
Computing with subgroups of the modular group

Markus Kirschmer
Lehrstuhl D für Mathematik,
RWTH Aachen University,

Templergraben 64, 52062 Aachen, Germany

Charles Leedham-Green
School of Mathematical Sciences,

Queen Mary College University of London,
Mile End Road, London E1 4NS, UK

July 4, 2013

Abstract

We give several algorithms for finitely generated subgroups of the mod-
ular group PSL2(Z), given by sets of generators. First, we present an al-
gorithm to check whether a finitely generated subgroup H has finite index
in the full modular group. Then we discuss how to parametrise the right
cosets of H in PSL2(Z), whether the index is finite or not. Further, we
explain how an element in H can be written as a word in the given set of
generators of H.

1 Introduction

There exist several ways to describe a finitely generated subgroup H of the
modular group PSL2(Z). First of all, as a set of generating matrices or a set of
generators given as words in some distinguished generators of PSL2(Z). Another
way is as follows. The group PSL2(Z) acts on the right cosets of H in PSL2(Z)
by right multiplication. So if index k := [PSL2(Z) : H] of H in PSL2(Z) is
finite, we obtain a permutation representation from PSL2(Z) to the symmetric
group on k letters.

In [3] T. Hsu gave a very efficient criterion to decide whether H is a con-
gruence subgroup (i.e. it contains the kernel of the canonical epimorphism
PSL2(Z) 7→ PSL2(Z/NZ) for some integer N ≥ 2) provided that H is given by
a permutation representation. However, if H is given by a finite set of genera-
tors, it is not obvious how to decide even whether the index [PSL2(Z) : H] is
finite or not.

MSC 2010: 20-04, 20H05

1

In the present paper, algorithms are presented to solve these problems not
only for PSL2(Z) but in a slightly more general setting:

Let G = 〈g1, . . . , ge〉 be a finitely generated group. An element g ∈ G is
always assumed to be given as a word in the generators g1, . . . , ge if not stated
otherwise. Then ‖g‖ denotes the length of this word.

Suppose further that the following conditions hold.

1. G contains a nonabelian normal subgroup N of finite index that is free of
finite rank, r say. Let {x1, . . . , xr} be a basis of N .

2. There exists a transversal (t1 = 1, t2, . . . , tf) of N in G (i.e. G is the
disjoint union of the cosets tiN = Nti) and an Algorithm (A) that, given
g ∈ G, returns some A(g) ∈ {t1, . . . , tf} such that gN = A(g)N .

3. There exists an Algorithm (B) that, given g ∈ N (as a word in g1, . . . , ge),
writes g as a word B(g) in {x1, . . . , xr}.

Theorem 1.1. Let H = 〈h1, . . . , hm〉 be a finitely generated subgroup of G.
Then there exist a transversal SH for the right cosets of H in G and algorithms
to solve the following problems.

1. Decide if H has finite index in G and, if so, compute the index [G : H].

2. Given g ∈ G, return s ∈ SH such that Hs = Hg.

3. Given g ∈ H, write g as a word in {h1, . . . , hm}.

In particular, part 2 of the above theorem implies that membership in sub-
groups of G is decidable. Further, these algorithms have been implemented by
the authors in Magma (see [2]) and can be obtained from the homepage of the
first author.

Group elements are assumed to be represented by words in some generators.
Let us assume that copying or deleting a single generator or comparing two
generators takes constant time. In this model, forming the product of two
words of length ≤ n takes time O(n).

Theorem 1.2. Suppose the notation of Theorem 1.1 and suppose further, that
Algorithms (A) and (B) satisfy the following conditions.

• Algorithms (A) and (B) run in polynomial time in ‖g‖ when applied to
some g ∈ G.

• There exists some constant c ∈ N such that, for all g ∈ N , the length of
B(g) as a word in {x1, . . . , xr} is at most c · ‖g‖.

Then the first two problems of Theorem 1.1 can be solved in polynomial time in
c and the size of the input.

It is worthwile to mention that a constant c as in the previous theorem need
not exist. Even in the case where G = N is free, writing elements given as

2

words in one set of generators as words in another set of generators might have
exponential growth as Example 3.7 shows.

The paper is organised as follows. In Section 2 the concept of Nielsen reduced
sets is recalled. Section 3 contains the algorithms claimed in Theorem 1.1 as
well as a proof of Theorem 1.2. Finally Section 4 applies the above theorems to
the special linear group SL2(Z) and the modular group PSL2(Z).

