition ν . Due to Lemma 2.11 this contradicts Lemma 4.5. The lemma then follows from Lemma 4.8.

Lemma 4.11. Let $p \ge 3$ and λ be a p-regular partition with 2 normal nodes. Assume that there exist $i \ne j$ with $\varepsilon_i(\lambda), \varepsilon_j(\lambda) = 1$. If

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda}{\downarrow}_{S_{n-2,2}}) = \dim \operatorname{End}_{S_{n-1}}(D^{\lambda}{\downarrow}_{S_{n-1}}) + 1$$

then, up to exchange, $\tilde{e}_i(\lambda)$ is a JS-partition and $\tilde{e}_j(\lambda)$ has at most 2 normal nodes. Also $\lambda \neq \lambda^{\mathbb{M}}$.

Proof. From Lemma 2.4 we have that $\varepsilon_i(\tilde{e}_i(\lambda)) = \varepsilon_i(\lambda) - 1 = 0$ and similarly $\varepsilon_j(\tilde{e}_j(\lambda)) = 0$. So from Lemmas 2.11 and 4.7 and by assumption

$$\sum_{k} \varepsilon_{k}(\tilde{e}_{i}(\lambda)) + \sum_{k} \varepsilon_{k}(\tilde{e}_{j}(\lambda)) = \sum_{k \neq i} \varepsilon_{k}(\tilde{e}_{i}(\lambda)) + \sum_{k \neq j} \varepsilon_{k}(\tilde{e}_{j}(\lambda))$$

$$\leq \dim \operatorname{End}_{S_{n-2,2}}(D^{\mu} \downarrow_{S_{n-2,2}})$$

$$= \dim \operatorname{End}_{S_{n-1}}(D^{\mu} \downarrow_{S_{n-1}}) + 1$$

$$= 3.$$

So $\tilde{e}_i(\lambda)$ and $\tilde{e}_j(\lambda)$ have in total at most 3 normal nodes, from which the first part of the lemma follows. The second part follows then from Lemma 4.10.

Lemma 4.12. Let $p \geq 3$ and λ be a p-regular partition with 2 normal nodes. Assume that there exists i with $\varepsilon_i(\lambda) = 2$ and let ν to be obtained from λ by removing the top removable node of λ . If

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) = \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 1$$

then $\tilde{e}_i(\lambda)$ is a JS-partition and ν is either a JS-partition or it is not p-regular. Also $\lambda \neq \lambda^{\mathsf{M}}$.

Proof. Notice first that from Lemma 3.8

$$D^{\lambda}\downarrow_{S_{n-2,2}} = (e_i^{(2)}(D^{\lambda}) \otimes (D^{(2)} \oplus D^{(1^2)})) \oplus M$$

for a certain module M. Comparing block decompositions of $D^{\lambda}\downarrow_{S_{n-2}}$ and $D^{\lambda}\downarrow_{S_{n-2,2}}$ we have that

$$M\downarrow_{S_{n-2}} \cong \sum_{(j,k)\neq(i,i)} e_j e_k(D^{\lambda}).$$

Also from Lemma 2.4

$$\dim \operatorname{End}_{S_{n-2,2}}(e_i^{(2)}(D^{\lambda}) \otimes (D^{(2)} \oplus D^{(1^2)})) = \varepsilon_i(\lambda)(\varepsilon_i(\lambda) - 1) = 2.$$

Notice that M is self-dual, since it is the sum of certain block components of $D^{\lambda}\downarrow_{S_{n-2,2}}$. So, if M is non-zero and not simple, then dim $\operatorname{End}_{S_{n-2,2}}(M) \geq 2$ (simple modules of $S_{n-2,2}$ are also self-dual) and so from Lemma 2.11

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) \ge 2+2 > 3 = \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 1,$$

contradicting the assumptions. As all simple Σ_2 -modules are 1-dimensional, M is non-zero and not simple if and only if $M \downarrow_{S_{n-2,2}} \cong \sum_{(j,k) \neq (i,i)} e_j e_k(D^{\lambda})$ is non-zero and not simple. In order to prove the lemma it is then enough to prove that $\sum_{(j,k)\neq(i,i)} e_j e_k(D^{\lambda})$ is non-zero and not simple, when λ is not as in the text of the lemma.

First assume that $\tilde{e}_i(\lambda)$ is not a JS-partition. Then, from Lemma 2.9, there exist $l \neq i$ with $\varepsilon_l(\lambda_i) \geq 1$. So, from Lemma 2.4,

$$\begin{split} [\sum_{(j,k)\neq(i,i)} e_j e_k(D^{\lambda}) : D^{\tilde{e}_l \tilde{e}_i(\lambda)}] &\geq [e_i(D^{\lambda}) : D^{\tilde{e}_i(\lambda)}] \cdot [e_l(D^{\tilde{e}_i(\lambda)}) : D^{\tilde{e}_l \tilde{e}_i(\lambda)}] \\ &= \varepsilon_i(\lambda)\varepsilon_l(\tilde{e}_i(\lambda)) \\ &\geq 2. \end{split}$$

In particular $\sum_{(j,k)\neq(i,i)} e_j e_k(D^{\lambda})$ is non-zero and not simple.

Assume next that ν is *p*-regular but not a JS-partition. From Lemmas 2.4 and 2.6 we have that D^{ν} is a composition component of $e_i(D^{\lambda})$ and that $\varepsilon_i(\nu) \leq \varepsilon_i(\lambda) - 2 = 0$. So $\sum_{l \neq i} \varepsilon_j(\nu) \geq 2$ and then

$$\sum_{l \neq i} \left[\sum_{(j,k) \neq (i,i)} e_j e_k(D^{\lambda}) : D^{\tilde{e}_l(\nu)} \right] \ge \sum_{l \neq i} \left[e_l(D^{\lambda}) : D^{\nu} \right] \cdot \left[e_l(D^{\nu}) : D^{\tilde{e}_l(\nu)} \right]$$
$$\ge \sum_{l \neq i} \varepsilon_l(\nu)$$
$$\ge 2.$$

So also in this case $\sum_{(j,k)\neq(i,i)} e_j e_k(D^{\lambda})$ is non-zero and not simple.

