for what it's worth, i'll make some conjectures about mark's questions.
A) What is the next most commutative element (the pancentre?)
after the 12-flip?
(presumably, start excluded as well)
i'll guess that these four conjugacy classes are tied for next.
corner cycle structure: (1+)(1+)(1+)(1+)(1+)(1+)(1+)(1-) edge cycle structure: (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) corner cycle structure: (1+)(1+)(1+)(1+)(1+)(1+)(1+)(1-) edge cycle structure: (1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+) corner cycle structure: (1+)(1-)(1-)(1-)(1-)(1-)(1-)(1-) edge cycle structure: (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) corner cycle structure: (1+)(1-)(1-)(1-)(1-)(1-)(1-)(1-) edge cycle structure: (1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)(1+)
B) What is the least commutative element (the anticentre?) of
the cube group?
i'll guess
corners: (1)(7) edges: (1)(11) corners: (1+)(7-) edges: (1)(11) corners: (1-)(7+) edges: (1)(11) corners: (1)(7) edges: (1+)(11+) corners: (1+)(7-) edges: (1+)(11+) corners: (1-)(7+) edges: (1+)(11+)
each of these splits into two conjugacy classes. i think this is the
example bandelow gives in his book.
mike