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Let G= (X | R),sothat G= F/N where F = F(X) and N = ((R)).
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Let G= (X | R),sothat G= F/N where F = F(X) and N = ((R)).
We denote the natural map : F — G by bars.
LetH=E/N < Gandlet T C F be aright transversal of E in F:

F = U Et andthus G= U Ht
teT teT

We assume 1 € T and represent elements of F by reduced words.
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Let G= (X | R),sothat G= F/N where F = F(X) and N = ((R)).
We denote the natural map : F — G by bars.
LetH=E/N < Gandlet T C F be aright transversal of E in F:

F = U Et andthus G= U Ht
teT teT

We assume 1 € T and represent elements of F by reduced words.
Fora w € F define w :=t € T with w € Et.

Lemma (Schreier (see Alexander’s talk))

The following set generates E:

Y = {tx(g)—‘ Ite T, xe X,tx#g} CF\{1F}
Similarly, H < G is generated by the images Y C G.

Theorem (Nielsen-Schreier)
If T is prefix-closed, then E is a free group on Y.
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Recall:
Y .— {tx(g)_1 |teT,xe X,tx;«éLX} C F\{1r}

Idea of proofs: How do we map E to F(Y)?
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Recall:

Y = {tx(g)—1 teT,xe X,tx;«éLX} CF\{1g}
Idea of proofs: How do we map E to F(Y)?

Let w = Xxix2---xx € Eandset ;== xq--- x;for 0 </ < k.
Note ty = tx = 1. Then
w = (toxity ) (txaty ) - (teo1 Xt ")
and all t;_1x;t~" are either 17 orin Y.
@ Iftx € T, then tx(tx)~" = 1.
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Recall:
Y = {tx(g)—1 teT,xe X,tx;«éLX} CF\{1g}
Idea of proofs: How do we map E to F(Y)?
Letw=xyx---xx € Eandsett:=xq---x;for0 <ij<k.
Note ty = tx = 1. Then
w=(foxit; ) (tixaty 1)« (teoi it ')
and all t;_1x;t~" are either 17 orin Y.

@ Iftx € T, then tx(tx)~" = 1.
@ Thus, if T is prefix-closed and w € T, all factors are 1f.
@ Furthermore, for w = tx ¢ T, all but the last factor are 1f.

This implies that we get a well-defined isomorphism p : E — F(Y).

Assume from now on that T is prefix-closed.
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Theorem (Reidemeister-Schreier)

ForG=F/{((R)),H=E/{(R)), T and Y as above, if T is
prefix-closed, then H = E/N is isomorphic to

H = <Y | p(twt=") forallt e T,w e R}.
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Theorem (Reidemeister-Schreier)

ForG=F/{((R)),H=E/{(R)), T and Y as above, if T is
prefix-closed, then H = E/N is isomorphic to

H = <Y | p(twt=") forallt e T,w e R}.

Thus: if [G : H] < oo and we have a coset table for G and H, we can
compute the Schreier generators and write down this presentation for
H explicitly. This is the Reidemeister-Schreier Algorithm.

Example (The dihedral group of order 8)
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ForG=F/{((R)),H=E/{(R)), T and Y as above, if T is
prefix-closed, then H = E/N is isomorphic to

H = <Y | p(twt=") forallt e T,w e R}.

Thus: if [G : H] < oo and we have a coset table for G and H, we can
compute the Schreier generators and write down this presentation for
H explicitly. This is the Reidemeister-Schreier Algorithm.
Example (The dihedral group of order 8)

Let G:= (s, t| s* 12, stst) and H := (s?,t). We know that |G| = 8 and

HisaKIeinfourgroup.’ H S ‘ g ‘ t ‘
Here is the cosettable: | 1 =H ||2] 2 |1
2=FHs | 1 1 2

V.

Max Neunhoffer (University of St Andrews) Finitely presented groups 3 1 August 2013 4/14



Presentations for subgroups of FP groups The Reidemeister-Schreier method
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ForG=F/{((R)),H=E/{(R)), T and Y as above, if T is
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H = <Y | p(twt=") forallt e T,w e R}.
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compute the Schreier generators and write down this presentation for
H explicitly. This is the Reidemeister-Schreier Algorithm.
Example (The dihedral group of order 8)
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HisaKIeinfourgroup.’ H S ‘ g ‘ t ‘
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Theorem (Reidemeister-Schreier)

ForG=F/{((R)),H=E/{(R)), T and Y as above, if T is
prefix-closed, then H = E/N is isomorphic to

H = <Y | p(twt=") forallt e T,w e R}.