Assume now that $\lambda = \lambda^{\mathbb{M}}$. Notice that $\nu = \lambda \setminus A$, where A is the top removable node of λ . Assume first that ν is not p-regular. Then $\lambda_1 = \lambda_p + 1$. This contradicts $\lambda = \lambda^{\mathbb{M}}$, by Lemma 2.2 of [3]. So we can assume that ν is p-regular. Further from Lemma 4.8 we have that i = 0, so that $\varepsilon_0(\nu) = 0$. In particular there exist $l \neq 0$ such that $e_l(D^{\nu}) \neq 0$. Since D^{ν} is a component of $e_0(D^{\lambda})$, we then have that $e_le_0(D^{\lambda}) \neq 0$. Since $\lambda = \lambda^{\mathbb{M}}$ we also have that $e_{-l}e_0(D^{\lambda}) \neq 0$. As $l \neq 0$ and so $l \neq -l$ as $p \geq 3$ is odd, it follows that $\sum_{(j,k)\neq(i,i)} e_j e_k(D^{\lambda})$ is non-zero and not simple. \Box

Lemma 4.13. Let $p \geq 3$. If $\lambda = \lambda^{\mathbb{M}}$ a p-regular partition and V is an FS_n -module, then

$$\dim \operatorname{Hom}_{A_n}(V \downarrow_{A_n}, \operatorname{Hom}_F(E_+^{\lambda} \oplus E_-^{\lambda}, E_{\pm}^{\lambda})) = \dim \operatorname{Hom}_{A_n}(\operatorname{Hom}_F(E_{\pm}^{\lambda}, E_+^{\lambda} \oplus E_-^{\lambda}), V^* \downarrow_{A_n}) = \dim \operatorname{Hom}_{S_n}(V, \operatorname{End}_F(D^{\lambda})).$$

Proof. Using Frobenious reciprocity we have

$$\operatorname{Hom}_{A_n}(V \downarrow_{A_n}, \operatorname{Hom}_F(E^{\lambda}_{+} \oplus E^{\lambda}_{-}, E^{\lambda}_{\pm})) \cong \operatorname{Hom}_{A_n}(V \downarrow_{A_n}, (E^{\lambda}_{+} \oplus E^{\lambda}_{-})^* \otimes E^{\lambda}_{\pm}))$$
$$\cong \operatorname{Hom}_{S_n}(V, ((E^{\lambda}_{+} \oplus E^{\lambda}_{-})^* \otimes E^{\lambda}_{\pm})\uparrow^{S_n}))$$
$$\cong \operatorname{Hom}_{S_n}(V, (D^{\lambda})^* \otimes D^{\lambda}))$$
$$\cong \operatorname{Hom}_{S_n}(V, \operatorname{End}_F(D^{\lambda})).$$

The other equality holds similarly.

5 Partitions of the from (a+b, a) with b small

Partitions of the form (a + b, a) with $0 \le b \le 3$ will play a special role in the proof of Theorem 1.1, since for these partitions Corollary 4.12 of [10] does not apply. So we will now study these partitions (and the corresponding simple modules and their restrictions to certain submodules of Σ_n) more in details.

Lemma 5.1. Let p = 5 and $\lambda = (a + b, a) \vdash n$ with $0 \le b \le 3$. If $k \le 4$ and

 $a \geq k$ then $D^{\lambda} \downarrow_{\Sigma_{n-k,k}}$ is given by

$$\begin{split} D^{(a,a)} &\downarrow_{\Sigma_{2a-1}} \cong D^{(a,a-1)}, \\ D^{(a,a)} &\downarrow_{\Sigma_{2a-2,2}} \cong (D^{(a,a-2)} \otimes D^{(2)}) \oplus (D^{(a-1,a-1)} \otimes D^{(1^2)}), \\ D^{(a,a)} &\downarrow_{\Sigma_{2a-3,3}} \cong (D^{(a,a-3)} \otimes D^{(3)}) \oplus (D^{(a-1,a-2)} \otimes D^{(2,1)}), \\ D^{(a,a)} &\downarrow_{\Sigma_{2a-4,4}} \cong (D^{(a-1,a-3)} \otimes D^{(3,1)}) \oplus (D^{(a-2,a-2)} \otimes D^{(2^2)}), \\ D^{(a+1,a)} &\downarrow_{\Sigma_{2a}} \cong D^{(a+1,a-1)} \oplus D^{(a,a)}, \\ D^{(a+1,a)} &\downarrow_{\Sigma_{2a-1,2}} \cong (D^{(a+1,a-2)} \otimes D^{(2)}) \oplus (D^{(a,a-1)} \otimes D^{(2)}) \oplus (D^{(a,a-1)} \otimes D^{(1^2)}), \\ D^{(a+1,a)} &\downarrow_{\Sigma_{2a-2,3}} \cong (D^{(a,a-2)} \otimes D^{(3)}) \oplus (D^{(a,a-2)} \otimes D^{(2,1)}) \oplus (D^{(a-1,a-1)} \otimes D^{(2,1)}), \\ D^{(a+1,a)} &\downarrow_{\Sigma_{2a-3,4}} \cong (D^{(a,a-3)} \otimes D^{(3,1)}) \oplus (D^{(a-1,a-2)} \otimes D^{(3,1)}) \oplus (D^{(a-1,a-2)} \otimes D^{(2^2)}), \\ D^{(a+2,a)} &\downarrow_{\Sigma_{2a+1}} \cong D^{(a+1,a)} \oplus D^{(a+2,a-1)}, \\ D^{(a+2,a)} &\downarrow_{\Sigma_{2a-1,3}} \cong (D^{(a,a-1)} \otimes D^{(2)}) \oplus (D^{(a,a-1)} \otimes D^{(2,1)}) \oplus (D^{(a+1,a-1)} \otimes D^{(1^2)}), \\ D^{(a+2,a)} &\downarrow_{\Sigma_{2a-1,3}} \cong (D^{(a-1,a-1)} \otimes D^{(3,1)}) \oplus (D^{(a,a-2)} \otimes D^{(3,1)}) \oplus (D^{(a,a-2)} \otimes D^{(2^2)}), \\ D^{(a+3,a)} &\downarrow_{\Sigma_{2a+2}} \cong D^{(a+2,a)}, \\ D^{(a+3,a)} &\downarrow_{\Sigma_{2a+1,2}} \cong (D^{(a+1,a)} \otimes D^{(2)}) \oplus (D^{(a+1,a-1)} \otimes D^{(1^2)}), \\ D^{(a+3,a)} &\downarrow_{\Sigma_{2a,3}} \cong (D^{(a,a)} \otimes D^{(3)}) \oplus (D^{(a+1,a-1)} \otimes D^{(2,1)}), \\ D^{(a+3,a)} &\downarrow_{\Sigma_{2a,3}} \cong (D^{(a,a-1)} \otimes D^{(3,1)}) \oplus (D^{(a+1,a-2)} \otimes D^{(2,1)}), \\ D^{(a+3,a)} &\downarrow_{\Sigma_{2a,3}} \cong (D^{(a,a-1)} \otimes D^{(3,1)}) \oplus (D^{(a+1,a-2)} \otimes D^{(2,1)}), \\ D^{(a+3,a)} &\downarrow_{\Sigma_{2a,3}} \cong (D^{(a,a-1)} \otimes D^{(3,1)}) \oplus (D^{(a+1,a-2)} \otimes D^{(2,1)}), \\ D^{(a+3,a)} &\downarrow_{\Sigma_{2a,3}} \cong (D^{(a,a-1)} \otimes D^{(3,1)}) \oplus (D^{(a+1,a-2)} \otimes D^{(2,1)}). \\ \end{array}$$

