Algorithmic Generalisations of **Small Cancellation Theory**

Max Neunhöffer

joint work with Jeffrey Burdges, Stephen Linton, Richard Parker and Colva Roney-Dougal

Aberdeen, 29 November 2012

What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

(You may use a computer for this exercise!)

It is a quotient of the modular group $PSL_2(\mathbb{Z}) \cong \langle S, T \mid S^3, T^2 \rangle$.

What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

- It is a quotient of the modular group $PSL_2(\mathbb{Z}) \cong \langle S, T \mid S^3, T^2 \rangle$.
- It has 3^7 .PSL₂(\mathbb{F}_{13}) as quotient.

What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

- It is a quotient of the modular group $PSL_2(\mathbb{Z}) \cong \langle S, T \mid S^3, T^2 \rangle$.
- It has 3^7 .PSL₂(\mathbb{F}_{13}) as quotient.
- Other finite quotients can be found (low index method).

What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

- It is a quotient of the modular group $PSL_2(\mathbb{Z}) \cong \langle S, T \mid S^3, T^2 \rangle$.
- It has 3^7 .PSL₂(\mathbb{F}_{13}) as quotient.
- Other finite quotients can be found (low index method).
- Eventually it turns out to be infinite (abelian invariants method).

What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

- It is a quotient of the modular group $PSL_2(\mathbb{Z}) \cong \langle S, T \mid S^3, T^2 \rangle$.
- It has 3^7 .PSL₂(\mathbb{F}_{13}) as quotient.
- Other finite quotients can be found (low index method).
- Eventually it turns out to be infinite (abelian invariants method).
- Todd-Coxeter is not of much use here.

What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

- It is a quotient of the modular group $PSL_2(\mathbb{Z}) \cong \langle S, T \mid S^3, T^2 \rangle$.
- It has 3^7 .PSL₂(\mathbb{F}_{13}) as quotient.
- Other finite quotients can be found (low index method).
- Eventually it turns out to be infinite (abelian invariants method).
- Todd-Coxeter is not of much use here.
- It is not small cancellation.

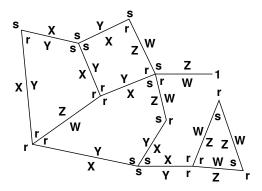
What can you tell me about the finitely presented group

$$G := \left\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \right\rangle$$
?

(You may use a computer for this exercise!)

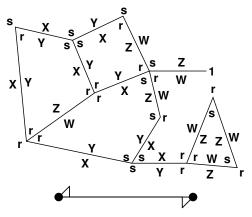
- It is a quotient of the modular group $PSL_2(\mathbb{Z}) \cong \langle S, T \mid S^3, T^2 \rangle$.
- It has 3^7 .PSL₂(\mathbb{F}_{13}) as quotient.
- Other finite quotients can be found (low index method).
- Eventually it turns out to be infinite (abelian invariants method).
- Todd-Coxeter is not of much use here.
- It is not small cancellation.

Can we solve the word problem?



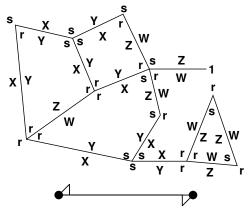


Faces are oriented clockwise.



Faces are oriented clockwise.

We view each edge as a pair of opposite directed edges: half-edges.



Faces are oriented clockwise.

We view each edge as a pair of opposite directed edges: half-edges.

Each half-edge is labelled at the start vertex and along the half-edge.

Let *R* be a finite set of cyclic words, called relators.

Let R be a finite set of cyclic words, called relators.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w, whether or not there is a diagram such that

- every internal region is labelled by a relator, and
- the external boundary is labelled by w.

Let R be a finite set of cyclic words, called relators.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w, whether or not there is a diagram such that

- every internal region is labelled by a relator, and
- the external boundary is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function $\mathcal{D}: \mathbb{N} \to \mathbb{N}$, such that for every cyclic word w of length k that is the boundary label of a diagram,

Let R be a finite set of cyclic words, called relators.

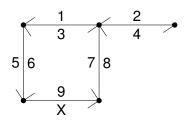
Problem (Diagram boundary problem)

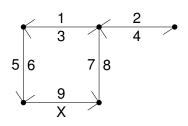
Algorithmically devise a procedure that decides for any cyclic word w, whether or not there is a diagram such that

- every internal region is labelled by a relator, and
- the external boundary is labelled by w.