2 Free groups

In this section we recall the concept of Nielsen generators for free groups.
Let F be a free group with basis {x1, . . . , xr} for some r > 1. A word in

these generators is said to be reduced if it does not contain a substring of the
form xix

−1
i or x−1i xi. Every element g ∈ F is represented by a unique reduced

word ρ(g) in the xi, and we denote by |g| the length of the word ρ(g). We
assume that each element in F is given as a reduced word in the xi if not stated
otherwise.

Definition 1. 1. If V ⊂ F , we write V ± for the set V ∪ {v−1 | v ∈ V }.

2. A finite subset V of F is said to be Nielsen reduced if the following con-
ditions hold.

• 1 /∈ V ,

• gh = 1 or |gh| > |g| for all g, h ∈ V ±,

• gh = 1 or hi = 1 or |ghi| > |g| − |h|+ |i| for all g, h, i ∈ V ±.

3. Let V be a Nielsen reduced set. Suppose v := gh ∈ V ± such that 2|g| =
2|h| = |v|. Then h is said to be isolated if v is the only element in V ±

with terminal segment h.

4. A Nielsen reduced set V is said to be normalised if the right halves of all
elements of even length in V are isolated.

5. If V is a normalised Nielsen reduced set then T (V) denotes the set of all
g ∈ F such that

• g is an initial segment of some v ∈ V such that |g| ≤ |v|/2 or

• g−1 is a terminal segment of some v ∈ V such that |g| < |v|/2.

Note that we do allow g to be the identity element of F . Thus T (V) will
never be empty.

Every finitely generated subgroup of F is generated by some normalised
Nielsen reduced set V . To state an algorithm that computes such a set V , one
needs to define a total order < on F .

Given g, h ∈ F as reduced words in the xi, we define

g < h ⇐⇒ |g| < |h| or (|g| = |h| and g <l h)

3

where <l denotes the lexicographical order satisfying

x1 <l x
−1
1 <l x2 <l x

−1
2 <l

The minimum of two elements of F shall always refer to the minimum with
respect to <.

Algorithm 2.1 ([1, Algorithm 1]). Given a finite set W ⊂ F , this algorithm
computes a normalised Nielsen reduced set V ⊂ F such that 〈W 〉 = 〈V 〉.

1. Replace each w ∈ W by min{ρ(w), ρ(w−1)}. Then remove all copies of
the empty word from the set W .

2. If there exist v 6= w ∈ W and µ, ν ∈ {±1} such that |vµwν | < |v|,
then: if vµwν is the identity, remove v from W , otherwise replace v by
min{ρ(vµwν), ρ(w−νv−µ)} and repeat this step.

3. Take the least element v = pq−1 ∈W (with respect to <) such that:

• 2|p| = 2|q| = |v|
• There exists some w ∈ W with v 6= w that has q as initial or q−1 as

terminal segment.

If v exists, replace w by{
min{ρ(vw), ρ(w−1v−1)} if q is the initial segment of w,

min{ρ(vw−1), ρ(wv−1)} otherwise

and goto 2. If v does not exist, return V := W .

As explained in [1, pp 65–66], the algorithm gives correct output and runs
in time O(n4 · (#W)2) where n denotes the length of the largest word in W .

Theorem 2.2 (Karrass and Solitar). Let F be a free group of finite rank r > 1
and let V be a finite normalised Nielsen reduced subset of F . Further let T (V)
be as in Definition 1. Then 〈V 〉 has finite index in F if and only if

#T (V) · (r − 1) = #V − 1 .

Further, if the index is finite, it equals #T (V).

Proof. See [4, Theorem 4].

It is clear that, given V , one can compute the set T (V) in time O(n3 ·(#V)2)
where n denotes the length of the largest word in V .

Lemma 2.3. Suppose V ⊂ F is a normalised Nielsen reduced set. Then

S(V) := {g ∈ F | |vg| > |g| for all v ∈ V and |v−1g| ≥ |g| for all v ∈ V }

is a system of representatives for the right cosets of 〈V 〉 in F .

4

Proof. See for example [1, Lemma 3.1].

Algorithm 2.4. Given g ∈ F and a normalised Nielsen reduced set V ⊂ F ,
this algorithm returns a word w in the elements of V ±, and s ∈ S(V), such that
g = ws.

1. Initialize (w, g) = (1, ρ(g)).

2. While there exists some v ∈ V ± such that |vg| < |g| or there exists some
v ∈ V such that |vg| = |g|, replace (w, g) by (wv−1, ρ(vg)).