Thus: if [G : H] < oo and we have a coset table for G and H, we can
compute the Schreier generators and write down this presentation for
H explicitly. This is the Reidemeister-Schreier Algorithm.
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Let G:= (s, t| s* 12, stst) and H := (s?,t). We know that |G| = 8 and
HisaKIeinfourgroup.’ H S ‘ g ‘ t ‘

Here isthe cosettable:|1=H |2 2 |1
2=Hs | 1 1 2
The transversal T is {1, s}, the Schreier generators are:
{1ss7'=1,1t1"" =t,ss17" =2, sts7 1} \ {1}

V.

Max Neunhoffer (University of St Andrews) Finitely presented groups 3 1 August 2013 4/14



Presentations for subgroups of FP groups The Reidemeister-Schreier method

Theorem (Reidemeister-Schreier)

ForG=F/{((R)),H=E/{(R)), T and Y as above, if T is
prefix-closed, then H = E/N is isomorphic to

H = <Y | p(twt=") forallt e T,w e R}.

Thus: if [G : H] < oo and we have a coset table for G and H, we can
compute the Schreier generators and write down this presentation for
H explicitly. This is the Reidemeister-Schreier Algorithm.

Example (The dihedral group of order 8)

Let G:= (s, t| s* 12, stst) and H := (s?,t). We know that |G| = 8 and
HisaKIeinfourgroup.’ H S ‘ g ‘ t ‘

Here is the cosettable: |1 =H [[2| 2 | 1
2=Hs | 1 1 2
The transversal T is {1, s}, the Schreier generators are:

{1ss7 ' =1,1117" =t,s5171 = &% sts™ '} \ {1} = {1, 5? sts™'}.

V.
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))

Let G:= (s, t| s* 12, stst) and H := (s 1).
Transversal: T = {1, s}, Schreier generators: {t, s?, sts~'}.
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))

Let G:= (s, t| s* 12, stst) and H := (s 1).
Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.
If F:= F(s,t)and N := ((s*, 2, stst)) then G= F/N and E/N := H,
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))

Let G:= (s, t| s* 12, stst) and H := (s 1).

Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.

If F:= F(s,t)and N := ({s* 2 stst)) then G= F/N and E/N := H,
thus E is free on (A, B, C) := (t, 8%, sts™ 1) (it is of index 2 in F).
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))

Let G:= (s, t| s* 12, stst) and H := (s 1).

Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.
If F:= F(s,t)and N := ({s* 2 stst)) then G= F/N and E/N := H,
thus E is free on (A, B, C) := (t, 8%, sts™ 1) (it is of index 2 in F).
Reidemeister-Schreier now gives the following relators:

@ p(1s*17") = p(s*) = (1ss7")(ss1")(1ss 1) (ss17") = B?,

v
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))

Let G:= (s, t| s* 12, stst) and H := (s 1).

Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.

If F:= F(s,t)and N := ({s* 2 stst)) then G= F/N and E/N := H,
thus E is free on (A, B, C) := (t, 8%, sts™ 1) (it is of index 2 in F).
Reidemeister-Schreier now gives the following relators:

0 p(1s*17") = p(s*) = (1ss7")(ss17") (1557 ")(s517") = B?,
o p(ss*s™! = p(s*) = B?,

v
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))

Let G:= (s, t| s* 12, stst) and H := (s 1).

Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.

If F:= F(s,t)and N := ({s* 2 stst)) then G= F/N and E/N := H,
thus E is free on (A, B, C) := (t, 8%, sts™ 1) (it is of index 2 in F).
Reidemeister-Schreier now gives the following relators:

0 p(1s*17") = p(s*) = (1ss7")(ss17") (1557 ")(s517") = B?,
o p(ss*s™! = p(s*) = B?,
o p(12171) = p(?) = (1117 1) (11171) = A2,
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))
Let G:= (s, t| s* 12, stst) and H := (s 1).
Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.
If F:= F(s,t)and N := ({s* 2 stst)) then G= F/N and E/N := H,
thus E is free on (A, B, C) := (t, 8%, sts™ 1) (it is of index 2 in F).
Reidemeister-Schreier now gives the following relators:

@ p(1s*171) = p(s*) = (1ss7")(ss1 ") (1ss71)(ss17') = B?,

o p(ss*s™! = p(s*) = B?,

@ p(12171) = p(2) = (1111~ 1) = A2,

o p(st?s™) = p(st?s™ 1) = (1ss7 1) (sts 1) (sts™")(ss7117") = C?,
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))
Let G:= (s, t| s* 12, stst) and H := (s 1).
Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.
If F:= F(s,t)and N := ({s* 2 stst)) then G= F/N and E/N := H,
thus E is free on (A, B, C) := (t, 8%, sts™ 1) (it is of index 2 in F).
Reidemeister-Schreier now gives the following relators:
@ p(1s*171) = p(s*) = (1ss7")(ss1 ") (1ss71)(ss17') = B?,
o p(ss*s™! = p(s*) = B?,
@ p(12171) = p(2) = (1111~ 1) = A2,
o p(st?s™) = p(st?s™ 1) = (1ss7 1) (sts 1) (sts™")(ss7117") = C?,
@ p(1stst1=1) = p(stst) = (1ss71)(sts1)(ss17 ") (111~ ") = CBA,
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))
Let G:= (s, t| s* 12, stst) and H := (s 1).
Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.
If F:= F(s,t)and N := ({s* 2 stst)) then G= F/N and E/N := H,
thus E is free on (A, B, C) := (t, 8%, sts™ 1) (it is of index 2 in F).
Reidemeister-Schreier now gives the following relators:
@ p(1s*171) = p(s*) = (1ss7")(ss1 ") (1ss71)(ss17') = B?,
o p(ss*s™! = p(s*) = B?,
@ p(12171) = p(2) = (1111~ 1) = A2,
o p(st?s™) = p(st?s™ 1) = (1ss7 1) (sts 1) (sts™")(ss7117") = C?,
@ p(1stst1=1) = p(stst) = (1ss71)(sts1)(ss17 ") (111~ ") = CBA,
@ p(sststs™) = (1ss71)(ss1 (11~ ") (1ss7 ") (sts™")(ss7 17 1) =
BAC.
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))

Let G:= (s, t| s* 12, stst) and H := (s 1).
Transversal: T = {1, s}, Schreier generators: {t, s, sts™}.
If F:= F(s,t)and N := ((s*, 2 stst)) then G= F/N and E/N := H,
thus E is free on (A, B, C) := (t, 8%, sts™ 1) (it is of index 2 in F).
Reidemeister-Schreier now gives the following relators:
@ p(1s*171) = p(s*) = (1ss7")(ss1 ") (1ss71)(ss17') = B?,
o p(ss*s™! = p(s*) = B?,
o p(1217 1) = p(2) = (111 —1) = A2,
o p(st?s™) = p(st?s™ 1) = (1ss7 1) (sts 1) (sts™")(ss7117") = C?,
@ p(1stst1=1) = p(stst) = (1ss71)(sts1)(ss17 ") (111~ ") = CBA,
@ p(sststs™) = (1ss71)(ss1 (11~ ") (1ss7 ") (sts™")(ss7 17 1) =
BAC.

Thus, we get that H >~ (A, B, C | B?, A2, C?, CBA, BAC).

v
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Finding presentations on the user supplied generators works similarly.
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Proving groups to be infinite Combine low index with Abelian invariants

Problem

Let G:= (X | R). How could we prove that |G| = co?
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Problem

Let G:= (X | R). How could we prove that |G| = co?

First idea: Abelian invariants, but what if they are all positive?

Second idea:
@ Compute some low index subgroups, result is a coset table
@ Use Reidemeister-Schreier to find presentations for them.
@ Compute the Abelian invariants on these presentations.
@ If we find a 0, the group G is infinite as well.
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@ If we find a 0, the group G is infinite as well.

http://tinyurl.com/MNGAPsess/GAP_FP_7.g
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We then say that avb — awb for all a, b € A* and write c = d, ifc =d
or there is a finite tuple (¢4, Co, . . ., ck) of words with

C—C —+C—-—C—d

A word v € A* is called irreducible, if there is no w € A* with v — w.

Definition (Termination)

A RWS is called terminating, if there is no infinite chain of words
Wiy — Wo — W3 — - -

Definition (Confluence and completeness)

A RWS is called confluent, if for all a, b, c € A* witha= band a= ¢
thereisa d € A* with b= d and ¢ = d.

V.
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A rewrite system (RWS) is a set of rules v — w where v, w € A*.

We then say that avb — awb for all a, b € A* and write c = d, ifc =d
or there is a finite tuple (¢4, Co, . . ., ck) of words with

C—C —+C—-—C—d

A word v € A* is called irreducible, if there is no w € A* with v — w.

Definition (Termination)

A RWS is called terminating, if there is no infinite chain of words
Wiy — Wo — W3 — - -

Definition (Confluence and completeness)

A RWS is called confluent, if for all a, b, c € A* witha= band a= ¢
thereisa d € A* with b= d and c = d.
A terminating and confluent RWS is called complete.
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Rewrite systems Local confluence

If a RWS is terminating, then every word w € A* can only be rewritten
to finitely many words.
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Definition (Equivalence)

Let & be the transitive, reflexive and symmetric closure of —, i.e., the
finest equivalence relation with v < w for all rules v — w.
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Rewrite systems Local confluence

If a RWS is terminating, then every word w € A* can only be rewritten
to finitely many words.

Definition/Proposition (Local confluence)

A RWS is called locally confluent, if for all a, b, ¢ € A* with a — b and
a— cthereisade A*withb= dandc=d.
A terminating and locally confluent RWS is complete.