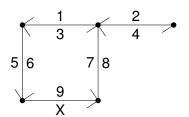
Problem (Isoperimetric inequality)

Algorithmically find and prove a function $\mathcal{D}: \mathbb{N} \to \mathbb{N}$, such that for every cyclic word w of length k that is the boundary label of a diagram, there is one with at most $\mathcal{D}(k)$ internal regions.



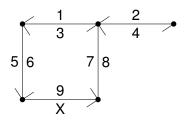


is stored as
$$E := (13)(24)(56)(78)(9X)$$



$$E := (13)(24)(56)(78)(9X)$$

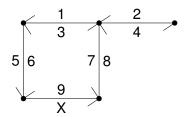
$$F := (15X842)(3796)$$



$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

$$V := (147)(2)(35)(6X)(89).$$



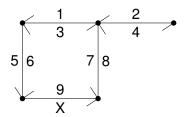
$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

$$V := (147)(2)(35)(6X)(89).$$

Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges



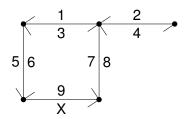
$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

$$V := (147)(2)(35)(6X)(89).$$

Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges (up to equivalence)



$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

$$V := (147)(2)(35)(6X)(89).$$

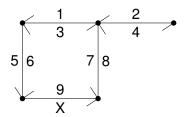
Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges (up to equivalence)

are in bijection with

ordered triples $(E, F, V) \in S_n^3$

5/20



$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

$$V := (147)(2)(35)(6X)(89).$$

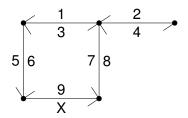
Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges (up to equivalence)

are in bijection with

ordered triples $(E, F, V) \in S_n^3$ such that EFV = 1

5/20



$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

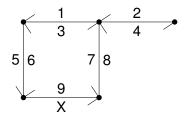
$$V := (147)(2)(35)(6X)(89).$$

Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges (up to equivalence)

are in bijection with

ordered triples $(E, F, V) \in S_n^3$ such that EFV = 1, the group $\langle E, F \rangle$ is transitive



$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

$$V := (147)(2)(35)(6X)(89).$$

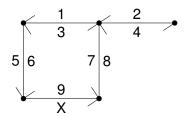
Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges (up to equivalence)

are in bijection with

ordered triples $(E, F, V) \in S_n^3$ such that EFV = 1, the group $\langle E, F \rangle$ is transitive, #cycles of E, F and V sums to n + 2

5/20



$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

$$V := (147)(2)(35)(6X)(89).$$

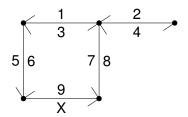
Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges (up to equivalence)

are in bijection with

ordered triples $(E, F, V) \in S_n^3$ such that EFV = 1, the group (E, F) is transitive, # cycles of E, F and V sums to n+2 and E is a fixed-point free involution

5/20



$$E := (13)(24)(56)(78)(9X)$$

$$F := (15X842)(3796)$$

$$V := (147)(2)(35)(6X)(89).$$

Lemma (Graph equivalence)

Finite connected planar embedded graphs with n/2 edges (up to equivalence)

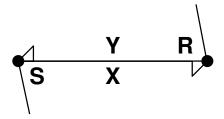
are in bijection with

ordered triples $(E, F, V) \in S_n^3$ such that EFV = 1, the group (E, F) is transitive, # cycles of E, F and V sums to n + 2 and E is a fixed-point free involution (up to S_n -conjugacy).

Rules for the labels

We label every half-edge with two symbols,

- one for the corner to the right of where it starts, and
- one for the right hand side of it:



We now need rules for the corner labels and the edge labels.

A pongo is a set P with a subset $P_+ \subset P$, such that $P_0 := P \dot{\cup} \{0\}$ is a semigroup with 0 and:

if
$$xy \in P_+$$
 for $x, y \in P$, then $yx \in P_+$.

The elements in P_+ are called acceptors.

A pongo is a set P with a subset $P_+ \subset P$, such that $P_0 := P \dot{\cup} \{0\}$ is a semigroup with 0 and:

if
$$xy \in P_+$$
 for $x, y \in P$, then $yx \in P_+$.