3. Return w and s := g.

It is clear that, if the algorithm terminates, then the returned values s and
w satisfy g = ws and s ∈ S(V). Suppose that g is given as a (not necessarily
reduced) word in the xi of length at most n. Then the algorithm terminates
after at most n+1 iterations as explained in [1, page 69]. Since the computation
of ρ(g) runs in time O(n) and each iteration in step 2 has cost O(n ·#V), the
total cost is O(n2 ·#V).

3 Algorithms

Assume the notation of Section 1. Then G acts on the cosets N, t2N, . . . , tfN by
left multiplication. Clearly, the stabiliser of N under the action of the subgroup
H ⊂ G equals N ∩H and the union of the cosets in the H-orbit of N is HN .

As in the case of free groups, the algorithms claimed in Theorem 1.1 require
some preprocessing stage which we state first.

Algorithm 3.1 (Preprocessing).

1. Using orbit enumeration and Algorithm (A), compute the following.

(a) A set W of generators of N ∩H as words in {h1, . . . , hm}.
(b) For each 1 ≤ j ≤ f , store

ij = min{1 ≤ i ≤ f | tjN and tiN are in the same H-orbit}

and some h̃j as a word in {h1, . . . , hf} such that tjN = h̃jtijN .

2. Using Algorithm (B), write the elements of W ⊂ N as words in the xi.

3. Compute a normalised Nielsen reduced set V (as words in the xi) gener-
ating 〈W 〉 = N ∩H with Algorithm 2.1.

Remark 3.2. Suppose the situation of the previous algorithm and let n =∑m
i=1 ‖hi‖ +

∑f
j=1 ‖tj‖. Further suppose that Algorithms (A) and (B) satisfy

the assumptions of Theorem 1.2.

5

• The orbit enumeration in step 1 multiplies each tj with each hi. Since
both elements have length at most n, the costs of this step are O(nmf).
Further, this step makes fm calls to Algorithm (A), each time with words
of length ≤ 2n as input. The elements h̃j are products of at most f
elements from {h±1i | 1 ≤ i ≤ m}.

• Let k := #{1 ≤ j ≤ f | ij = 1}. The second step calls Algorithm (B) at
most #W ≤ km ≤ fm times with input words of length at most fn. The
words returned by Algorithm (B) thus have length ≤ fnc in {x1, . . . , xr}.

• The third step runs in time O((fnc)4(fm)2) as explained in Section 2.

Thus the preprocessing runs in polynomial time in c and the size of the input.

We are now ready to give the first algorithm claimed in Theorem 1.1.

Algorithm 3.3. The following algorithm computes the index of H in G.

1. From the preprocessing, get k := #{1 ≤ j ≤ f | ij = 1} and V .

2. From V , compute the set T (V) as in Definition 1.

3. Using Theorem 2.2, decide if N ∩H = 〈V 〉 has finite index in N . If not,
return ∞. Otherwise return #T (V) · f/k.

Proof. The group H acts on G/N . The stabiliser of N is N ∩H. Thus k equals
the index of N ∩H in H. Further,

[G : H] · k = [G : H] · [H : N ∩H] = [G : N] · [N : N ∩H] = f · [N : N ∩H] .

Now if [N : N ∩H] is finite, it equals #T (V) by Theorem 2.2.

As an immediate consequence one obtains the following corollary.

Corollary 1. If H = 〈h1, . . . , hm〉 is a finite index subgroup of G then

[G : H] < mf/(r − 1) .

Proof. Assume the notation of Algorithm 3.3. Then [G : H] = f/k · #T (V)
(loc. cit.), and Theorem 2.2 shows that #T (V) = (#V − 1)/(r − 1). Further
#V ≤ #W ≤ km by Remark 3.2. Thus

[G : H] ≤ f/k · (km− 1)/(r − 1) < fm/(r − 1) .

Now we turn to the other algorithms of Theorem 1.1. For this, we need to
define a system of representatives of the right cosets of H in G similar to Lemma
2.3.

Lemma 3.4. Suppose the notation of Algorithm 3.1. If I = {ij | 1 ≤ j ≤ f}
then

SH := {s · ti | s ∈ S(V), i ∈ I}
is a transversal for the right cosets of H in G. Here S(V) is defined as in
Lemma 2.3.

6

Proof. Let g ∈ G. By the choice of I, there exists some h ∈ H and some i ∈ I
such that gN = htiN = hNti. Thus h−1gt−1i ∈ N can be written as xs with
x ∈ 〈V 〉 = H ∩ N and s ∈ S(V) by Lemma 2.3. Hence g = (hx)sti ∈ Hsti.
So SH represents all cosets. It remains to show that each coset is represented
only once. So assume s, s′ ∈ S(V) and i, k ∈ I such that Hsti = Hs′tk. Then
HtiN = HNti = HNtk = HtkN and the choice of I implies i = k. Hence
s′s−1 ∈ H ∩N and Lemma 2.3 shows s = s′.

