Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Orbits and Double Cosets

Max Neunhöffer

University of St Andrews

GAC 2010, Allahabad

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Group actions and orbits

Let *G* be a group acting from the right on a set *X*:

 $A: X \times G \rightarrow X$ ("action function")

with A(x, 1) = x and A(x, gh) = A(A(x, g), h) for all $x \in X$ and all $g, h \in G$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Problems

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Group actions and orbits

Let *G* be a group acting from the right on a set *X*:

 $A: X \times G \rightarrow X$ ("action function")

with A(x, 1) = x and A(x, gh) = A(A(x, g), h) for all $x \in X$ and all $g, h \in G$.

Notation

Write xg for A(x,g) and xgh for A(x,gh) = A(A(x,g),h).

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits

Orbit-by-Suborbits Finding homomorphisms Problems

Group actions and orbits

Let *G* be a group acting from the right on a set *X*:

 $A: X \times G \rightarrow X$ ("action function")

with A(x, 1) = x and A(x, gh) = A(A(x, g), h) for all $x \in X$ and all $g, h \in G$.

Notation

Write xg for A(x,g) and xgh for A(x,gh) = A(A(x,g),h). Write xG for $\{xg \mid g \in G\}$ and call A transitive if xG = X.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Group actions and orbits

Let *G* be a group acting from the right on a set *X*:

 $A: X \times G \rightarrow X$ ("action function")

with A(x, 1) = x and A(x, gh) = A(A(x, g), h) for all $x \in X$ and all $g, h \in G$.

Notation

Write xg for A(x, g) and xgh for A(x, gh) = A(A(x, g), h). Write xG for $\{xg \mid g \in G\}$ and call A transitive if xG = X. Call xG the orbit of x under G.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Group actions and orbits

Let *G* be a group acting from the right on a set *X*:

 $A: X \times G \rightarrow X$ ("action function")

with A(x, 1) = x and A(x, gh) = A(A(x, g), h) for all $x \in X$ and all $g, h \in G$.

Notation

Write xg for A(x, g) and xgh for A(x, gh) = A(A(x, g), h). Write xG for $\{xg \mid g \in G\}$ and call A transitive if xG = X. Call xG the orbit of x under G. Call Stab_G(x) := $\{g \in G \mid xg = x\} < G$ the stabiliser.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Group actions and orbits

Let *G* be a group acting from the right on a set *X*:

 $A: X \times G \rightarrow X$ ("action function")

with A(x, 1) = x and A(x, gh) = A(A(x, g), h) for all $x \in X$ and all $g, h \in G$.

Notation

Write xg for A(x, g) and xgh for A(x, gh) = A(A(x, g), h). Write xG for $\{xg \mid g \in G\}$ and call A transitive if xG = X. Call xG the orbit of x under G. Call $\operatorname{Stab}_G(x) := \{g \in G \mid xg = x\} \le G$ the stabiliser. Write gH for $\{gh \mid h \in H\}$ and Hg for $\{hg \mid h \in H\}$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Group actions and orbits

Let *G* be a group acting from the right on a set *X*:

 $A: X \times G \rightarrow X$ ("action function")

with A(x, 1) = x and A(x, gh) = A(A(x, g), h) for all $x \in X$ and all $g, h \in G$.

Notation

Write xg for A(x, g) and xgh for A(x, gh) = A(A(x, g), h). Write xG for $\{xg \mid g \in G\}$ and call A transitive if xG = X. Call xG the orbit of x under G. Call $\operatorname{Stab}_G(x) := \{g \in G \mid xg = x\} \le G$ the stabiliser. Write gH for $\{gh \mid h \in H\}$ and Hg for $\{hg \mid h \in H\}$.

Example

Let H < G, then

• *H* acts on *G* by $A: G \times H \rightarrow G, (g, h) \mapsto gh$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Group actions and orbits

Let *G* be a group acting from the right on a set *X*:

 $A: X \times G \rightarrow X$ ("action function")

with A(x, 1) = x and A(x, gh) = A(A(x, g), h) for all $x \in X$ and all $g, h \in G$.