The elements in P_+ are called acceptors.

Lemma (Cyclicity)

Let P be a pongo, if $p_1p_2 \cdots p_k \in P_+$, then all rotations $p_i p_{i+1} \cdots p_k p_1 p_2 \cdots p_{i-1} \in P_+$.

A pongo is a set P with a subset $P_+ \subset P$, such that $P_0 := P \dot{\cup} \{0\}$ is a semigroup with 0 and:

if
$$xy \in P_+$$
 for $x, y \in P$, then $yx \in P_+$.

The elements in P_+ are called acceptors.

Lemma (Cyclicity)

Let P be a pongo, if $p_1p_2 \cdots p_k \in P_+$, then all rotations $p_i p_{i+1} \cdots p_k p_1 p_2 \cdots p_{i-1} \in P_+$.

Vertex rules

The corner labels are from a pongo P,

A pongo is a set P with a subset $P_+ \subset P$, such that $P_0 := P \dot{\cup} \{0\}$ is a semigroup with 0 and:

if
$$xy \in P_+$$
 for $x, y \in P$, then $yx \in P_+$.

The elements in P_+ are called acceptors.

Lemma (Cyclicity)

Let P be a pongo, if $p_1p_2 \cdots p_k \in P_+$, then all rotations $p_i p_{i+1} \cdots p_k p_1 p_2 \cdots p_{i-1} \in P_+$.

Vertex rules

The corner labels are from a pongo P, a V-cycle is valid, if the product of its corner labels is an acceptor.

A pongo is a set P with a subset $P_+ \subset P$, such that $P_0 := P \dot{\cup} \{0\}$ is a semigroup with 0 and:

if
$$xy \in P_+$$
 for $x, y \in P$, then $yx \in P_+$.

The elements in P_+ are called acceptors.

Lemma (Cyclicity)

Let P be a pongo, if $p_1p_2 \cdots p_k \in P_+$, then all rotations $p_i p_{i+1} \cdots p_k p_1 p_2 \cdots p_{i-1} \in P_+$.

Vertex rules

The corner labels are from a pongo P, a V-cycle is valid, if the product of its corner labels is an acceptor.

Using a finite pongo is equivalent to using a finite state automaton.

• Let G be a group. Let P := G and $P_+ := \{1\}$.

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}.$

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}$. Elements of a single G_i multiply as before.

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0.

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0.
- $K_6 := \{s, e, t, b, r, l\},\$

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0.
- $K_6 := \{s, e, t, b, r, l\}, K_{6+} := \{s, e\},$

- Let G be a group. Let P := G and $P_+ := \{1\}$.
- Let G_1, \ldots, G_k be groups. Let $Q := \bigcup G_i$ and $Q_+ := \{1_{G_i} \mid 1 \le i \le k\}$. Elements of a single G_i multiply as before. Products across factors are all 0.
- Take any groupoid, undefined products are 0.
- $K_6 := \{s, e, t, b, r, l\}, K_{6+} := \{s, e\},$

	s	е	t	b	r	1
s	0	0	s	0	0	0
e	0	0	0	е	0	0
t	s	0	t	0	0	1
b	0	е	0	b	r	0
r	0	0	r	0	0	е
1	0	0	0	1	s	0

An edge alphabet is a set A with an involution $\overline{}: A \to A$.

An edge alphabet is a set A with an involution $\overline{}: A \to A$.

(This is actually a special case of a pongo.)

An edge alphabet is a set A with an involution $\overline{}: A \to A$.

(This is actually a special case of a pongo.)

Edge rules

The edge labels are from an edge alphabet, an E-cycle (i,j), i.e. an edge, with labels X and Y is valid, if $Y = \overline{X}$.

An edge alphabet is a set A with an involution $\overline{}: A \to A$.

(This is actually a special case of a pongo.)

Edge rules

The edge labels are from an edge alphabet, an E-cycle (i, j), i.e. an edge, with labels X and Y is valid, if $Y = \overline{X}$.

(For the experts:

This is a generalisation of the rules of van Kampen diagrams.)