Proof. For $k \leq 3$ see Lemmas 4.1, 4.5 and 4.7 of [10]. Further if $a \geq 4$, from

the same lemmas,

$$\begin{split} D^{(a,a)} \downarrow_{\Sigma_{2a-4,2^2}} &\cong (D^{(a-2,a-2)} \otimes D^{(2)} \otimes D^{(2)}) \oplus (D^{(a-1,a-3)} \otimes D^{(2)} \otimes D^{(2)}) \\ &\oplus (D^{(a-1,a-3)} \otimes D^{(1^2)} \otimes D^{(2)}) \oplus (D^{(a-1,a-3)} \otimes D^{(2)} \otimes D^{(1^2)}) \\ &\oplus (D^{(a-2,a-2)} \otimes D^{(1^2)} \otimes D^{(1^2)}), \\ D^{(a+1,a)} \downarrow_{\Sigma_{2a-3,2^2}} &\cong (D^{(a-1,a-2)} \otimes D^{(2)} \otimes D^{(2)})^2 \oplus (D^{(a,a-3)} \otimes D^{(1^2)} \otimes D^{(2)}) \\ &\oplus (D^{(a,a-3)} \otimes D^{(2)} \otimes D^{(2)}) \oplus (D^{(a-1,a-2)} \otimes D^{(2)} \otimes D^{(2)}) \\ &\oplus (D^{(a,a-3)} \otimes D^{(2)} \otimes D^{(1^2)}) \oplus (D^{(a-1,a-2)} \otimes D^{(2)} \otimes D^{(1^2)}) \\ &\oplus (D^{(a-1,a-2)} \otimes D^{(2)} \otimes D^{(1^2)}) \oplus (D^{(a-1,a-2)} \otimes D^{(2)} \otimes D^{(1^2)}) \\ &\oplus (D^{(a-1,a-2)} \otimes D^{(2)} \otimes D^{(1^2)}) \oplus (D^{(a-1,a-2)} \otimes D^{(2)}) \\ &\oplus (D^{(a-1,a-1)} \otimes D^{(2)} \otimes D^{(2)}) \oplus (D^{(a,a-2)} \otimes D^{(2)}) \\ &\oplus (D^{(a-1,a-1)} \otimes D^{(2)} \otimes D^{(1^2)}) \oplus (D^{(a,a-2)} \otimes D^{(2)} \otimes D^{(1^2)}) \\ &\oplus (D^{(a+3,a)} \downarrow_{\Sigma_{2a-1,2^2}} &\cong (D^{(a+1,a-2)} \otimes D^{(2)} \otimes D^{(2)}) \oplus (D^{(a,a-1)} \otimes D^{(2)} \otimes D^{(1^2)}) \\ &\oplus (D^{(a,a-1)} \otimes D^{(1^2)} \otimes D^{(2)}) \oplus (D^{(a,a-1)} \otimes D^{(2)} \otimes D^{(1^2)}) \\ &\oplus (D^{(a,a-1)} \otimes D^{(1^2)} \otimes D^{(1^2)}). \end{split}$$

The only possible composition factors of $D^{\lambda}\downarrow_{\Sigma_4}$ are $D^{(4)}$, $D^{(3,1)}$ and $D^{(2^2)}$. So since $D^{(4)}\downarrow_{\Sigma_{2^2}} \cong D^{(2)} \otimes D^{(2)}$, $D^{(3,1)}\downarrow_{\Sigma_{2^2}} \cong (D^{(2)} \otimes D^{(2)}) \oplus (D^{(2)} \otimes D^{(1^2)}) \oplus (D^{(1^2)} \otimes D^{(2)})$ and $D^{(2^2)}\downarrow_{\Sigma_{2^2}} \cong (D^{(2)} \otimes D^{(2)}) \oplus (D^{(1^2)} \otimes D^{(1^2)})$, the structure of $D^{\lambda}\downarrow_{\Sigma_{n-4,4}}$ follows.

Lemma 5.2. Let p = 5 and $n \equiv \pm 1 \mod 5$ with $n \geq 9$. If $\lambda = (a+b, a) \vdash n$ with $0 \leq b \leq 3$ then there exists $\psi \in \operatorname{Hom}_{S_n}(M^{(n-3,1^3)}, \operatorname{End}_F(D^{\lambda}))$ which does not vanish on $S^{(n-3,1^3)}$.

Proof. It follows from Lemmas 4.3 and 5.1.

Lemma 5.3. Let p = 5 and $n \equiv 0 \mod 5$ with $n \geq 9$. If $\lambda = (a + b, a) \vdash n$ with $0 \leq b \leq 3$ then there exists $\psi \in \operatorname{Hom}_{S_n}(M^{(n-4,2^2)}, \operatorname{End}_F(D^{\lambda}))$ which does not vanish on $S^{(n-4,2^2)}$.

Proof. It follows from Lemmas 4.4 and 5.1.

6 Mullineux fixed JS-partitions

Mullineux fixed JS-partitions also play a special role in the proof of Theorem 1.1 and so will be studied in this section.

Lemma 6.1. Let $p \geq 3$ and $\lambda = \lambda^{\mathbb{M}} \vdash n$ be a JS-partition. Then $n \equiv h(\lambda)^2 \mod p$.

Proof. Let $\lambda^0 := \lambda$ and then define recursively λ^i to be obtained from λ^{i-1} by removing the *p*-rim. From Theorem 4.1 of [9] we have that all the partitions λ^i are Mullineux fixed JS-partitions. Further if k is maximal such that $\lambda^k \neq ()$, then $\lambda^k = (1)$. In particular $|\lambda^k| \equiv h(\lambda^k)^2 \mod p$.

Assume that for a certain $1 \leq i \leq k$ we have that $|\lambda^i| \equiv h(\lambda^i)^2 \mod p$. From Theorem 4.1 of [9], one of the following holds:

- (i) $|\lambda^{i-1}| |\lambda^i| \equiv 2h(\lambda^i) + 1 \mod p$ and $h(\lambda^{i-1}) \equiv h(\lambda^i) + 1 \mod p$,
- (ii) $|\lambda^{i-1}| |\lambda^i| \equiv -2h(\lambda^i) + 1 \mod p$ and $h(\lambda^{i-1}) \equiv -h(\lambda^i) + 1 \mod p$,
- (iii) $h(\lambda^i) \equiv 0 \mod p$, $|\lambda^{i-1}| |\lambda^i| \equiv 0 \mod p$ and $h(\lambda^{i-1}) \equiv 0 \mod p$.