Notation

Write xg for A(x, g) and xgh for A(x, gh) = A(A(x, g), h). Write xG for $\{xg \mid g \in G\}$ and call A transitive if xG = X. Call xG the orbit of x under G. Call $\operatorname{Stab}_G(x) := \{g \in G \mid xg = x\} \le G$ the stabiliser. Write gH for $\{gh \mid h \in H\}$ and Hg for $\{hg \mid h \in H\}$.

Example

Let H < G, then

- *H* acts on *G* by $A: G \times H \rightarrow G, (g, h) \mapsto gh$.
- *G* acts on the right cosets $X := \{Hg \mid g \in G\}$ by $A : X \times G \rightarrow X, (Hg, g') \mapsto Hgg'.$

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits

Finding homomorphisms Problems

Orbit-Stabiliser Theorem/Double cosets

Theorem (Orbit-Stabiliser)

Let G act transitively on X and let $S := Stab_G(x)$ for some $x \in X$. Then $|G| = |X| \cdot |S|$ and

$$\{ egin{array}{cccc} Sg \mid g \in G \} & \longrightarrow & X \ Sg & \longmapsto & xg \end{array}$$

is well-defined and is a bijection.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Orbit-Stabiliser Theorem/Double cosets

Theorem (Orbit-Stabiliser)

Let G act transitively on X and let $S := Stab_G(x)$ for some $x \in X$. Then $|G| = |X| \cdot |S|$ and

$$\{ egin{array}{cccc} Sg \mid g \in G \} & \longrightarrow & X \ Sg & \longmapsto & xg \end{array}$$

is well-defined and is a bijection.

Definition (Double cosets)

Let $H, K \leq G$ be two subgroups. Then

 $HgK := \{hgk \mid h \in H, k \in K\}$

is called the *H*-*K*-double coset of *g*.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems **GAP** examples

see other window

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

7

Input: $G = \langle g_1, \ldots, g_k \rangle$ acting on X and $x \in X$. • Assign list L := [x] and i := 1While i < Length(L) do</p> For *j* in [1, 2, ..., k] do 3 Assign $y := L[i]g_i$ 4 If $y \notin L$ then 5 6 Append y to the end of L Assign i := i + 1

Algorithm: ENUMERATEORBIT

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

7

Input: $G = \langle g_1, \ldots, g_k \rangle$ acting on X and $x \in X$. • Assign list L := [x] and i := 1While i < Length(L) do</p> For *j* in [1, 2, ..., k] do 3 Assign $y := L[i]g_i$ 4 6 If $y \notin L$ then 6 Append y to the end of L Assign i := i + 1

Fact (Correctness and termination)

Algorithm: ENUMERATEORBIT

If this terminates, then L contains the complete orbit xG.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

7

Input: $G = \langle g_1, \ldots, g_k \rangle$ acting on X and $x \in X$. • Assign list L := [x] and i := 1While i < Length(L) do</p> For *j* in [1, 2, ..., k] do 3 Assign $y := L[i]g_i$ 4 6 If $y \notin L$ then 6 Append y to the end of L Assign i := i + 1

Fact (Correctness and termination)

Algorithm: ENUMERATEORBIT

If this terminates, then L contains the complete orbit xG. If xG is finite, then the algorithm terminates.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

4

7

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Input: $G = \langle g_1, \ldots, g_k \rangle$ acting on X and $x \in X$. • Assign list L := [x] and i := 1While i < Length(L) do</p> For *j* in [1, 2, ..., k] do 3 Assign $y := L[i]g_i$ 6 If $y \notin L$ then 6 Append y to the end of L Assign i := i + 1

Fact (Correctness and termination)

Algorithm: ENUMERATEORBIT

If this terminates, then L contains the complete orbit xG. If xG is finite, then the algorithm terminates.

Comment (Performance)

Crucial: Check efficiently if $y \notin L$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

4

7

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Input: $G = \langle g_1, \ldots, g_k \rangle$ acting on X and $x \in X$. • Assign list L := [x] and i := 1While i < Length(L) do</p> For *j* in [1, 2, ..., *k*] do 3 Assign $y := L[i]g_i$ 6 If $y \notin L$ then 6 Append y to the end of L Assign i := i + 1

Fact (Correctness and termination)

Algorithm: ENUMERATEORBIT

If this terminates, then L contains the complete orbit xG. If xG is finite, then the algorithm terminates.