Definition (Valid diagram)

Let P be a pongo and A be an edge alphabet. A valid diagram is: an $n \in \mathbb{N}$ and three permutations $E, F, V \in S_n$ and a labelling function $\ell: \{1,\ldots,n\} \to P \times A, x \mapsto (\ell_P(x),\ell_A(x)), \text{ such that }$

- \bullet EFV = 1.
- E is a fixed point free involution,
- $\langle E, F \rangle$ is a transitive subgroup of S_n ,
- the total number of cycles in E, F and V is n+2,
- $\ell_P(x) \cdot \ell_P(xV) \cdot \ell_P(xV^2) \cdot \cdots \in P_+$ for every V-cycle $x \langle V \rangle$, and
- $\ell_A(xE) = \ell_A(x)$ for all *E*-cycles (x, xE).

Let *P* be a pongo and *A* be an edge alphabet.

Definition (Set of relators)

A set of relators R is a finite set of cyclic words in $P \times A$.

Definition (Set of relators)

A set of relators R is a finite set of cyclic words in $P \times A$.

Definition (Set of relators)

A set of relators R is a finite set of cyclic words in $P \times A$.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w in $P \times A$, whether or not there is a valid diagram such that

- every internal F-cycle is labelled by a relator, and
- the external F-cycle is labelled by w.

Definition (Set of relators)

A set of relators R is a finite set of cyclic words in $P \times A$.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w in $P \times A$, whether or not there is a valid diagram such that

- every internal F-cycle is labelled by a relator, and
- the external F-cycle is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function $\mathcal{D}: \mathbb{N} \to \mathbb{N}$, such that for every cyclic word $w \in P \times A$ of length k that is the boundary label of a valid diagram,

Definition (Set of relators)

A set of relators R is a finite set of cyclic words in $P \times A$.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w in $P \times A$, whether or not there is a valid diagram such that

- every internal F-cycle is labelled by a relator, and
- the external F-cycle is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function $\mathcal{D}: \mathbb{N} \to \mathbb{N}$, such that for every cyclic word $w \in P \times A$ of length k that is the boundary label of a valid diagram, there is one with at most $\mathcal{D}(k)$ internal F-cycles.

Definition (Set of relators)

A set of relators R is a finite set of cyclic words in $P \times A$.

Problem (Diagram boundary problem)

Algorithmically devise a procedure that decides for any cyclic word w in $P \times A$, whether or not there is a valid diagram such that

- every internal F-cycle is labelled by a relator, and
- the external F-cycle is labelled by w.

Problem (Isoperimetric inequality)

Algorithmically find and prove a function $\mathcal{D}: \mathbb{N} \to \mathbb{N}$, such that for every cyclic word $w \in P \times A$ of length k that is the boundary label of a valid diagram, there is one with at most $\mathcal{D}(k)$ internal F-cycles.

If there is a linear \mathcal{D} , we call (P, A, R) hyperbolic.

$G := \langle S, R, T \mid SR, T^2, S^3, (ST)^7, (STS^2T)^{13} \rangle$ can be studied by:

$$P = \{S, R, 1\} \text{ with } P_+ = \{1\} \text{ and } SR = RS = 1, SS = R, RR = S \}$$
 $A = \{T\} \text{ with } \overline{T} = T \}$
 $A = \{((S, T), (S, T), (S,$

$G := \langle S, R, T \mid SR, T^2, S^3, (ST)^7, (STS^2T)^{13} \rangle$ can be studied by:

$$P = \{S, R, 1\} \text{ with } P_{+} = \{1\} \text{ and } SR = RS = 1, SS = R, RR = S \\ A = \{T\} \text{ with } \overline{T} = T \\ R = \{((S, T), (S, T), (S, T), (S, T), (S, T), (S, T), (S, T)), \\ ((R, T), (R, T), (R, T), (R, T), (R, T), (R, T), (R, T)), \\ ((S, T), (R, T), \text{ repeated 13 times})\}$$

 $(ST)^{7}(TRTS)^{13} = (ST)^{5}(STST)(TRTS)(TRTS)^{12} = (ST)^{5}R(TRTS)^{12}$

These diagrams and their two fundamental problems encode

the word problem in quotients of the free group,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for arbitrary rewrite systems,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for arbitrary rewrite systems,
- the word problem in monoids,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for arbitrary rewrite systems,
- the word problem in monoids.
- jigsaw-puzzles

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for arbitrary rewrite systems,
- the word problem in monoids,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for arbitrary rewrite systems,
- the word problem in monoids,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- etc. ???