The above proof immediately gives rise to the following algorithm which
solves the second problem of Theorem 1.1.

Algorithm 3.5. Given g ∈ G, the algorithm returns s ∈ SH such that Hg =
Hs.

1. Using Algorithm (A), compute 1 ≤ j ≤ f such that gN = tjN .

2. From the preprocessing, get V, ij and h̃j.

3. Call Algorithm (B) to write h̃−1j gt−1ij ∈ N as a word w in {x1, . . . , xr}.

4. Using Algorithm 2.4, write w as vs′ with v a word in V and s′ ∈ S(V).

5. Write s′tij as a word s in {g1, . . . , ge} and return s.

Remark 3.6. The element g ∈ G of the above algorithm lies in H if and only
if s = 1 if and only if ij = 1 and s′ = 1. The latter condition can easily be
checked since s′ is given as a word in the basis {x1, . . . , xr}. Further, if g ∈ H
then g = h̃jv. The element v is given as a word in V . If one keeps track of
the substitutions made in Algorithm 2.1 one can express each element in V as
a word in W . Since elements in W are given as words in {h1, . . . , hm}, one can
thus write g = h̃jv as a word in the given generating set {h1, . . . , hm} of H.
This solves Problem 3 of Theorem 1.1. Unfortunately, writing the elements in V
as words in W may produce words of exponential size as the following example
shows.

Example 3.7 ([1, page 66]). Let N be freely generated by x and y. Consider the
two sequences

vj = xjyx1−j for j ∈ N, w1 = xy and wi =

{
xwi−1y if i is even,

xwi−1x
−1 if i > 1 is odd.

For m ∈ N, let Wm := {wi | 1 ≤ i ≤ m} and Vm := {vi | 1 ≤ i ≤ m}.
Then Wm consists of m elements each of length at most 2m as words in {x, y}.
Further, Vm is normalised Nielsen reduced and by induction, it follows that
vi = wi(vi−1vi−3vi−5 . . .)

−1 for all i ≥ 1.
Thus Vm and Wm generate the same subgroup of N and the length of vm

when written as a word in Wm is not polynomial in m. (The length grows faster
than the Fibonacci sequence.)

7

Finally, for the proof of Theorem 1.2, it remains to analyse the running time
of the above algorithms.

Proof of Theorem 1.2. Let n = ‖g‖+
∑m
i=1 ‖hi‖+

∑f
j=1 ‖tj‖+

∑r
k=1 ‖xk‖. We

first discuss Algorithm 3.3. The preprocessing step runs in polynomial time in
c and the size of the input as seen in Remark 3.2. Further, the set V consists
of at most #W ≤ fm elements of length (in the xi) at most cfn. Thus the
computation of T (V) runs in time O((cfn)3 · (fm)2). The last step runs in
constant time.
Now we discuss Algorithm 3.5. By assumption, the first step runs in polynomial
time and so does the preprocessing. The length of h̃j as a word in {h1, . . . , hm} is

at mostm. Thus ‖h̃−1j gt−1ij ‖ ≤ (m+2)n. Hence the third step runs in polynomial

time. Further, the length of w (and thus of s′) as a word in {x1, . . . , xr} is at
most c(m+1)n. Thus the fourth step runs in time O((c(m+2)n)2 ·fm). Finally,
tij is a word of length ≤ fm in {h1, . . . , hm}. Since we assume that ‖xi‖ ≤ n
and ‖hk‖ ≤ n for all i and k, the last step runs in polynomial time in n,m, f
and c.

4 Examples PSL2(Z) and SL2(Z)
In this section let G be either the special linear group SL2(Z) or the modular
group PSL2(Z) = SL2(Z)/{±1}. Further let S =

(
0 −1
1 0

)
and U =

(
0 −1
1 1

)
be

elements in G.
We will show that Algorithms 1.1 and 1.2 can be applied to G provided that

the elements of G are given as words in S and U . For this, we have to give a
finite index free normal subgroup of G, and a transversal of this subgroup in G,
as well as the corresponding algorithms (A) and (B).

