[next] [prev] [up] Date: Mon, 03 Jul 95 14:53:00 -0400
[next] [prev] [up] From: Mark Longridge <mark.longridge@canrem.com >
~~~ ~~~ [up] Subject: Antislice Patterns
Patterns in the Anti-Slice Group

p4   8 flip (Op sides)  (R1 L1 U1 D1 F1 B1) ^2                    (12)
p10a pons asinorum      (L3 R1 U3 D1)^3                           (12)
p16a 4 cross order 2     F1 B1 U1 D1 L2 R2 U1 D1 F1 B1 U2 D2      (12)
p17  4 diagonal         (F1 B1 R1 L1) ^3                          (12)
p18a 4 diagonal,2 cross (F1 B1 R3 L3) ^3                          (12)
p22  2 DOT, 2 Stripe     R1 L1 U2 D2 R3 L3                         (6)
p64a 4 Z                 F1 B1 L3 R3 F1 B1 L1 R1 F3 B3 L1 R1      (12)
p143 Pinwheels           F1 B1 L1 R1 F3 B3 U3 D3 L1 R1 U1 D1      (12)
p175a 6 H order 2        U3 D3 L3 R3 F2 B2 U2 D2 L3 R3 U1 D1      (12)
p198a 2 X, 4 Diag no C   L1 R1 F1 B1 L3 R3 F3 B3 L1 R1 F1 B1      (12)
p201 Pinwheels + Pons    L1 R1 F3 B3 L1 R1 U3 D3 F1 B1 U3 D3      (12)

p201 is a quite interesting position.
The square's group equivalent is no shorter in q turns:

p175 6 H order 2 type 2  U2 B2 L2 U2 D2 L2 F2 U2                   (8)

Note that p201 = |{m'Xm}|=2 and |Symm(X)|=24.

[next] [prev] [up] [top] [help]