Using $|\lambda^i| \equiv h(\lambda^i)^2 \mod p$ it follows that in each of the above cases:

- (i) $|\lambda^{i-1}| \equiv |\lambda^i| + 2h(\lambda^i) + 1 \equiv h(\lambda^i)^2 + 2h(\lambda^i) + 1 \equiv h(\lambda^{i-1})^2 \mod p$,
- (ii) $|\lambda^{i-1}| \equiv |\lambda^i| 2h(\lambda^i) + 1 \equiv h(\lambda^i)^2 2h(\lambda^i) + 1 \equiv h(\lambda^{i-1})^2 \mod p$,

(iii)
$$|\lambda^{i-1}| \equiv |\lambda^i| \equiv 0 \equiv h(\lambda^{i-1}) \mod p.$$

The lemma then follows by induction.

Lemma 6.2. Let p = 5, $n \ge 5$ and $\lambda = \lambda^{\mathsf{M}} \vdash n$ be a JS-partition. Then there exists $i = \pm 1$ such that the following hold:

- $D^{\lambda} \downarrow_{S_{n-1}} \cong D^{\tilde{e}_0(\lambda)},$
- $\varepsilon_{\pm i}(\tilde{e}_0(\lambda)) = 1$, $\varepsilon_j(\tilde{e}_0(\lambda)) = 0$ for $j \neq \pm i$ and

$$D^{\lambda}\downarrow_{S_{n-2,2}} \cong (D^{\tilde{e}_i \tilde{e}_0(\lambda)} \otimes D^{(2)}) \oplus (D^{\tilde{e}_{-i} \tilde{e}_0(\lambda)} \otimes D^{(1^2)}),$$

• $\varepsilon_{-i}(\tilde{e}_i\tilde{e}_0(\lambda)), \varepsilon_{2i}(\tilde{e}_i\tilde{e}_0(\lambda)) = 1, \ \varepsilon_j(\tilde{e}_i\tilde{e}_0(\lambda)) = 0 \ for \ j \neq -i, 2i.$ Further $\tilde{e}_{-i}\tilde{e}_i\tilde{e}_0(\lambda) = \tilde{e}_i\tilde{e}_{-i}\tilde{e}_0(\lambda)$ and

$$D^{\lambda} \downarrow_{S_{n-3,3}} \cong (D^{\tilde{e}_{2i}\tilde{e}_{i}\tilde{e}_{0}(\lambda)} \otimes D^{(3)}) \oplus (D^{\tilde{e}_{-i}\tilde{e}_{i}\tilde{e}_{0}(\lambda)} \otimes A) \oplus (D^{\tilde{e}_{-2i}\tilde{e}_{-i}\tilde{e}_{0}(\lambda)} \otimes D^{(1^{3})}),$$

with $A \in \{D^{(2,1)}, D^{(3)} \oplus D^{(1^{3})}\}.$

Proof. Notice that from Lemma 4.8 the unique normal node of λ has residue 0. So from Lemmas 2.3 and 2.4, $D^{\lambda} \downarrow_{S_{n-1}} \cong D^{\tilde{e}_0(\lambda)}$. From Proposition 3.6 of [23] we also have that

$$D^{\tilde{e}_0(\lambda)} \downarrow_{S_{n-2}} \cong D^{\lambda} \downarrow_{S_{n-2}} \cong D^{\lambda} \downarrow_{S_{n-2}} \cong D^{\nu} \oplus D^{\nu^{\mathsf{M}}}$$

with $\nu \neq \nu^{\mathbb{M}}$. From Lemmas 2.3 and 2.4 it then follows that there exist $i \neq k$ with $\varepsilon_i(\tilde{e}_0(\lambda)), \varepsilon_k(\tilde{e}_0(\lambda)) = 1$ and $\varepsilon_j(\tilde{e}_0(\lambda)) = 0$ else. From Lemma 4.8 we have that $\tilde{e}_0(\lambda) = \tilde{e}_0(\lambda)^{\mathbb{M}}$ and then $k = -i \neq 0$.

Let *i* be the residue of the top removable node of $\tilde{e}_0(\lambda)$ is normal. We will prove that $i = \pm 1$ and that $\varepsilon_{-i}(\tilde{e}_i \tilde{e}_0(\lambda)), \varepsilon_{2i}(\tilde{e}_i \tilde{e}_0(\lambda)) = 1$ and $\varepsilon_j(\tilde{e}_i \tilde{e}_0(\lambda)) = 0$ else. Further we will prove that $\tilde{e}_{-i} \tilde{e}_i \tilde{e}_0(\lambda) = \tilde{e}_i \tilde{e}_{-i} \tilde{e}_0(\lambda)$. Up to exchanging *i* and -i, this will prove the lemma, since $\lambda = \lambda^{\mathsf{M}}$, due to Lemmas 2.3, 2.4 and 4.8 and by comparing $D^{\lambda} \downarrow_{S_{n-2,2}} \downarrow_{S_{n-3,1,2}}$ and $D^{\lambda} \downarrow_{S_{n-3,3}} \downarrow_{S_{n-3,1,2}}$.

Assume that $\varepsilon_{-i}(\tilde{e}_i\tilde{e}_0(\lambda)) = 1$. Then $\varepsilon_i(\tilde{e}_{-i}\tilde{e}_0(\lambda)) = 1$ by Lemma 4.8. Let A and B be the normal node of $\tilde{e}_0(\lambda)$ of residue i and -i respectively. Then, from Lemma 4.6, A is normal in $\tilde{e}_{-i}\tilde{e}_0(\lambda)$ of residue i and B is normal in $\tilde{e}_i\tilde{e}_0(\lambda)$ of residue -i. Since $\varepsilon_{\pm i}(\tilde{e}_0(\lambda)), \varepsilon_{\pm i}(\tilde{e}_{\pm i}\tilde{e}_0(\lambda)) = 1$, it follows that

$$\tilde{e}_{-i}\tilde{e}_{i}\tilde{e}_{0}(\lambda) = \tilde{e}_{-i}(\tilde{e}_{0}(\lambda) \setminus A) = \tilde{e}_{0}(\lambda) \setminus \{A, B\} = \tilde{e}_{i}(\tilde{e}_{0}(\lambda) \setminus B) = \tilde{e}_{i}\tilde{e}_{-i}\tilde{e}_{0}(\lambda).$$

To prove the lemma it is then enough to prove that $i = \pm 1$ and that $\varepsilon_{-i}(\tilde{e}_i \tilde{e}_0(\lambda)), \varepsilon_{2i}(\tilde{e}_i \tilde{e}_0(\lambda)) = 1$ and $\varepsilon_j(\tilde{e}_i \tilde{e}_0(\lambda)) = 0$ else. From Lemma 1.8 of [23] we have that $h(\lambda) \geq 4$ and then from Lemma 2.2 of [3] that $\lambda_1 \geq \lambda_4 + 2$, as otherwise $\lambda_1^{\mathbb{M}} = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 > \lambda_1$, contradicting $\lambda = \lambda^{\mathbb{M}}$.

