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Constructive recognition
Problem
Let G be some ambient group and

M1, . . . ,Mk ∈ G.

Find for G := 〈M1, . . . ,Mk 〉:
The group order |G | and
an algorithm that, given M ∈ G,

decides, whether or not M ∈ G, and,
if so, expresses M as an SLP in the Mi .

The runtime should be bounded from above by a
polynomial in the input size.
A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call

〈M1, . . . ,Mk 〉 recognised constructively.
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What is a reduction?

Let G := 〈M1, . . . ,Mk 〉 ≤ G.

A reduction is a group homomorphism

ϕ : G → H
Mi 7→ Pi for all i

with the following properties:

ϕ(M) is explicitly computable for all M ∈ G
ϕ is surjective: H = 〈P1, . . . ,Pk 〉
H is in some sense “smaller”
or at least “easier to recognise constructively”
e.g. H ≤ Σm or H ≤ GLn(Fq) with smaller m or n,q
respectively.
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Computing the kernel
Let ϕ : G→ H be a reduction and assume that H is
already recognised constructively.

Then we can compute the kernel N of ϕ:

1 Generate a (pseudo-) random element M ∈ G,
2 map it with ϕ onto ϕ(M) ∈ H = 〈P1, . . . ,Pk 〉,
3 express ϕ(M) as SLP in the Pi ,
4 evaluate the same SLP in the Mi ,
5 get an element M ′ ∈ G with M ·M ′−1 ∈ N.
6 If M is uniformly distributed in G

then M ·M ′−1 is uniformly distributed in N
7 Repeat.

→ Monte Carlo algorithm to compute N
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Recognising image and kernel suffices
Let ϕ : G→ H be a reduction and assume that both H
and the kernel N = 〈N1, . . . ,Nm〉 of ϕ are already
recognised constructively.

Then we have recognised G constructively:
|G | = |H| · |N|. And for M ∈ G:

1 map M with ϕ onto ϕ(M) ∈ H = 〈P1, . . . ,Pk 〉,
2 express ϕ(M) as SLP in the Pi ,
3 evaluate the same SLP in the Mi ,
4 get an element M ′ ∈ G such that M ·M ′−1 ∈ N,
5 express M ·M ′−1 as SLP in the Nj ,
6 get M as SLP in the Mi and Nj :

M ′ =
∏

in the Mi , M ·M ′−1 =
∏

in the Nj

⇒ M =
(
SLP({Nj})

)
· (SLP({Mi})).

7 If M /∈ G, then at least one step does not work.
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N H

2211

3 3N H

HNHN

Up arrows: inclusions
Down arrows: homomorphisms

Old idea, improvements are still being made.
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Example: invariant subspace
Let V = F1×d

q and G ≤ GLd (Fq), then G acts on V .
Let W ≤ V be an invariant subspace, i.e.:

WM = W for all M ∈ G

Choose basis (w1, . . . ,we) of W and extend to a basis

(w1, . . . ,we,we+1, . . . ,wd )

of V . After a base change the matrices in G look like this:[
A 0
C D

]
with A ∈ Fe×e

q ,C ∈ F(d−e)×e
q ,D ∈ F(d−e)×(d−e)

q

and

G→ GLd−e(Fq),

[
A 0
C D

]
7→ D

is a homomorphism of groups.
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Example: invariant subspace

G→ GLd−e(Fq),

[
A 0
C D

]
7→ D

is a homomorphism of groups, its kernel is

N :=

{[
A 0
C D

]
∈ G | D = 1

}
.

The mapping

N → GLe(Fq),

[
A 0
C 1

]
7→ A

also is a homomorphism of groups and has kernel

N2 :=

{[
A 0
C D

]
∈ G | A = D = 1

}
.

This group is a p-group for q = pf :[
1 0
C 1

]
·
[

1 0
C′ 1

]
=

[
1 0

C + C′ 1

]
.

Together with a reduction additional information is gained!
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Long SLPs
Typical examples:

(1) G := (2× 21+8) : U4(2) : 2 < GL78(2)

(7th maximal subgroup of the sporadic simple group Fi22)

G has 53 084 160 elements, generated by 2 elements.

Composition tree of depth 8 with 3 non-trivial leaves.

Typical elements in G give SLPs of length ≈ 900.

(2) W := Σ12 o Σ5 < Σ60

W has 3 025 980 091 991 082 565 958 286 705 898 291 200 000 000 000 elements and
is generated by 12 elements.

