Max Neunhöffer

Motivation

Finding normal subgroups A helper theorem The algorithm

Involution centralisers Done?

Recognising a proper normal subgroup

Finding norma subgroups in action

What can go wrong?

Finding normal subgroups of even order

Max Neunhöffer

University of St Andrews

Bath, 7.8.2009

Max Neunhöffer

Motivation

Finding normal subgroups A helper theorem The algorithm Involution centralisers Done? Recognising a proper

Finding normal subgroups in action

What can go wrong?

The problem

Problem

Let $1 < N \triangleleft G = \langle g_1, \dots, g_k \rangle$ be a finite group and N be a normal subgroup. Produce a non-trivial element of N as a word in the g_i with "high probability".

- Assume no more knowledge about G or N.
- We are looking for a randomised algorithm.
- Assume we can generate uniformly distributed random elements in *G*.
- "High probability" means for the moment "higher than 1/[G : N]".
- Assume that we can compute in the group and can compute element orders.

Max Neunhöffer

Motivation

Finding normal subgroups

A helper theorem

The algorithm Involution centralisers Done? Recognising a proper normal subgroup

Finding norma subgroups in action

What can go wrong?

Finding even order normal subgroups

Theorem

```
Let 1 < N \leq G with 2 | |N|.
Let 1 \neq x \in G \setminus Z(G) with x^2 = 1.
Then, for C := C_G(x), we have:
1 < C \cap N \leq C and
2 | |C \cap N|.
```

Proof: We have xNx = N and |N| is even. The orbits of $\langle x \rangle$ on *N* have lengths 1 and 2, so there must be an even number of orbits of length 1.

In particular, $C \cap N$ contains an involution.

That is, we can replace (N, G) with $(C \cap N, C)$ and use the statement again, provided we find another non-central involution.

Max Neunhöffer

Motivation

Finding normal subgroups

A helper theorem

The algorithm

Involution centralisers Done? Recognising a proper

Finding norma subgroups in

What can go wrong?

Finding $N \triangleleft G$

We want to find an *N* with $1 < N \leq G$ and 2 | |N|, or conclude that there is none.

We can proceed as follows: Initialise H := G. Then

- Find a non-central involution $x \in H$. If none found, goto 4.
- **2** Compute its involution centraliser $C := C_H(x)$.
- Replace H with C and goto 1.
- Let D be the group generated by all central involutions we found.
- For all $1 \neq x \in D$: Test if $\langle x^G \rangle \neq G$.
- If no normal closure is properly contained, conclude that G does not contain such an |N| as assumed.

We find involutions by powering up random elements.

Max Neunhöffer

Motivation

Finding normal subgroups A helper theorem The algorithm Involution centralisers Done?

normal subgroup

Finding norma subgroups in action

What can go wrong?

Involution centralisers

How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: $G = \langle g_1, \dots, g_k \rangle$ and an involution $x \in G$. initialise gens := [x] repeat y := RANDOMELEMENT(G) $c := x^{-1}y^{-1}xy$ and o := ORDER(c)if o is even then append $c^{o/2}$ and $(x^{-1}yxy^{-1})^{o/2}$ to gens else append $z := y \cdot c^{(o-1)/2}$ to gens until o was odd often enough or gens long enough

return gens

Note: If xy = yx then $c = 1_G$ and o = 1 and z = y. And: If o is odd, then z is uniformly distributed in $C_G(x)$.

Max Neunhöffer

Motivation

- Finding normal subgroups A helper theorem
- The algorithm
- Involution centralisers
- Recognising a prope normal subgroup
- Finding normal subgroups in action
- What can go wrong?

Finding $N \triangleleft G$

We want to find an *N* with $1 < N \leq G$ and 2 | |N|, or conclude that there is none.

We can proceed as follows: Initialise H := G. Then

- Find a non-central involution $x \in H$. If none found, goto 4.
- **2** Compute its involution centraliser $C := C_H(x)$.
- Replace H with C and goto 1.
- Let D be the group generated by all central involutions we found.
- For all $1 \neq x \in D$: Test if $\langle x^G \rangle \neq G$.
- If no normal closure is properly contained, conclude that G does not contain such an |N| as assumed.

How do we test if we have a proper normal subgroup?

Max Neunhöffer

Motivation

Finding normal subgroups A helper theorem The algorithm Involution centralisers Done?

Recognising a proper normal subgroup

Finding norma subgroups in action

What can go wrong?

Testing for a proper normal subgroup

The following method by Charles Leedham-Green estimates the order of $gN \in G/N$:

Algorithm: ESTIMATEORDER

```
Input: g \in G and a N = \langle n_1, \ldots, n_m \rangle \trianglelefteq G.
initialise o := ORDER(g)
```

```
for i := 1 to 20 do
```

```
y := \mathsf{RANDOMELEMENT}(N)
```

```
o := \operatorname{GCD}(o, \operatorname{ORDER}(yg))
```

```
if o = 1 then
```

```
return 1
```

return o

This is a one-sided Monte Carlo algorithm.

We estimate all orders $g_i N \in G/N$ to decide G = N.

Max Neunhöffer

Motivation

- Finding normal subgroups A helper theorem The algorithm Involution centralisers Done?
- Recognising a prope normal subgroup

Finding normal subgroups in action

What can go wrong?

The method in action

We look at the following examples:

- $S_{30} \wr S_7 < S_{210}$ (imprimitive action)
- 3rd maximal subgroup of M₂₄ on 24 points: 2⁴ : A₈
- 5th maximal subgroup of M_{24} on 24 points: 2^6 : $3.S_6$
- Double cover 2. Suz of the sporadic Suzuki group
- $Sp(6,2) \wr S_6 < GL(36,2)$ (imprimitive)
- SL(6,3) ∘ M12 < GL(10,3) in GL(60,3) (tensor decomposable)

Max Neunhöffer

Motivation

- Finding normal subgroups
- A helper theorem
- The algorithm
- Involution centralisers
- Recognising a pr
- normal subgroup
- Finding norma subgroups in action

What can go wrong?

What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
- There could be no non-central involutions.
- There could be extremely many central involutions.
- We could get an involution centraliser wrong.
- We could get a normal closure wrong.
- We could get an order estimate wrong.
- *G* might not have an even order normal subgroup.