Write $\lambda = (a_1^{b_1}, \ldots, a_h^{b_h})$ with $a_1 > \ldots > a_h \ge 1$ and $1 \le b_j \le 4$. From the previous part we have that $1 \le b_1 \le 3$ and that $h \ge 2$. Since λ is a JSpartition we have from Theorem D of [18] we have that $b_1 + b_2 + a_1 - a_2 \equiv 0$ mod 5. If $a_1 - a_2 = 1$ then we would have that $b_1 + b_2 = 4$, and then $\lambda_1 = a_1 = a_2 + 1 = \lambda_4$, leading to a contradiction. So $a_1 \ge a_2 + 2$. From Theorem D of [18] we also have that $(a_j^{b_j}, \ldots, a_h^{b_h})$ is a JS-partition for each $1 \le j \le h$. In particular if $\nu = (\psi_1, \ldots, \psi_l, a_j^{b_j}, \ldots, a_h^{b_h})$ is 5-regular with $\psi_l > a_j$ for some $1 \le j \le h$ and some $l \ge 1$, then the only possible normal nodes of ν are the removable nodes in the first l rows and the node $(l+b_j, a_j)$. This will be used in each of the following cases to find the normal nodes of $\tilde{e}_i \tilde{e}_0(\lambda)$. Assume first that $b_1 = 3$. Then, since λ is a JS-partition,

So in this case i = 1 and

In particular $\tilde{e}_i \tilde{e}_0(\lambda) = (a_1, (a_1 - 1)^2, a_2^{b_2}, \dots, a_h^{b_h})$ with $a_1 - 1 > a_2$. Since $(1, a_1)$ and $(3, a_1 - 1)$ are normal in $\tilde{e}_i \tilde{e}_0(\lambda)$ of residue 2 and 4 respectively while $(3 + b_2, a_2)$ is not normal, the lemma follows in this case.

Assume next that $b_1 = 2$. Then, since λ is a JS-partition,

So in this case i = 1 and

In particular $\tilde{e}_i \tilde{e}_0(\lambda) = ((a_1 - 1)^2, a_2^{b_2}, \dots, a_h^{b_h})$ with $a_1 - 1 > a_2$. Since $(2, a_1 - 1)$ and $(2+b_2, a_2)$ are normal in $\tilde{e}_i \tilde{e}_0(\lambda)$ of residue 4 and 2 respectively, the lemma follows in this case.

Assume now that $b_1 = 1$ and $a_1 \ge a_2 + 3$. Then, being λ a JS-partition,

$$\lambda = \begin{bmatrix} 3 & 4 & 0 & 1 \\ 1 & \neq 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 &$$

So in this case i = 4 and

In particular $\tilde{e}_i \tilde{e}_0(\lambda) = (a_1 - 2, a_2^{b_2}, \dots, a_h^{b_h})$ with $a_1 - 2 > a_2$. Since $(1, a_1 - 2)$ and $(1 + b_2, a_2)$ are normal in $\tilde{e}_i \tilde{e}_0(\lambda)$ of residue 3 and 1 respectively, the lemma follows in this case.

Assume last that $b_1 = 1$ and $a_1 = a_2 + 2$. Then $b_2 = 2$ (from λ being a JS-partition) and $h \ge 3$ (as λ has at least 4 rows). So

In this case i = 4 and

Since $\tilde{e}_i \tilde{e}_0(\lambda) = (a_2^3, a_3^{b_3}, \dots, a_h^{b_h})$ and the nodes $(3, a_2)$ and $(3 + b_3, a_3)$ are normal in $\tilde{e}_i \tilde{e}_0(\lambda)$ of residue 1 and 3 respectively the lemma follows also in this case.

Lemma 6.3. Let p = 5 and $n \equiv \pm 1 \mod 5$ with $n \geq 6$. If $\lambda = \lambda^{\mathbb{M}} \vdash n$ then there exists $\psi \in \operatorname{Hom}_{S_n}(M^{(n-3,1^3)}, \operatorname{End}_F(D^{\lambda}))$ which does not vanish on $S^{(n-3,1^3)}$.

Proof. It follows from Lemmas 4.3 and 6.2.

and a submodule isomorphic to $D^{(n)}$). The lemma then follows by Lemma 7.1 \square

Theorem 7.3. Let p = 5. Let λ, μ be 5-regular partitions with $\lambda = \lambda^{\mathbb{M}}$ and $\mu \neq \mu^{\mathbb{M}}$ such that E^{λ}_{\pm} and E^{μ} are not 1-dimensional. If $E^{\lambda}_{\pm} \otimes E^{\mu}$ is irreducible then λ is a JS-partition and $\mu \in \{(n-1,1), (n-1,1)^{\mathbb{M}}\}.$

Proof. For n < 7 the lemma follows by considering each case separately. So we can assume that $n \geq 8$. By Theorem 7.2 we have that λ is a JSpartition. So $n \equiv 0, 1$ or 4 mod 5 by Lemma 6.1. From Lemma 1.8 of [23] we have that $h(\lambda) > 4$. Further from Lemmas 3.1, 4.1 and 4.5 there exist $\psi_{\lambda,2}: M^{(n-2,2)} \to \operatorname{End}_F(D^{\lambda}) \text{ and } \psi_{\mu,2}: M^{(n-2,2)} \to \operatorname{End}_F(D^{\mu}) \text{ which do not}$ vanish on $S^{(n-2,2)}$.

If $\mu, \mu^{\mathbb{M}} \neq (n-k,k)$ with k = 1 or $n-2k \leq 3$ then, from Corollaries 3.9 and 4.12 of [10] and Lemma 3.1, for some $j \in \{3,4\}$ there exist $\psi_{\lambda,j}$:

25

In this section we will prove Theorem 1.1 in the case where one of the two irreducible A_n -modules D_1, D_2 splits when reduced to A_n , while the other doesn't.

Lemma 7.1. Let $p \geq 3$ and $\lambda, \mu \vdash n$ be p-regular. If $\lambda = \lambda^{\mathbb{M}}, \mu \neq \mu^{\mathbb{M}}$ and $E_{\pm}^{\lambda} \otimes E^{\mu}$ is irreducible then $D^{\lambda} \otimes D^{\mu} \cong D^{\nu} \oplus D^{\nu^{\mathsf{M}}}$ for some $\nu \neq \nu^{\mathsf{M}}$. In particular

$$\dim \operatorname{Hom}_{S_n}(\operatorname{End}_F(D^{\lambda}), \operatorname{End}_F(D^{\mu})) = 2.$$

Proof. See Lemma 3.1 of [7].

7

Split-non-split case

Theorem 7.2. Let $p \geq 3$, $n \geq 6$ and $\lambda, \mu \vdash n$ be p-regular. If $\lambda = \lambda^{M}$, $\mu \neq \mu^{\mathbb{M}}, E_{\pm}^{\lambda}$ and E^{μ} are not 1-dimensional and $E_{\pm}^{\lambda} \otimes E^{\mu}$ is irreducible then λ is a JS-partition.