Composition tree of depth 4 with 6 non-trivial leaves.
Typical elements in W give SLPs of length ≈ 10000.
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Learning from base and strong generators

The same groups with stabiliser chains:

G := (2× 21+8) : U4(2) : 2 < Σ3510

(7th maximal subgroup of the sporadic simple group Fi22)

Stabiliser chain of length 4 with 14 strong generators.

Typical elements in G give SLPs of length ≈ 15.

W := Σ12 o Σ5 < Σ60

Stabiliser chain of length 55 with 434 strong generators.

Typical elements in W give SLPs of length ≈ 500.
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The same groups with stabiliser chains:

G := (2× 21+8) : U4(2) : 2 < Σ3510

(7th maximal subgroup of the sporadic simple group Fi22)

Stabiliser chain of length 4 with 14 strong generators.

Typical elements in G give SLPs of length ≈ 15.

W := Σ12 o Σ5 < Σ60

Stabiliser chain of length 55 with 434 strong generators.

Typical elements in W give SLPs of length ≈ 500.
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Comparison

We compare lengths of SLPs:

Stabiliser chain Composition tree
in strong

in gens in nice

in gens
G 15

290 15

900
Σ12 o Σ5 500

4300 300

10000

We want to change the generating system!

=⇒ “nice generators”
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Problems with recursion

G

N H

2211

3 3N H

HNHN

Recall: Generators of H were images of those of G.

Having changed the generators in H,

we can no longer find preimages!

Solution: Nice generators of G are
preimages of the nice generators of H
together with
nice generators of N.

Note: The first allows to compute N once H is recognised!
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Constructive recognition revisited
Problem — new formulation
Let G be Σn or GLn(Fq) or PGLn(Fq) and

M1, . . . ,Mk ∈ G.

Find for G := 〈M1, . . . ,Mk 〉:
The group order |G |,

new nice generators G = 〈N1, . . . ,Nm〉 and
a procedure that, given M ∈ G,

decides, whether or not M ∈ G and
if so, expresses M as an SLP in the Nj and

another procedure that, given preimages M̂1, . . . , M̂k
of the Mi under some homomorphism onto G,
produces preimages of the nice generators.

If this problem is solved, we call

〈M1, . . . ,Mk 〉 recognised constructively.
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Recursion works again

Having recognised H in this sense, we can:

ask H to generate preimages of its nice generators,

compute generators for N,
recursively recognise N and
put together the nice generators for G.

If we remember how we created the generators for N,
then we have recognised G constructively:

Using H and N we can test membership in G,
express elements as SLPs in the nice generators,
and, given preimages of the original generators of G
under some homomorphism, we can find preimages
of the nice generators.
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Recognising permutation groups

The same strategy is good for permutation groups.

For a permutation group, we try one after another:

1 If intransitive, then restrict to an orbit.
2 If imprimitive, then take block action.
3 Check if it is a giant, i.e. Σn or An.

If so, handle this case separately.
4 Check if it is a giant acting on k -sets.

If so, handle this case separately.
5 If all this fails, then compute a stabiliser chain.

This approach implements the asymptotically best known
algorithms for permutation groups in the composition tree
framework.
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framework.
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The Aschbacher approach

Aschbacher has defined classes C1 to C8 of subgroups
of GLn(Fq).

Theorem (Aschbacher, 1984)
Let G ≤ GLn(Fq) and Z := G ∩ Z (GLn(Fq)) the subgroup
of scalar matrices. Then G lies in at least one of the
classes C1 to C8 or we have:

T ⊆ G/Z ⊆ Aut(T)
for a non-abelian simple group T , and
G acts absolutely irreducibly on V = Fn

q.

(This last case is called C9.)

The classes C1 to C7 are defined “geometrically” and
promise some reduction.
The classes C8 and C9 have to be dealt with as leaves of
the composition tree.
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Current status
In the GAP implementation, we have

a package recogbase providing a framework to
implement recognition algorithms and composition
trees (Ákos Seress, N.),

a package recog collecting methods to find
reductions and recognise leafs constructively,
Authors (currently): P. Brooksbank, F. Celler,
S. Howe, M. Law, S. Linton, G. Malle, N.,
A. Niemeyer, E. O’Brien, C. Roney-Dougal,
Á. Seress,
complete asymptotically best methods to handle
permutation groups,
methods for all Aschbacher classes for matrix groups
and projective groups (some improved algorithms
still needed),
non-constructive recognition (“name the group”),
not enough leaf methods,
not much verification.
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