Comment (Performance)

Crucial: Check efficiently if $y \notin L$.

 \implies use hashing technique

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Breadth first search — Schreier tree

Tree is discovered row by row.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Breadth first search — Schreier tree

Tree is discovered row by row.

For each point we get a word in the generators.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Breadth first search — Schreier tree

Tree is discovered row by row.

For each point we get a word in the generators.

These words are shortest possible!

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms

Problems

Computing the stabiliser

Assume we run the standard orbit algorithm for X = xG.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Computing the stabiliser

Assume we run the standard orbit algorithm for X = xG.

Fact (Schreier generators)

Whenever we apply a generator g to a point xw (w a word in the generators) and find that y := xwg is already known, it must be of the form xw' for a known word w'.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Computing the stabiliser

Assume we run the standard orbit algorithm for X = xG.

Fact (Schreier generators)

Whenever we apply a generator g to a point xw (w a word in the generators) and find that y := xwg is already known, it must be of the form xw' for a known word w'. Then wgw'^{-1} fixes x and thus is contained in $Stab_G(x)$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits

Orbit-by-Suborbits Finding homomorphisms Problems

Computing the stabiliser

Assume we run the standard orbit algorithm for X = xG.

Fact (Schreier generators)

Whenever we apply a generator g to a point xw (w a word in the generators) and find that y := xwg is already known, it must be of the form xw' for a known word w'. Then wgw'^{-1} fixes x and thus is contained in $Stab_G(x)$.

Theorem (Schreier's Lemma)

All these wgw'^{-1} together generate $Stab_G(x)$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits

Orbit-by-Suborbits Finding homomorphisms Problems

Computing the stabiliser

Assume we run the standard orbit algorithm for X = xG.

Fact (Schreier generators)

Whenever we apply a generator g to a point xw (w a word in the generators) and find that y := xwg is already known, it must be of the form xw' for a known word w'. Then wgw'^{-1} fixes x and thus is contained in $Stab_G(x)$.

Theorem (Schreier's Lemma)

All these wgw'^{-1} together generate $Stab_G(x)$.

Problem

There can be many such Schreier generators.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

The Orbit-Stabiliser-Algorithm

Algorithm: ENUMERATEORBITWITHSTABILISER

Input: $G = \langle g_1, \ldots, g_k \rangle$ acting on X and $x \in X$. • Assign list L := [x] and i := 1 and $S := \{1\}$ While i < Length(L) do</p> For *j* in [1, 2, ..., k] do 3 4 Assign $y := L[i]g_i$ 6 If $y \notin L$ then 6 Append y to the end of L 1 else Assign $S := \langle S, wg_i w'^{-1} \rangle$ 8 9 Assign i := i + 1

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems **Double cosets**

Assume we want to find *S*-*H*-double coset representatives for S, H < G.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Double cosets

Assume we want to find *S*-*H*-double coset representatives for *S*, H < G. Find a transitive action of *G* on *X* with $S = \text{Stab}_G(x)$ for some $x \in X$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits

Orbit-by-Suborbits Finding homomorphisms Problems

Double cosets

Assume we want to find *S*-*H*-double coset representatives for *S*, H < G. Find a transitive action of *G* on *X* with $S = \text{Stab}_G(x)$ for some $x \in X$.

Theorem

In the above situation the map

$$\begin{array}{rcl} F: & \{SgH \mid g \in G\} & \longrightarrow & \{yH \mid y \in X\} \\ & SgH & \longmapsto & xgH \end{array}$$

between the set of S-H-double cosets and the set of H-suborbits is well-defined and is a bijection.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits

Finding homomorphisms Problems

Double cosets

Assume we want to find *S*-*H*-double coset representatives for *S*, H < G. Find a transitive action of *G* on *X* with $S = \text{Stab}_G(x)$ for some $x \in X$.