Proof. From Lemmas 3.1, 4.1, 4.5 there exist $\psi_{\mu} : M^{(n-2,2)} \to \operatorname{End}_{F}(D^{\lambda})$ which does not vanish on $S^{(n-2,2)}$.

If λ is not a JS-partition, from Lemmas 3.1, 4.1, 4.9, 4.11 and 4.12 there exist $\psi_{\lambda,1}, \psi_{\lambda,2} : M^{(n-2,2)} \to \operatorname{End}_F(D^{\lambda})$ such that any non-zero linear combination of $\psi_{\lambda,1}$ and $\psi_{\lambda,2}$ does not vanish on $S^{(n-2,2)}$.

So from Lemma 4.2 it follows that

$$\dim \operatorname{Hom}_{\Sigma_n}(\operatorname{End}_F(D^{\lambda}), \operatorname{End}_F(D^{\mu})) \geq 3$$

$$\Delta_n$$
 (1 ()) 1 ()) =

if
$$\lambda$$
 is not a JS-partition (End_F(D^{λ}) and End_F(D^{μ}) also have a quotient

 $M^{(n-j,j)} \to \operatorname{End}_F(D^{\lambda})$ and $\psi_{\mu,j} : M^{(n-j,j)} \to \operatorname{End}_F(D^{\mu})$ which do not vanish on $S^{(n-j,j)}$.

If $\mu, \mu^{\mathbb{M}} = (n-k,k)$ with $n-2k \leq 3$ and $n \equiv 0 \mod 5$ then there exist $\psi_{\lambda,2^2} : M^{(n-4,2^2)} \to \operatorname{End}_F(D^{\lambda})$ and $\psi_{\mu,2^2} : M^{(n-4,2^2)} \to \operatorname{End}_F(D^{\mu})$ which do not vanish on $S^{(n-4,2^2)}$ by Lemmas 3.6 and 5.3.

If $\mu, \mu^{\mathbb{M}} = (n-k,k)$ with $n-2k \leq 3$ and $n \equiv \pm 1 \mod 5$ then there exist $\psi_{\lambda,1^3} : M^{(n-3,1^3)} \to \operatorname{End}_F(D^{\lambda})$ and $\psi_{\mu,1^3} : M^{(n-3,1^3)} \to \operatorname{End}_F(D^{\mu})$ which do not vanish on $S^{(n-3,1^3)}$ by Lemmas 5.2 and 6.3.

In either of these cases it follows from Lemma 4.2 that

$$\dim \operatorname{Hom}_{\Sigma_n}(\operatorname{End}_F(D^{\lambda}), \operatorname{End}_F(D^{\mu})) \geq 3$$

and so from Lemma 7.1 that $E^{\lambda} \pm \otimes E^{\mu}$ is not irreducible.

Theorem 7.4. Let $p \geq 3$ and λ be a p-regular partitions with $\lambda = \lambda^{\mathbb{M}}$. Then $E_{\pm}^{\lambda} \otimes E^{(n-1,1)}$ is irreducible if and only if $n \not\equiv 0 \mod p$ and λ is a JS-partition. In this case, if ν is obtained from λ by removing the top removable node and adding the bottom addable node, then $E_{\pm}^{\lambda} \otimes E^{(n-1,1)} \cong E^{\nu}$.

Proof. See Theorem 3.3 of [7] and Lemma 6.1.

8 Double-split case

In this section we will prove Theorem 1.1 in the case where both irreducible A_n -modules D_1, D_2 split when reduced to A_n .

Lemma 8.1. Let λ, μ be p-regular partitions with $\lambda = \lambda^{\mathbb{M}}$ and $\mu = \mu^{\mathbb{M}}$. Also let $\varepsilon_1, \varepsilon_2 \in \{\pm\}$. If $E_{\varepsilon_1}^{\lambda} \otimes E_{\varepsilon_2}^{\mu}$ is irreducible then

dim Hom_{A_n}(Hom_F($E_{\varepsilon_1}^{\lambda}, E_{\delta_1}^{\lambda}$), Hom_F($E_{\delta_2}^{\mu}, E_{\varepsilon_2}^{\mu}$)) ≤ 1

for any combination $\delta_1, \delta_2 \in \{\pm\}$.

Proof. See Lemma 3.4 of [7] (and its proof).

Lemma 8.2. Let $p \geq 3$ and $n \geq 4$. Let λ, μ be p-regular partitions with $\lambda = \lambda^{\mathsf{M}}$ and $\mu = \mu^{\mathsf{M}}$. Assume that $E_{\varepsilon_1}^{\lambda} \otimes E_{\varepsilon_2}^{\mu}$ is irreducible for some $\varepsilon_1, \varepsilon_2 \in \{\pm\}$. Then, up to exchange of λ and μ ,

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) = \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 1,$$

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\mu} \downarrow_{S_{n-2,2}}) \leq \dim \operatorname{End}_{S_{n-1}}(D^{\mu} \downarrow_{S_{n-1}}) + 2.$$

Proof. Notice first that $(n) > (n)^{\mathbb{M}}$ and $(n-2,2) > (n-2,2)^{\mathbb{M}}$ (this follows from Lemma 1.8 of [23] and from $n \ge 4$, so that $(n-2,2)^{\mathbb{M}} \neq (n)$).

From Lemmas 4.1 and 4.13

$$\dim \operatorname{End}_{S_{\alpha}}(D^{\lambda} \downarrow_{S_{\alpha}}) = \dim \operatorname{Hom}_{S_{n}}(M^{\alpha}, \operatorname{End}_{F}(D^{\lambda}))$$
$$= \dim \operatorname{Hom}_{A_{n}}(M^{\alpha}, \operatorname{Hom}_{F}(E^{\lambda}_{+} \oplus E^{\lambda}_{-}, E^{\lambda}_{\varepsilon_{1}}))$$

and similarly for μ .

