[next] [prev] [up] Date: Thu, 20 Aug 92 17:03:31 -0700 (PDT)
[next] [prev] [up] From: michael reid <reid@math.berkeley.edu >
~~~ [prev] [up] Subject: Re: subgroups

dan hoey writes:

On 14 Jan 1992,  Allan C. Wechsler posted

Regarding the meta-approach of descending through a series of subgroups,
how much leverage does properly selecting the chain give you? It seems
like the jump from <F2,B2,...> to <F2,B2,L2,R2,...> is pretty large.
There are probably other paths through the subgroup lattice.

Does anyone have a table of subgroups?

well, i don't know ALL the subgroups, but i did some investigation
before devising my three stage algorithm. one of the great advantages
of thistlethwaite's four stage method is that since each subgroup
restricts the motion of various faces, it is routine to exhaustively
search the cosets spaces at each stage, since we only make twists that
leave us in the given space. so i looked at all possible ways of
restricting various faces, up to symmetry. there are three possible
restrictions for a face: no restriction, half turns only, no turns.
our problem is then coloring the faces of the cube with 3 colors, up
to symmetry (rigid and non-rigid). the polya polynomial for the faces
of the cube under this group of symmetries is:

( x^6 + 3 x^5 + 9 x^4 + 13 x^3 + 14 x^2 + 8 x ) / 48

so there are 56 different ways to three-color the faces. i spent the
better part of an evening and most of the night calculating (by hand)
the orders of these subgroups. shortly thereafter, i saw an announcement
for the group theory package GAP, which specifically mentions calculating
the order of the rubik's cube group. so i used the package to verify my
answers. here's the list (i don't see a canonical way of ordering them):

 1. |<>|                                               =                    1
 2. |<U2>|                     = 2                     =                    2
 3. |<U>|                      = 2^2                   =                    4
 4. |<U2, D2>|                 = 2^2                   =                    4
 5. |<U, D2>|                  = 2^3                   =                    8
 6. |<U, D>|                   = 2^4                   =                   16
 7. |<U2, R2>|                 = 2 3                   =                   12
 8. |<U, R2>|                  = 2^6 3^2 5^2           =                14400
 9. |<U, R>|                   = 2^6 3^8 5^2 7         =             73483200
10. |<U2, R2, L2>|             = 2^5 3                 =                   96
11. |<U, R2, L2>|              = 2^12 3^4 5^2 7        =             58060800
12. |<U2, R, L2>|              = 2^12 3^4 5^2 7        =             58060800
13. |<U2, R, L>|               = 2^14 3^4 5^2 7^2      =           1625702400
14. |<U, R, L2>|               = 2^14 3^11 5^2 7^2     =        3555411148800
15. |<U, R, L>|                = 2^14 3^13 5^3 7^2     =      159993501696000
16. |<U2, R2, F2>|             = 2^5 3^4               =                 2592
17. |<U, R2, F2>|              = 2^8 3^5 5^2 7         =             10886400
18. |<U, R, F2>|               = 2^10 3^12 5^2 7^2     =         666639590400
19. |<U, R, F>|                = 2^18 3^12 5^2 7^2     =      170659735142400
20. |<U2, R2, L2, D2>|         = 2^6 3                 =                  192
21. |<U, R2, L2, D2>|          = 2^13 3^4 5^2 7        =            116121600
22. |<U, R2, L2, D>|           = 2^15 3^4 5^2 7^2      =           3251404800
23. |<U, R, L2, D2>|           = 2^15 3^11 5^2 7^2     =        7110822297600
24. |<U, R, L, D2>|            = 2^15 3^13 5^3 7^2     =      319987003392000
25. |<U, R, L, D>|             = 2^16 3^14 5^3 7^2 11  =    21119142223872000
26. |<U2, R2, L2, F2>|         = 2^11 3^4              =               165888
27. |<U, R2, L2, F2>|          = 2^13 3^5 5^2 7^2      =           2438553600
28. |<U2, R, L2, F2>|          = 2^14 3^5 5^2 7^2      =           4877107200
29. |<U2, R, L, F2>|           = 2^14 3^5 5^2 7^2      =           4877107200
30. |<U, R2, L2, F>|           = 2^14 3^13 5^3 7^2 11  =     1759928518656000
31. |<U2, R2, L, F>|           = 2^14 3^13 5^3 7^2 11  =     1759928518656000
32. |<U2, R, L, F>|            = 2^14 3^13 5^3 7^2 11  =     1759928518656000
33. |<U, R, L2, F>|            = 2^24 3^13 5^3 7^2 11  =  1802166803103744000
34. |<U, R, L, F>|             = 2^24 3^13 5^3 7^2 11  =  1802166803103744000
35. |<U2, F2, R2, L2, B2>|     = 2^13 3^4              =               663552
36. |<U, F2, R2, L2, B2>|      = 2^16 3^5 5^2 7^2      =          19508428800
37. |<U2, F, R2, L2, B2>|      = 2^16 3^5 5^2 7^2      =          19508428800
38. |<U2, F2, R, L, B2>|       = 2^16 3^5 5^2 7^2      =          19508428800