Let o be the order of S in G, i.e. o = 4 if G = SL2(Z) and o = 2 otherwise.
Then

SL2(Z) = 〈S〉 ∗{±I2} 〈U〉 ∼= C4 ∗C2
C6

PSL2(Z) = 〈S〉 ∗ 〈U〉 ∼= C2 ∗ C3

(1)

are amalgamated and free products respectively (see for example [6]). Thus
every element g ∈ G can be written as a word in S and U . The length of such a
word will be denoted by ‖g‖. Moreover, from the above isomorphism it follows
that every g ∈ G can be written uniquely as a word

τ(g) = Si0U i1SU i2S . . . (2)

such that 0 ≤ i0 ≤ o− 1 and ik ∈ {±1} for k ≥ 1.

Lemma 4.1. The commutator subgroup G′ of G is a free group of index

[G : G′] =

{
12 if G = SL2(Z)

6 if G = PSL2(Z)

with basis {x := SUS−1U−1, y := S−1U−1SU}

8

Proof. The fact that G′ is free is well known and the index [G : G′] follows
immediately from equation (1). Suppose now 1 6= g ∈ G′ such that g = τ(g).
Then a case by case discussion of the possible terminal words of g shows that
there exists some z ∈ {x, y, x−1, y−1} such that ‖τ(gz)‖ < ‖g‖. Thus {x, y}
generates G′.

• From the isomorphisms in equation (1) it follows that there exists an
epimorphism ϕ : G→ Z/[G : G′]Z such that ϕ(S) = 3 and ϕ(U) = 2. The
kernel of ϕ coincides with G′. Hence a transversal of G′ in G is given by

{SiU j | 0 ≤ i ≤ o− 1, −1 ≤ j ≤ 1} .

• Algorithm (A): Given g ∈ G return SiU j where 1 ≤ i ≤ o − 1 and
−1 ≤ j ≤ 1 such that ϕ(g) = 3i+ 2j mod [G : G′].

• Algorithm (B): Given g ∈ G′ as a word in S and U , the following algorithm
writes g as a word w in x and y.

1. Initialise (g, w) by (τ(g), 1).

2. While g 6= 1 find z ∈ {x, x−1, y, y−1} such that ‖τ(gz)‖ < ‖g‖ and
replace (g, w) by (τ(gz), z−1w)

3. Return w.

Note that Algorithm (B) terminates by the proof of Lemma 4.1.

It is clear that both algorithms run in time O(‖g‖) and the word w returned
by Algorithm (B) has at most length ‖g‖. Hence the algorithms of Theorem 1.1
are applicable to (P)SL2(Z). Moreover, by Theorem 1.2, these algorithms run
in polynomial time in the size of the input.

Remark 4.2. Suppose H is a finitely generated subgroup of PSL2(Z). Then Al-
gorithm 3.3 can decide if the index k := [PSL2(Z) : H] is finite. If so, right mul-
tiplication of PSL2(Z) on H \PSL2(Z) induces a homomorphism π : PSL2(Z)→
Sym(k) where Sym(k) denotes the symmetric group on k letters. The images
π(S) and π(U) can be worked out by 2k calls to Algorithm 3.5. Using Hsu’s
criterion [3, Theorem 3.1] one can then decide if H is a congruence subgroup,
i.e. whether there exists some ` ≥ 2 such that H contains the full kernel of
the canonical epimorphism PSL2(Z) → PSL2(Z/`Z). One only has to check
whether the permutations π(S) and π(U) satisfy a few short relations. This can
be done in time O(k).

Remark 4.3. By Kurosh’s subgroup theorem, every subgroup H of PSL2(Z) is
a free product H1 ∗H2 ∗H3 where H3 is free and H1, H2 are freely generated
by elements of order 2 and 3 respectively. A constructive decomposition of H
into free generators of the Hi can be accomplished by using Nielsen reductions
as in Algorithm 2.1 (see Propositions 2.2 and 2.3 of [5]). Note that in this case,
the reduction operator ρ has to be replaced with τ from equation (2) and we
use the lexicographical order satisfying S <l U <l U

−1.

9

References

[1] J. Avenhaus and K. Madlener. The Nielsen reduction and p-complete prob-
lems in free groups. Theoretical Computer Science, 32:61–76, 1984.

[2] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3–4):235–265, 1997.

[3] T. Hsu. Identifying congruence subgroups of the modular group. Proc.
Amer. Math. Soc., 124(5):1351–1359, 1996.

[4] A. Karrass and D. Solitar. On finitely generated subgroups of a free group.
Proc. Amer. Math. Soc., 22(1):209–213, 1969.

[5] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer,
1977.

[6] J.-P. Serre. Trees. Springer, 1980.

10