From Lemma 4.5 we have that

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) \ge \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 1,$$

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\mu} \downarrow_{S_{n-2,2}}) \ge \dim \operatorname{End}_{S_{n-1}}(D^{\mu} \downarrow_{S_{n-1}}) + 1.$$

Assume first that

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) \ge \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 2,$$

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\mu} \downarrow_{S_{n-2,2}}) \ge \dim \operatorname{End}_{S_{n-1}}(D^{\mu} \downarrow_{S_{n-1}}) + 2.$$

Then, from Lemmas 3.1 and 4.2, we have that

 $\dim \operatorname{Hom}_{A_n}(\operatorname{Hom}_F(E_{\varepsilon_1}^{\lambda}, E_+^{\lambda} \oplus E_-^{\lambda}), \operatorname{Hom}_F(E_+^{\mu} \oplus E_-^{\mu}, E_{\varepsilon_2}^{\lambda}) \ge 1 + 2 \cdot 2 = 5,$

contradicting that $E_{\varepsilon_1}^{\lambda} \otimes E_{\varepsilon_2}^{\mu}$ is irreducible, due to Lemma 8.1. Up to exchange we can then assume that

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) = \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 1,$$

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\mu} \downarrow_{S_{n-2,2}}) \ge \dim \operatorname{End}_{S_{n-1}}(D^{\mu} \downarrow_{S_{n-1}}) + 3.$$

Then, from Lemma 4.1 and by self-duality of $M^{(n-1,1)}$ and $M^{(n-2,2)}$,

$$\dim \operatorname{Hom}_{A_n}(\operatorname{Hom}_F(E_{\varepsilon_1}^{\lambda}, E_+^{\lambda} \oplus E_-^{\lambda}), M^{(n-2,2)}) = \dim \operatorname{Hom}_{A_n}(\operatorname{Hom}_F(E_{\varepsilon_1}^{\lambda}, E_+^{\lambda} \oplus E_-^{\lambda}), M^{(n-1,1)}) + 1$$

and

$$\dim \operatorname{Hom}_{A_n}(M^{(n-2,2)}, \operatorname{Hom}_F(E^{\mu}_+ \oplus E^{\mu}_-, E^{\mu}_{\varepsilon_2})) \\ \geq \dim \operatorname{Hom}_{A_n}(M^{(n-1,1)}, \operatorname{Hom}_F(E^{\mu}_+ \oplus E^{\mu}_-, E^{\lambda}_{\varepsilon_2})) + 3$$

In particular there exist $\delta_1, \delta_2 \in \{\pm\}$ with

$$\dim \operatorname{Hom}_{A_n}(\operatorname{Hom}_F(E_{\delta_1}^{\lambda}, E_{\varepsilon_1}^{\lambda}), M^{(n-2,2)}) \\\geq \dim \operatorname{Hom}_{A_n}(\operatorname{Hom}_F(E_{\delta_1}^{\lambda}, E_{\varepsilon_1}^{\lambda}), M^{(n-1,1)}) + 1$$

and

$$\dim \operatorname{Hom}_{A_n}(M^{(n-2,2)}, \operatorname{Hom}_F(E^{\mu}_{\delta_2}, E^{\mu}_{\varepsilon_2})) \\ \geq \dim \operatorname{Hom}_{A_n}(M^{(n-1,1)}, \operatorname{Hom}_F(E^{\mu}_{\delta_2}, E^{\lambda}_{\varepsilon_2})) + 2.$$

From Lemmas 2.1, 3.1 and 4.2 it then follows that

$$\dim \operatorname{Hom}_{A_n}(\operatorname{Hom}_F(E_{\varepsilon_1}^{\lambda}, E_{\delta_1}^{\lambda}), \operatorname{Hom}_F(E_{\delta_2}^{\mu}, E_{\varepsilon_2}^{\lambda}) \ge 0+2,$$

again contradicting that $E_{\varepsilon_1}^{\lambda} \otimes E_{\varepsilon_2}^{\mu}$ is irreducible, due to Lemma 8.1.

Theorem 8.3. Let p = 5. If $\lambda, \mu \vdash n$ are 5-regular partitions with $\lambda = \lambda^{\mathsf{M}}$ and $\mu = \mu^{\mathsf{M}}$ then $E_{\varepsilon_1}^{\lambda} \otimes E_{\varepsilon_2}^{\mu}$ is not irreducible for any choice of $\varepsilon_1, \varepsilon_2 \in \{\pm\}$, unless $n \leq 4$ in which case E_{\pm}^{λ} and E_{\pm}^{μ} are 1-dimensional.

Proof. For $n \leq 7$ the lemma can be proved by considering each case separately.

So we can assume that $n \ge 8$. Notice first that $(n - a, a) > (n - a, a)^{\mathbb{M}}$ for $0 \le a \le 4$ (this follows from Lemma 1.8 of [23] and from $n \ge 8$, so that $h((n)^{\mathbb{M}}) = 4$

From Lemma 1.8 of [23] we have that $h(\lambda), h(\mu) \ge 4$. So, from Corollary 3.9 of [10],

dim Hom_{S_n}(
$$M^{(n-3,3)}$$
, End_F(D^{λ})) > dim Hom_{S_n}($M^{(n-2,2)}$, End_F(D^{λ})),
dim Hom_{S_n}($M^{(n-4,4)}$, End_F(D^{λ})) > dim Hom_{S_n}($M^{(n-3,3)}$, End_F(D^{λ})),
dim Hom_{S_n}($M^{(n-3,3)}$, End_F(D^{μ})) > dim Hom_{S_n}($M^{(n-2,2)}$, End_F(D^{μ})),
dim Hom_{S_n}($M^{(n-4,4)}$, End_F(D^{μ})) > dim Hom_{S_n}($M^{(n-3,3)}$, End_F(D^{μ})).

From Lemma 8.2 we can assume that

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) = \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 1.$$

Assume first that

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\mu}{\downarrow}_{S_{n-2,2}}) > \dim \operatorname{End}_{S_{n-1}}(D^{\mu}{\downarrow}_{S_{n-1}}) + 1.$$

Then from Lemmas 3.1, 4.1, 4.2 and 4.13 we have that

dim $\operatorname{Hom}_{S_n}(\operatorname{Hom}_F(E_{\varepsilon_1}^{\lambda}, E_+^{\lambda} \oplus E_-^{\lambda}), \operatorname{Hom}_F(E_+^{\mu} \oplus E_-^{\mu}, E_{\varepsilon_2}^{\mu})) \ge 1 + 0 + 2 + 1 + 1 = 5.$ In particular, from Lemma 8.1, $E_{\pm}^{\lambda} \otimes E_{\pm}^{\mu}$ is not irreducible. So we may now assume (from Lemma 4.5) that

$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\lambda} \downarrow_{S_{n-2,2}}) = \dim \operatorname{End}_{S_{n-1}}(D^{\lambda} \downarrow_{S_{n-1}}) + 1,$$
$$\dim \operatorname{End}_{S_{n-2,2}}(D^{\mu} \downarrow_{S_{n-2,2}}) = \dim \operatorname{End}_{S_{n-1}}(D^{\mu} \downarrow_{S_{n-1}}) + 1.$$

From Lemmas 4.9, 4.11 and 4.12 we then have that λ and μ are JS-partitions.