Theorem

In the above situation the map

$$\begin{array}{rcl} F: & \{SgH \mid g \in G\} & \longrightarrow & \{yH \mid y \in X\} \\ & SgH & \longmapsto & xgH \end{array}$$

between the set of S-H-double cosets and the set of H-suborbits is well-defined and is a bijection.

 \implies We enumerate *xG* and then find all *H*-orbits in there.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms

Problems

Double cosets

Assume we want to find *S*-*H*-double coset representatives for *S*, H < G. Find a transitive action of *G* on *X* with $S = \text{Stab}_G(x)$ for some $x \in X$.

Theorem

In the above situation the map

$$\begin{array}{rcl} F: & \{SgH \mid g \in G\} & \longrightarrow & \{yH \mid y \in X\} \\ & SgH & \longmapsto & xgH \end{array}$$

between the set of S-H-double cosets and the set of H-suborbits is well-defined and is a bijection.

 \implies We enumerate *xG* and then find all *H*-orbits in there. Without a better idea, we would simply enumerate *H*-orbits of points in *xG* which we have not yet covered.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Double cosets

Theorem

In the above situation the map

 $\begin{array}{rcl} F: & \{SgH \mid g \in G\} & \longrightarrow & \{yH \mid y \in X\} \\ & SgH & \longmapsto & xgH \end{array}$

between the set of S-H-double cosets and the set of H-suborbits is well-defined and is a bijection.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits

Orbit-by-Suborbits Finding homomorphisms Problems

Double cosets

Theorem

In the above situation the map

 $\begin{array}{rcl} F: & \{ \textit{SgH} \mid g \in G \} & \longrightarrow & \{ \textit{yH} \mid \textit{y} \in \textit{X} \} \\ & \textit{SgH} & \longmapsto & \textit{xgH} \end{array}$

between the set of S-H-double cosets and the set of H-suborbits is well-defined and is a bijection.

Proof:

• SgH = Sg'H iff g' = sgh for some $s \in S$, $h \in H$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits

Finding homomorphisms Problems

Double cosets

Theorem

In the above situation the map

 $\begin{array}{rcl} F: & \{ \textit{SgH} \mid g \in G \} & \longrightarrow & \{ \textit{yH} \mid \textit{y} \in \textit{X} \} \\ & \textit{SgH} & \longmapsto & \textit{xgH} \end{array}$

between the set of S-H-double cosets and the set of H-suborbits is well-defined and is a bijection.

Proof:

- SgH = Sg'H iff g' = sgh for some $s \in S$, $h \in H$.
- In that case xgH = xsghH. Thus *F* is well-defined.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits

Finding homomorphisms Problems

Double cosets

Theorem

In the above situation the map

 $\begin{array}{rcl} F: & \{ \textit{SgH} \mid g \in G \} & \longrightarrow & \{ \textit{yH} \mid \textit{y} \in \textit{X} \} \\ & \textit{SgH} & \longmapsto & \textit{xgH} \end{array}$

between the set of S-H-double cosets and the set of H-suborbits is well-defined and is a bijection.

Proof:

- SgH = Sg'H iff g' = sgh for some $s \in S$, $h \in H$.
- In that case xgH = xsghH. Thus *F* is well-defined.
- If xgH = xg'H, then there is an $h \in H$ such that xgh = xg' and thus ghg'^{-1} fixes x and lies in S. Thus g' = sgh for some $s \in S$ and some $h \in H$ and F is injective.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits

Finding homomorphisms Problems

Double cosets

Theorem

In the above situation the map

 $egin{array}{rcl} F: & \{ SgH \mid g \in G \} & \longrightarrow & \{ yH \mid y \in X \} \ & SgH & \longmapsto & xgH \end{array}$

between the set of S-H-double cosets and the set of H-suborbits is well-defined and is a bijection.

Proof:

- SgH = Sg'H iff g' = sgh for some $s \in S$, $h \in H$.
- In that case xgH = xsghH. Thus *F* is well-defined.
- If xgH = xg'H, then there is an $h \in H$ such that xgh = xg' and thus ghg'^{-1} fixes x and lies in S. Thus g' = sgh for some $s \in S$ and some $h \in H$ and F is injective.
- *F* is surjective since the action is transitive.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits!