Definition (Equivalence)

Let & be the transitive, reflexive and symmetric closure of —, i.e., the
finest equivalence relation with v < w for all rules v — w.

| \

Lemma

If a RWS is complete, then every < class contains exactly one
irreducible element and all words in the class can be rewritten to it.
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Rewrite systems Critical pairs

How can it ever happen, that a — b and a — c¢, but that b and ¢ cannot
be rewritten to any common word d?
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How can it ever happen, that a — b and a — c¢, but that b and ¢ cannot
be rewritten to any common word d?

Assume v — wy and vo — Ws are rules, if a = pvyqver, then both
rules apply, but we have:

pviQVar
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How can it ever happen, that a — b and a — c¢, but that b and ¢ cannot
be rewritten to any common word d?

Assume v — wy and vo — Ws are rules, if a = pvyqver, then both
rules apply, but we have:

pviQVar
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PW1QVar pviqwar
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Rewrite systems Critical pairs

How can it ever happen, that a — b and a — c¢, but that b and ¢ cannot
be rewritten to any common word d?

Assume v — wy and vo — Ws are rules, if a = pvyqver, then both
rules apply, but we have:

pviQVar

TN

PW1QVar pviqwar

o~

W1 QW r

Thus: the left hand sides have to overlap!
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Rewrite systems Critical pairs

Definition (Critical pair)

A pair of rules vy — wy and vo — ws is called a critical pair, if:
@ vy =rsand v, = st forsome r,s,t € A*, or
@ vy =rstand vo = sforsome r, s, t € A,

with s # ¢ in both cases.
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A pair of rules vy — wy and vo — ws is called a critical pair, if:
@ vy =rsand v, = st forsome r,s,t € A*, or
@ vy =rstand vo = sforsome r, s, t € A,

with s # ¢ in both cases.

A RWS is locally confluent if and only if the following conditions are
fulfilled for all critical pairs vi — wy and vo — Wo:

@ Ifvy =rs and v» = st, then Iw € A* with wit = w and rws = w.
@ Ifvy = rst and vo = s then dw € A* with rwot = w and wy = w.
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Rewrite systems Critical pairs

Definition (Critical pair)

A pair of rules vy — wy and vo — ws is called a critical pair, if:
@ vy =rsand v, = st forsome r,s,t € A*, or
@ vy =rstand vo = sforsome r, s, t € A,

with s # ¢ in both cases.

A RWS is locally confluent if and only if the following conditions are
fulfilled for all critical pairs vi — wy and vo — Wo:

@ Ifvy =rs and v» = st, then Iw € A* with wit = w and rws = w.
@ Ifvy = rst and vo = s then dw € A* with rwot = w and wy = w.

We can check confluence of a finite, terminating RWS algorithmically!
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The Knuth-Bendix procedure The idea

Definition (Reduction ordering)

A well-ordering on A* is called a reduction ordering, if u < v implies
uw < vw and wu < wv for all u, v, w € A*.
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The Knuth-Bendix procedure The idea

Definition (Reduction ordering)

A well-ordering on A* is called a reduction ordering, if u < v implies
uw < vw and wu < wv for all u, v, w € A*.
Example: “shortlex”: sort first by length and then lexicographically.

Idea of the Knuth-Bendix completion procedure

Start with a finite RWS and choose a reduction ordering such that
v > w for all rules v — w.
Consider all possible critical pairs rs — wy and st — w», and:
@ rewrite wit = wy and rws = w;y with wi and w; irreducible,
1 / /
o if wy # wy, then
e eitheradd wy — wjy if wy > wj,
e or add wy — wy if wy > wy.

(and similarly for rst — wqy and s — ws)

If the RWS is already or becomes confluent this procedure terminates.
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Every minimal word (in its class) is irreducible.
If the RWS is confluent, then the converse is true, too.

Proposition

If v & w and v > w, then after running Knuth-Bendix long enough, we
will get v = w.
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The Knuth-Bendix procedure Properties of the procedure

Every minimal word (in its class) is irreducible.
If the RWS is confluent, then the converse is true, too.

Proposition

If v< wand v > w, then after running Knuth-Bendix long enough, we
will get v = w.

Proposition

If the RWS has only finitely many <-classes, then Knuth-Bendix will
terminate with a complete RWS.

With a complete RWS we have a good way to decide v < w.
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The Knuth-Bendix procedure Knuth-Bendix and groups

Let G= (X | R).
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We can present G as a monoid by adding relators xx~' = ¢ and
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Let G= (X | R).

We can present G as a monoid by adding relators xx~' = ¢ and
x'x=cforall x € X.

For X := X U X~ the set X* is a free monoid and G is a quotient.
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x'x=cforall x € X.

For X := X U X~ the set X* is a free monoid and G is a quotient.
If we choose a reduction order and add one rule for each equation in

the presentation, then < is precisely the congruence on X* such that
G= X"/ <.
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