From Lemma 6.2 we have that $(E_{+}^{\lambda} \oplus E_{-}^{\lambda})\downarrow_{A_{n-2,2}} \cong D^{\lambda}\downarrow_{A_{n-2,2}}$ has only 2 composition factors (since so does $D^{\lambda}\downarrow_{S_{n-2,2}}$ and none of these composition factors is fixed under tensoring with sign). In particular $E_{\varepsilon_{1}}^{\lambda}\downarrow_{A_{n-2,2}}$ is simple. From Lemma 1.1 of [7] and from Lemma 6.2 we have that $(E_{+}^{\lambda} \oplus E_{-}^{\lambda})\downarrow_{A_{n-3,3}} \cong$ $D^{\lambda}\downarrow_{A_{n-3,3}}$ is semisimple and has at least 3 composition factors. In particular $E_{\varepsilon_{1}}^{\lambda}\downarrow_{A_{n-3,3}}$ is semisimple with at least 2 composition factors. So

$$\dim \operatorname{End}_{A_{n-3,3}}(E_{\varepsilon_1}^{\lambda}\downarrow_{A_{n-3,3}}) > \dim \operatorname{End}_{A_{n-2,2}}(E_{\varepsilon_1}^{\lambda}\downarrow_{A_{n-2,2}}).$$

Similarly

$$\dim \operatorname{End}_{A_{n-3,3}}(E^{\mu}_{\varepsilon_2} \downarrow_{A_{n-3,3}}) > \dim \operatorname{End}_{A_{n-2,2}}(E^{\mu}_{\varepsilon_2} \downarrow_{A_{n-2,2}})$$

From Lemmas 2.1, 3.1 and 4.2 it then follows that

 $\dim \operatorname{End}_{A_n}(E_{\varepsilon_1}^{\lambda} \otimes E_{\varepsilon_2}^{\mu}) = \dim \operatorname{Hom}_{A_n}(\operatorname{End}_F(E_{\varepsilon_1}^{\lambda}), \operatorname{End}_F(E_{\varepsilon_2}^{\mu})) \ge 1 + 0 + 1 = 2,$ so that again $E_{\varepsilon_1}^{\lambda} \otimes E_{\varepsilon_2}^{\mu}$ is not irreducible. \Box

9 Acknowledgements

While finishing writing this paper the author was supported by the DFG grant MO 3377/1-1. The author was also supported by the NSF grant DMS-1440140 and Simons Foundation while in residence at the MSRI during the Spring 2018 semester.

References

- M. Aschbacher. On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), 469-514.
- [2] M.Aschbacher, L. Scott. Maximal subgroups of finite groups. J. Algebra 92 (1985), 44-80.

- [3] A.A. Baranov, A.S. Kleshchev, A.E. Zalesskii, Asymptotic results on modular representations of symmetric groups and almost simple modular group algebras, J. Algebra 219 (1999), 506-530.
- [4] C. Bessenrodt. On mixed products of complex characters of the double covers of the symmetric groups. *Pacific J. Math.* 199 (2001) 257-268.
- [5] C. Bessenrodt, A.S. Kleshchev, On Kronecker products of complex representations of the symmetric and alternating groups, *Pacific J. Math.* 190 (1999), 201-223.
- [6] C. Bessenrodt, A.S. Kleshchev, On tensor products of modular representations of symmetric groups, *Bull. London Math. Soc.* 32 (2000), 292-296.
- [7] C. Bessenrodt, A.S. Kleshchev, Irreducible tensor products over alternating groups, J. Algebra 228 (2000), 536-550.
- [8] C. Bessenrodt, A.S. Kleshchev. On Kronecker products of spin characters of the double covers of the symmetric groups. *Pacific J. Math.* 198 (2001), 295-305.
- [9] C. Bessenrodt, J.B. Olsson, Residue symbols and Jantzen-Seitz partitions, J. Combin. Theory Ser. A 81 (1998), 201-230.
- [10] J. Brundan, A.S. Kleshchev, Representations of the symmetric group which are irreducible over subgroups, *J. reine angew. Math.* 530 (2001), 145-190.
- [11] B. Ford, Irreducible representations of the alternating group in odd characteristic, Proc. Amer. Math. Soc. 125 (1997), 375-380.
- [12] J. Graham, G. James, On a conjecture of Gow and Kleshchev concerning tensor products, J. Algebra 227 (2000), 767-782.
- [13] R. Gow, A.S. Kleshchev, Connections between the representations of the symmetric group and the symplectic group in characteristic 2, J. Algebra 221 (1999), 60-89.
- [14] G.D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Mathematics, vol. 682, Springer, NewYork/Heidelberg/Berlin, 1978.

- [15] G.D. James, The representation theory of the symmetric groups, pp 111–126 in *The Arcata Conference on Representations of Finite Groups* (Arcata, Calif., 1986), Proc. Sympos. Pure Math., 47, Part 1, Amer. Math. Soc., Providence, RI, 1987.
- [16] G. James, A. Williams, Decomposition numbers of symmetric groups by induction, J. Algebra 228 (2000), 119-142.
- [17] J.C. Jantzen and G.M. Seitz, On the representation theory of the symmetric groups, Proc. London Math. Soc. 65 (1992), 475-504.
- [18] A.S. Kleshchev, On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups, I, *Proc. Lond. Math. Soc.* (3) 69 (1994), 515-540.
- [19] A.S. Kleshchev, Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux, J. London Math. Soc. (2) 54 (1996), 25-38.
- [20] A.S. Kleshchev, Branching rules for modular representations of symmetric groups, IV, J. Algebra 201 (1998), 547-572.
- [21] A.S. Kleshchev, Linear and Projective Representations of Symmetric Groups, Cambridge University Press, Cambridge, 2005.
- [22] A.S. Kleshchev, J. Sheth, Representations of the symmetric group are reducible over singly transitive subgroups, *Math. Z.* 235 (2000), 99-109.
- [23] A.S. Kleshchev, J. Sheth, Representations of the alternating group which are irreducible over subgroups, *Proc. Lond. Math. Soc.* (3) 84 (2002), 194-212.
- [24] A.S. Kleshchev, P.H. Tiep. On restrictions of modular spin representations of symmetric and alternating groups. *Trans. Amer. Math. Soc.* 356 (2004), 1971-1999.
- [25] A.S. Kleshchev, P.H. Tiep. Representations of the general linear groups which are irreducible over subgroups. *Amer. J. Math.* 132 (2010), 425-473.
- [26] K. Magaard, P.H. Tiep. Irreducible tensor products of representations of finite quasi-simple groups of Lie type. *Modular representation theory* of finite groups, de Gruyter, Berlin (2001) 239-262.

- [27] S. Martin, Schur algebras and representation theory, Cambridge Tracts in Mathematics, 112. Cambridge University Press, Cambridge, 1993.
- [28] L. Morotti, Irreducible tensor products for symmetric groups in characteristic 2, Proc. Lond. Math. Soc. (3) 116 (2018), 1553-1598.
- [29] L. Morotti, Irreducible tensor products for alternating groups in characteristic 2 and 3, in preparation.
- [30] I. Zisser, Irreducible products of characters in A_n , Israel J. Math. 84 (1993), 147-151.