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

• given $x \in X$, store xU and compute |xU|

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

To this end, let $\overline{}: X \to Y$ be a homomorphism of *U*-sets:

enumerate Y completely

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

- enumerate Y completely
- choose one element in each U-orbit of Y arbitrarily

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

- enumerate Y completely
- choose one element in each U-orbit of Y arbitrarily
- call these U-minimal

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

- enumerate Y completely
- choose one element in each U-orbit of Y arbitrarily
- call these U-minimal
- for $y \in Y$, store a $u_y \in U$ such that yu_y is *U*-minimal

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

- enumerate Y completely
- choose one element in each U-orbit of Y arbitrarily
- call these U-minimal
- for $y \in Y$, store a $u_y \in U$ such that yu_y is *U*-minimal
- for *U*-minimal $y \in Y$, store generators of $\operatorname{Stab}_U(y)$

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

- enumerate Y completely
- choose one element in each U-orbit of Y arbitrarily
- call these U-minimal
- for $y \in Y$, store a $u_y \in U$ such that yu_y is *U*-minimal
- for *U*-minimal $y \in Y$, store generators of $\operatorname{Stab}_U(y)$
- call $x \in X$ *U*-minimal, if $\bar{x} \in Y$ is *U*-minimal

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits

U < G a helper subgroup \longrightarrow archive *U*-suborbits! We want:

- given $x \in X$, store xU and compute |xU|
- given $z \in X$, decide whether z lies in a stored xU

To this end, let $\overline{}: X \to Y$ be a homomorphism of *U*-sets:

- enumerate Y completely
- choose one element in each U-orbit of Y arbitrarily
- call these U-minimal
- for $y \in Y$, store a $u_y \in U$ such that yu_y is *U*-minimal
- for *U*-minimal $y \in Y$, store generators of $\text{Stab}_U(y)$
- call $x \in X$ *U*-minimal, if $\bar{x} \in Y$ is *U*-minimal

Algorithm

Store xU by storing all *U*-minimal elements in xU.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits II

If $x \in X$ is *U*-minimal (i.e. $\bar{x} \in Y$ is *U*-minimal), then

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits II

If $x \in X$ is *U*-minimal (i.e. $\bar{x} \in Y$ is *U*-minimal), then $x \operatorname{Stab}_U(\bar{x})$ is the set of *U*-minimal elements in xU.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing U-suborbits II

If $x \in X$ is *U*-minimal (i.e. $\bar{x} \in Y$ is *U*-minimal), then $x \operatorname{Stab}_U(\bar{x})$ is the set of *U*-minimal elements in xU.

Algorithm (Storing *xU*)

Input: $x \in X$ look up $u_{\bar{x}}$ and compute $z := xu_{\bar{x}}$ enumerate and store $z\operatorname{Stab}_U(\bar{z})$ find $\operatorname{Stab}_U(z) \leq \operatorname{Stab}_U(\bar{z})$ and thus |zU| = |xU|

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits

Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Storing *U*-suborbits II

If $x \in X$ is *U*-minimal (i.e. $\bar{x} \in Y$ is *U*-minimal), then $x \operatorname{Stab}_U(\bar{x})$ is the set of *U*-minimal elements in xU.

Algorithm (Storing xU)

Input: $x \in X$ look up $u_{\bar{x}}$ and compute $z := xu_{\bar{x}}$ enumerate and store $z \operatorname{Stab}_U(\bar{z})$ find $\operatorname{Stab}_U(z) \leq \operatorname{Stab}_U(\bar{z})$ and thus |zU| = |xU|

Algorithm (Looking up $z \in X$)

Input: $z \in X$, some stored xUlook up $u_{\overline{z}}$ and compute $w := zu_{\overline{z}}$ look up w in list of stored points $z \in xU$ iff w already stored

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Orbit by suborbits

Algorithm (Orbit by suborbits)

```
Input: G = \langle g_1, \ldots, g_r \rangle acting on X, x \in X
store xU and set I := [x]
repeat forever:
     for z in I:
          for g in [g_1, ..., g_r]:
               if zgU already stored:
                     compute stabiliser element
               else:
                     store zaU
                     append zg to l
     exit if orbit and stabiliser ready
```