39. |<U2, F, R, L2, B2>|       = 2^16 3^14 5^3 7^2 11  =    21119142223872000
40. |<U, F, R2, L2, B2>|       = 2^16 3^14 5^3 7^2 11  =    21119142223872000
41. |<U2, F, R, L, B2>|        = 2^16 3^14 5^3 7^2 11  =    21119142223872000
42. |<U, F2, R, L, B2>|        = 2^16 3^14 5^3 7^2 11  =    21119142223872000
43. |<U, F, R, L2, B2>|        = 2^27 3^14 5^3 7^2 11  = 43252003274489856000
44. |<U2, F, R, L, B>|         = 2^16 3^14 5^3 7^2 11  =    21119142223872000
45. |<U, F2, R, L, B>|         = 2^27 3^14 5^3 7^2 11  = 43252003274489856000
46. |<U, F, R, L, B>|          = 2^27 3^14 5^3 7^2 11  = 43252003274489856000
47. |<U2, F2, R2, L2, B2, D2>| = 2^13 3^4              =               663552
48. |<U, F2, R2, L2, B2, D2>|  = 2^16 3^5 5^2 7^2      =          19508428800
49. |<U, F2, R2, L2, B2, D>|   = 2^16 3^5 5^2 7^2      =          19508428800
50. |<U, F, R2, L2, B2, D2>|   = 2^16 3^14 5^3 7^2 11  =    21119142223872000
51. |<U, F, R2, L2, B, D2>|    = 2^16 3^14 5^3 7^2 11  =    21119142223872000
52. |<U, F, R, L2, B2, D2>|    = 2^27 3^14 5^3 7^2 11  = 43252003274489856000
53. |<U, F, R2, L2, B, D>|     = 2^16 3^14 5^3 7^2 11  =    21119142223872000
54. |<U, F, R, L, B2, D2>|     = 2^27 3^14 5^3 7^2 11  = 43252003274489856000
55. |<U, F, R, L, B, D2>|      = 2^27 3^14 5^3 7^2 11  = 43252003274489856000
56. |<U, F, R, L, B, D>|       = 2^27 3^14 5^3 7^2 11  = 43252003274489856000

subgroups with the same order are equal (possibly after necessary rotation
of the cube) with the following exceptions: (3, 4), (11, 12), (30, 31) and
(30, 32). equality of various pairs of subgroups can be obtained from the
three maneuvers:

R L F2 R2 F B L F2 B2 R2 F2 B2 L F B3 R3 L3  ~  U2 ,
           so that  <L, F, R, B> = <L, F, R, B, U2>,

F2 U2 L2 F2 R2 U2 F2 R F2 U2 R2 F2 L2 U2 F2  ~  L ,
           so that  <U2, F2, R, L2> = <U2, F2, R, L>  and

R2 F2 B2 L2 U2 L2 F2 B2 R2  ~  D2 ,
           so that  <U2, F2, R2, L2, B2> = <U2, F2, R2, L2, B2, D2>.

thistlethwaite's filtration is 56 --> 53 --> 49 --> 47 --> 1.
kloosterman replaced 47 by a subgroup not on this list (one not obtained
by restricting face turns). call this 56 --> 53 --> 49 --> kl --> 1.
(in his final stage, kloosterman allows all twists available in the
subgroup 49.) my filtration is 56 --> 19 --> 17 --> 1 , which was
chosen precisely because it had the smallest size of the largest coset
space amongst all three stage filtrations with subgroups from the above.
winter's filtration is 56 --> 49 --> kl --> 1. it may be the case that
this can be improved by replacing kl with 17 , and allowing all face
turns available in the subgroup 49. i haven't had the time to look into
this yet.

using subgroups on the list above, we see that the only reasonable two
stage filtrations are:

56 --> 29 --> 1    with coset sizes     8868372480    and   4877107200
56 --> 22 --> 1    with coset sizes    13302558720    and   3251404800
56 --> 27 --> 1    with coset sizes    17736744960    and   2438553600
56 --> 49 --> 1    with coset sizes     2217093120    and  19508428800
56 --> 13 --> 1    with coset sizes    26605117440    and   1625702400

of these, the best seems to be 56 --> 49 --> 1 , since it has the most
symmetries (16). the number of symmetries the others have is 4 (for 29),
8 (for 22), 2 (for 27) and 2 (for 13). furthermore, aside from subgroup
49, the other intermediate groups seem to have too much restriction to
be efficient. also, of course, dik winter has already calculated that
the stage 56 --> 49 can always be accomplished in 12 face turns.

On 29 Jan 1992, wft@math.canterbury.ac.nz (Bill Taylor) posted

There hasn't been any response to this, seemingly, which is a pity.

For some reason, I never saw Bill's message. I just noticed it when
comparing my files against the archives. [ Archives seekers note: the
archives have moved to FTP.LCS.MIT.EDU (18.26.0.36), still in
directory /pub/cube-lovers. ]

i also seem to have missed both allen's post as well as bill's reply.
perhaps 'twas the twilight zone between the start of my subscription to
cube-lovers and the time it takes recent messages to reach the archives.

however, i don't find the archives on ftp.lcs , but rather on
ftp.ai.mit.edu. also i see we've spawned cube-mail-8.Z.

In any event, I would like to know of any other well-known subgroups.
There are the slice group; double-slice group; U group; square group;
anti-slice group. How many others are there not mentioned here, that
people know of ?

in addition to those listed above there are subgroups generated by
combinations of face turns and slice turns, e.g. <U, M_R>, <U2, M_R>,
<U, R, M_R>, etc. i haven't looked at these at all. there's a lot of
work to be done here.

mike


[next] [prev] [up] [top] [help]