These diagrams and their two fundamental problems encode

- the word problem in quotients of the free group,
- the word problem in quotients of the modular group,
- the word problem for relative presentations (relative to one subgroup gives a Howie diagram)
- the rewrite decision problem for arbitrary rewrite systems,
- the word problem in monoids,
- jigsaw-puzzles in which you can use arbitrarily many copies of each piece,
- etc. ???

You just have to chose the right pongo and edge alphabet!

Combinatorial Curvature

Find "pieces", and remove vertices of valency 1 and 2:

Combinatorial Curvature

Find "pieces", and remove vertices of valency 1 and 2:

compute the finite list of all possible edges,

Combinatorial Curvature

Find "pieces", and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet,

Find "pieces", and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, as edges now have different lengths,

Find "pieces", and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, as edges now have different lengths, refer to original edges as mini-edges,

Find "pieces", and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, as edges now have different lengths, refer to original edges as mini-edges,
- denote set of half-edges in a diagram by X, so that the diagram is now given by $E, F, V \in S_X$.

Find "pieces", and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, as edges now have different lengths, refer to original edges as mini-edges,
- denote set of half-edges in a diagram by X, so that the diagram is now given by $E, F, V \in S_X$.

Combinatorical curvature: We endow

- each V-cycle with +1 unit of combinatorial curvature,
- each E-cycle with −1 unit of combinatorial curvature and
- each F-cycle with +1 unit of combinatorial curvature.

Find "pieces", and remove vertices of valency 1 and 2:

- compute the finite list of all possible edges,
- this produces a new edge alphabet, as edges now have different lengths, refer to original edges as mini-edges,
- denote set of half-edges in a diagram by X, so that the diagram is now given by $E, F, V \in S_X$.

Combinatorical curvature: We endow

- each V-cycle with +1 unit of combinatorial curvature,
- each E-cycle with −1 unit of combinatorial curvature and
- each F-cycle with +1 unit of combinatorial curvature.

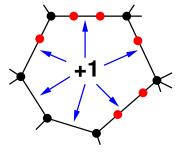
Euler's formula/genus condition

The total sum of our combinatorial curvature is always +1.

We redistribute the curvature locally in a conservative way.

We redistribute the curvature locally in a conservative way.

In Phase 1 we move the positive curvature to the half-edges:

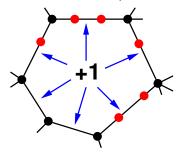


according to length

Edges have different length (number of mini-edges).

We redistribute the curvature locally in a conservative way.

In Phase 1 we move the positive curvature to the half-edges:

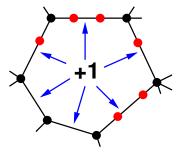


according to length

 Edges have different length (number of mini-edges). Both half-edges in an edge get an equal amount.

We redistribute the curvature locally in a conservative way.

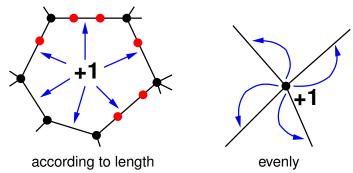
In Phase 1 we move the positive curvature to the half-edges:



- according to length
- Edges have different length (number of mini-edges). Both half-edges in an edge get an equal amount.
- Vertices have different valency. Only outgoing half-edge receives.

We redistribute the curvature locally in a conservative way.

In Phase 1 we move the positive curvature to the half-edges:



- Edges have different length (number of mini-edges). Both half-edges in an edge get an equal amount.
- Vertices have different valency. Only outgoing half-edge receives.

All curvature is now on the half-edges,

Idea (Pubcrawl)

A pubcrawler crawls around (locally) from half-edge to half-edge and collects curvature. He deposits it on his orbit.

Idea (Pubcrawl)

A pubcrawler crawls around (locally) from half-edge to half-edge and collects curvature. He deposits it on his orbit.

• The path of the crawl is described in terms of E, F and F^{-1} steps.

Idea (Pubcrawl)

A pubcrawler crawls around (locally) from half-edge to half-edge and collects curvature. He deposits it on his orbit.

- The path of the crawl is described in terms of E, F and F^{-1} steps.
- We want "orbits", that is, some cyclic behaviour.