Output: I, U-suborbits, generators for $Stab_G(x)$

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Orbit by suborbits

Algorithm (Orbit by suborbits)

```
Input: G = \langle g_1, \ldots, g_r \rangle acting on X, x \in X
store xU and set I := [x]
repeat forever:
     for z in I:
          for g in [g_1, ..., g_r]:
               if zgU already stored:
                    compute stabiliser element
               else:
                    store zaU
                    append zg to l
     exit if orbit and stabiliser ready
     for z in I:
          for u in generators of U:
               append zu to I
Output: I, U-suborbits, generators for Stab_G(x)
```

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Finding homomorphisms

Let G act linearly on a F-vectorspace M:

 $\rho: G \to \operatorname{End}_F(M)$

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Finding homomorphisms

Let G act linearly on a F-vectorspace M:

 $\rho: G \to \operatorname{End}_F(M)$

N < M a *G*-invariant subspace, $\pi : M \rightarrow M/N$ the canonical map.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Finding homomorphisms

Let G act linearly on a F-vectorspace M:

 $\rho: G \to \operatorname{End}_F(M)$

N < M a *G*-invariant subspace, $\pi : M \rightarrow M/N$ the canonical map.

Then the following diagram commutes for all $g \in G$:

with the induced action on M/N.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Finding homomorphisms

Let G act linearly on a F-vectorspace M:

 $\rho: G \to \operatorname{End}_F(M)$

N < M a *G*-invariant subspace, $\pi : M \rightarrow M/N$ the canonical map.

Then the following diagram commutes for all $g \in G$:

with the induced action on M/N.

The same holds for the projective action, if we replace

- M by $\mathbb{P}(M)$ and
- $\mathbb{P}(M/N)$ by $\mathbb{P}(M/N) \cup \{0\}$.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Advantages and Problems

Advantages:

• Saves both time and space.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Advantages and Problems

Advantages:

- Saves both time and space.
- Can be iterated to use a chain of helper subgroups.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Advantages and Problems

Advantages:

- Saves both time and space.
- Can be iterated to use a chain of helper subgroups.
- Still provides a sort of Schreier tree.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Advantages and Problems

Advantages:

- Saves both time and space.
- Can be iterated to use a chain of helper subgroups.
- Still provides a sort of Schreier tree.
- Gives access to giant orbits.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Advantages and Problems

Advantages:

- Saves both time and space.
- Can be iterated to use a chain of helper subgroups.
- Still provides a sort of Schreier tree.
- Gives access to giant orbits.

Problems:

• Needs helper subgroup U.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Advantages and Problems

Advantages:

- Saves both time and space.
- Can be iterated to use a chain of helper subgroups.
- Still provides a sort of Schreier tree.
- Gives access to giant orbits.

Problems:

- Needs helper subgroup U.
- Needs homomorphism.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Advantages and Problems

Advantages:

- Saves both time and space.
- Can be iterated to use a chain of helper subgroups.
- Still provides a sort of Schreier tree.
- Gives access to giant orbits.

Problems:

- Needs helper subgroup U.
- Needs homomorphism.
- Needs mostly manual search and preparation.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

Advantages and Problems

Advantages:

- Saves both time and space.
- Can be iterated to use a chain of helper subgroups.
- Still provides a sort of Schreier tree.
- Gives access to giant orbits.

Problems:

- Needs helper subgroup U.
- Needs homomorphism.
- Needs mostly manual search and preparation.
- Sometimes helper subgroups do not exist.

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems

The End

Max Neunhöffer

Introduction

GAP examples

The orbit algorithm

Computing the stabiliser

Double cosets

Orbits by suborbits Storing suborbits Orbit-by-Suborbits Finding homomorphisms Problems Bibliography

Frank Lübeck and Max Neunhöffer. Enumerating large orbits and direct condensation. *Experiment. Math.*, 10(2):197–205, 2001.

Jürgen Müller, Max Neunhöffer, and Robert A. Wilson.

Enumerating big orbits and an application: B acting on the cosets of Fi₂₃.

J. Algebra, 314(1):75–96, 2007.