Idea (Pubcrawl)

A pubcrawler crawls around (locally) from half-edge to half-edge and collects curvature. He deposits it on his orbit.

- The path of the crawl is described in terms of E, F and F^{-1} steps.
- We want "orbits", that is, some cyclic behaviour.

Let $D := \{1, 2, \dots, d\}$ and $\pi_D : \mathbb{Z} \to D$, with $z \equiv \pi_D(z) \pmod{d}$, and

Idea (Pubcrawl)

A pubcrawler crawls around (locally) from half-edge to half-edge and collects curvature. He deposits it on his orbit.

- The path of the crawl is described in terms of E, F and F^{-1} steps.
- We want "orbits", that is, some cyclic behaviour.

Let
$$D := \{1, 2, ..., d\}$$
 and $\pi_D : \mathbb{Z} \to D$, with $z \equiv \pi_D(z) \pmod{d}$, and $(C_1, C_2, ..., C_d) \in \{E, F, F^{-1}\}^d$ (e.g. "EFEFE", $d = 5$).

Idea (Pubcrawl)

A pubcrawler crawls around (locally) from half-edge to half-edge and collects curvature. He deposits it on his orbit.

- The path of the crawl is described in terms of E, F and F^{-1} steps.
- We want "orbits", that is, some cyclic behaviour.

Let
$$D:=\{1,2,\ldots,d\}$$
 and $\pi_D:\mathbb{Z}\to D$, with $z\equiv\pi_D(z)\pmod d$, and
$$(C_1,C_2,\ldots,C_d)\in\{E,F,F^{-1}\}^d\qquad \text{(e.g. "EFEFE", } d=5\text{)}.$$

Definition of the pubcrawl (C_1, C_2, \ldots, C_d)

Let $Y := X \times D$ and define $\Delta : Y \to Y, (x, i) \mapsto (xC_i, \pi_D(i+1)).$

Idea (Pubcrawl)

A pubcrawler crawls around (locally) from half-edge to half-edge and collects curvature. He deposits it on his orbit.

- The path of the crawl is described in terms of E, F and F^{-1} steps.
- We want "orbits", that is, some cyclic behaviour.

Let
$$D:=\{1,2,\ldots,d\}$$
 and $\pi_D:\mathbb{Z}\to D$, with $z\equiv\pi_D(z)\pmod d$, and
$$(C_1,C_2,\ldots,C_d)\in\{E,F,F^{-1}\}^d\qquad \text{(e.g. "EFEFE", } d=5\text{)}.$$

Definition of the pubcrawl (C_1, C_2, \dots, C_d)

Let $Y := X \times D$ and define $\Delta : Y \to Y, (x, i) \mapsto (xC_i, \pi_D(i+1)).$

 $\Longrightarrow \Delta$ is a permutation on Y, since E and F are permutations on X.

Idea (Pubcrawl)

A pubcrawler crawls around (locally) from half-edge to half-edge and collects curvature. He deposits it on his orbit.

- The path of the crawl is described in terms of E, F and F^{-1} steps.
- We want "orbits", that is, some cyclic behaviour.

Let
$$D:=\{1,2,\ldots,d\}$$
 and $\pi_D:\mathbb{Z}\to D$, with $z\equiv\pi_D(z)\pmod d$, and
$$(C_1,C_2,\ldots,C_d)\in\{E,F,F^{-1}\}^d \qquad \text{(e.g. "EFEFE", } d=5\text{)}.$$

Definition of the pubcrawl (C_1, C_2, \dots, C_d)

Let $Y := X \times D$ and define $\Delta : Y \to Y, (x, i) \mapsto (xC_i, \pi_D(i+1)).$

 $\Longrightarrow \Delta$ is a permutation on Y, since E and F are permutations on X.

 Δ describes a step of the crawler, we sum curvature over $\langle \Delta \rangle$ -orbits.

Let $L := \{1, 2, \dots, \ell\}$ and $a_1, a_2, \dots, a_\ell \in \mathbb{R}$ and $S := \sum_{m \in I} a_m$.

Let $L:=\{1,2,\ldots,\ell\}$ and $a_1,a_2,\ldots,a_\ell\in\mathbb{R}$ and $\mathcal{S}:=\sum_{m\in I}a_m$. Define $\pi_I : \mathbb{Z} \to L$ such that $z \equiv \pi_I(z) \pmod{\ell}$.

Lemma (Goes up and stays up)

If $S \ge 0$ then there is a $j \in L$ such that for all $i \in \mathbb{N}$ the partial sum

$$s_{j,i} := \sum_{m=0}^{i-1} a_{\pi_L(j+m)} \geq 0.$$

Let $L := \{1, 2, \dots, \ell\}$ and $a_1, a_2, \dots, a_\ell \in \mathbb{R}$ and $S := \sum_{m \in I} a_m$. Define $\pi_I : \mathbb{Z} \to L$ such that $z \equiv \pi_I(z) \pmod{\ell}$.

Lemma (Goes up and stays up)

If $S \ge 0$ then there is a $j \in L$ such that for all $i \in \mathbb{N}$ the partial sum

$$s_{j,i} := \sum_{m=0}^{i-1} a_{\pi_L(j+m)} \geq 0.$$

i	1	2	3	4	5	6	7
a _i	2	-3	4	1	-5	3	2
s _{1,i}	2	-1	3	4	-1	2	4
s _{6,i}	3	5	7	4	8	9	4

Let
$$L:=\{1,2,\ldots,\ell\}$$
 and $a_1,a_2,\ldots,a_\ell\in\mathbb{R}$ and $\mathcal{S}:=\sum_{m\in L}a_m$. Define $\pi_L:\mathbb{Z}\to L$ such that $z\equiv\pi_L(z)\pmod{\ell}$.

Lemma (Goes up and stays up)

If $S \ge 0$ then there is a $j \in L$ such that for all $i \in \mathbb{N}$ the partial sum

$$s_{j,i} := \sum_{m=0}^{r-1} a_{\pi_L(j+m)} \geq 0.$$

i	1	2	3	4	5	6	7
a _i	2	-3	4	1	-5	3	2
s _{1,i}	2	-1	3	4	-1	2	4
s _{6,i}	3	5	7	4	8	9	4

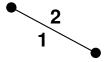
Corollary

Assume that there are $k \in \mathbb{N}$ and $\varepsilon < 0$ such that for all $j \in L$ there is an $i \leq k$ with $s_{i,i} < \varepsilon$, then $S < \varepsilon \cdot \ell/k$.

Data structure in computer

ld	Ε	F	<i>F</i> −1	Rel
1	2			*
2	1			*
				*
				*
				*
				*

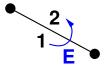
Illustration



Data structure in computer

ld	Ε	F	F ⁻¹	Rel
1	2			*
2	1			*
				*
				*
				*
				*

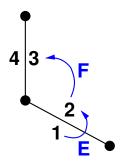
Illustration



Data structure in computer

ld	Ε	F	F ^{−1}	Rel
1	2			*
2	1	3		*
3	4		2	*
4	3			*
				*
				*

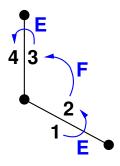
Illustration



Data structure in computer

ld	Ε	F	F ^{−1}	Rel
1	2			*
2	1	3		*
3	4		2	*
4	3			*
				*
				*

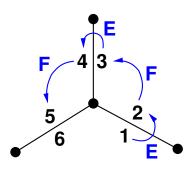
Illustration



Data structure in computer

ld	Ε	F	F ⁻¹	Rel
1	2			*
2	1	3		*
3	4		2	*
4	3	5		*
5	6		4	*
6	5			*

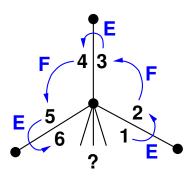
Illustration



Data structure in computer

ld	Ε	F	<i>F</i> −1	Rel
1	2			*
2	1	3		*
3	4		2	*
4	3	5		*
5	6		4	*
6	5			*

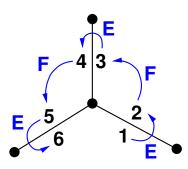
Illustration



Data structure in computer

ld	Ε	F	F ⁻¹	Rel
1	2		6	*
2	1	3		*
3	4		2	*
4	3	5		*
5	6		4	*
6	5	1		*

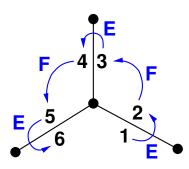
Illustration



Data structure in computer

ld	Ε	F	F ⁻¹	Rel
1	2		6	*
2	1	3		*
3	4		2	*
4	3	5		*
5	6		4	*
6	5	1		*

Illustration



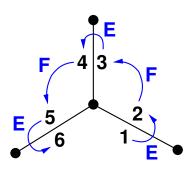
We trace the pubcrawl and disjoin cases if stuck, until:

• we find a bad cycle (if we return to 1 with starting letter), or

Data structure in computer

ld	Ε	F	<i>F</i> −1	Rel
1	2		6	*
2	1	3		*
3	4		2	*
4	3	5		*
5	6		4	*
6	5	1		*

Illustration

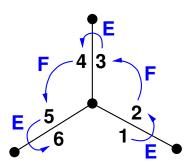


- we find a bad cycle (if we return to 1 with starting letter), or
- a partial sum is negative (keep value!), or

Data structure in computer

ld	Ε	F	F ⁻¹	Rel
1	2		6	*
2	1	3		*
3	4		2	*
4	3	5		*
5	6		4	*
6	5	1		*

Illustration

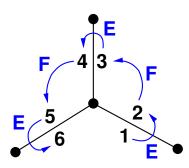


- we find a bad cycle (if we return to 1 with starting letter), or
- a partial sum is negative (keep value!), or
- we lose patience.

Data structure in computer

ld	Ε	F	F ⁻¹	Rel
1	2		6	*
2	1	3		*
3	4		2	*
4	3	5		*
5	6		4	*
6	5	1		*

Illustration



We trace the pubcrawl and disjoin cases if stuck, until:

- we find a bad cycle (if we return to 1 with starting letter), or
- a partial sum is negative (keep value!), or
- we lose patience.

Note that we use lower bounds for the vertex valencies!

If this terminates, we have

• either found a bad cycle with non-negative curvature sum, or

If this terminates, we have

- either found a bad cycle with non-negative curvature sum, or
- proved, that for every starting position in a crawl orbit

the partial sum after at most k steps is $< \varepsilon$

for some global $k \in \mathbb{N}$ and some $\varepsilon < 0$.

If this terminates, we have

- either found a bad cycle with non-negative curvature sum, or
- proved, that for every starting position in a crawl orbit

the partial sum after at most k steps is $< \varepsilon$

for some global $k \in \mathbb{N}$ and some $\varepsilon < 0$.

In the second case, the "Goes up and stays up" corollary tells us that

the sum over every interior crawl orbit of length ℓ is $< \ell \cdot \varepsilon/k < 0$.

If this terminates, we have

- either found a bad cycle with non-negative curvature sum, or
- proved, that for every starting position in a crawl orbit

the partial sum after at most k steps is $< \varepsilon$

for some global $k \in \mathbb{N}$ and some $\varepsilon < 0$.

In the second case, the "Goes up and stays up" corollary tells us that

the sum over every interior crawl orbit of length ℓ is $< \ell \cdot \varepsilon / k < 0$.

Since the amount of positive curvature close to the boundary can be bounded from above by an expression in the boundary length, we get a

linear isoperimetric inequality

and thus have proved hyperbolicity.

If this terminates, we have

- either found a bad cycle with non-negative curvature sum, or
- proved, that for every starting position in a crawl orbit

the partial sum after at most k steps is $< \varepsilon$

for some global $k \in \mathbb{N}$ and some $\varepsilon < 0$.

In the second case, the "Goes up and stays up" corollary tells us that

the sum over every interior crawl orbit of length ℓ is $< \ell \cdot \varepsilon / k < 0$.

Since the amount of positive curvature close to the boundary can be bounded from above by an expression in the boundary length, we get a

linear isoperimetric inequality

and thus have proved hyperbolicity.

e.g.: $\langle S, T \mid S^3, T^2, (ST)^7, (STS^2T)^{13} \rangle$ is hyperbolic.

Outlook and plans

We want to

- investigate more ways of redistributing curvature.
- determine whether for every presentation of a hyperbolic group there is a successful curvature-redistribution scheme
 - easy for random presentations with low Gromov density.
- sort out details for a version for relative hyperbolicity.
- investigate applications to monoids and rewrite systems.
- find more interesting pongos what do they do?
- generalise to "flat" jigsaw puzzles.
- develop further algorithms to solve the word problem, after proving the isoperimetric inequality.
- investigate lots of examples: send us your groups!