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The problem

Problem
Let 1 < N / G = 〈g1, . . . , gk 〉 be a finite group and N be a
normal subgroup.
Produce a non-trivial element of N as a word in the gi
with “high probability”.

Assume no more knowledge about G or N.
We are looking for a randomised algorithm.
Assume we can generate uniformly distributed
random elements in G.
“High probability” means for the moment
“higher than 1/[G : N]”.
Assume that we can compute in the group and can
compute element orders.



Finding normal
subgroups of even

order

Max Neunhöffer

Motivation

Finding normal
subgroups
A helper theorem

The algorithm

Involution centralisers

Done?

Recognising a proper
normal subgroup

Finding normal
subgroups in
action

What can go
wrong?

Finding even order normal subgroups

Theorem
Let 1 < N E G with 2 | |N|.
Let 1 6= x ∈ G \ Z (G) with x2 = 1.
Then, for C := CG(x), we have:

1 < C ∩ N E C and
2 | |C ∩ N|.

Proof: We have xNx = N and |N| is even. The orbits of
〈x〉 on N have lengths 1 and 2, so there must be an even
number of orbits of length 1. �

In particular, C ∩ N contains an involution.
That is, we can replace (N, G) with (C ∩ N, C) and use
the statement again, provided we find another non-central
involution.
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Finding N / G
We want to find an N with 1 < N E G and 2 | |N|, or
conclude that there is none.

We can proceed as follows: Initialise H := G. Then

1 Find a non-central involution x ∈ H. If none found,
goto 4.

2 Compute its involution centraliser C := CH(x).
3 Replace H with C and goto 1.
4 Let D be the group generated by all central

involutions we found.
5 For all 1 6= x ∈ D: Test if

〈
xG〉
6= G.

6 If no normal closure is properly contained, conclude
that G does not contain such an |N| as assumed.

We find involutions by powering up random elements.
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Involution centralisers
How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm: INVOLUTIONCENTRALISER

Input: G = 〈g1, . . . , gk 〉 and an involution x ∈ G.
initialise gens := [x ]
repeat

y := RANDOMELEMENT(G)
c := x−1y−1xy and o := ORDER(c)
if o is even then

append co/2 and (x−1yxy−1)o/2 to gens
else

append z := y · c(o−1)/2 to gens
until o was odd often enough or gens long enough
return gens

Note: If xy = yx then c = 1G and o = 1 and z = y .
And: If o is odd, then z is uniformly distributed in CG(x).
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Finding N / G
We want to find an N with 1 < N E G and 2 | |N|, or
conclude that there is none.

We can proceed as follows: Initialise H := G. Then

1 Find a non-central involution x ∈ H. If none found,
goto 4.

2 Compute its involution centraliser C := CH(x).
3 Replace H with C and goto 1.
4 Let D be the group generated by all central

involutions we found.
5 For all 1 6= x ∈ D: Test if

〈
xG〉
6= G.

6 If no normal closure is properly contained, conclude
that G does not contain such an |N| as assumed.

How do we test if we have a proper normal subgroup?
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Testing for a proper normal subgroup

The following method by Charles Leedham-Green
estimates the order of gN ∈ G/N:

Algorithm: ESTIMATEORDER

Input: g ∈ G and a N = 〈n1, . . . , nm〉 E G.
initialise o := ORDER(g)
for i := 1 to 20 do

y := RANDOMELEMENT(N)
o := GCD(o, ORDER(yg))
if o = 1 then

return 1
return o

This is a one-sided Monte Carlo algorithm.

We estimate all orders giN ∈ G/N to decide G = N.
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The method in action

We look at the following examples:

S30 o S7 < S210 (imprimitive action)

3rd maximal subgroup of M24 on 24 points: 24 : A8

5th maximal subgroup of M24 on 24 points: 26 : 3.S6

Double cover 2.Suz of the sporadic Suzuki group

Sp(6, 2) o S6 < GL(36, 2) (imprimitive)

SL(6, 3) ◦M12 < GL(10, 3) in GL(60, 3) (tensor
decomposable)
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What can go wrong?

Actually, lots of things!

We could have trouble to find elements of even order.

An order computation could take unpleasantly long.

There could be no non-central involutions.

There could be extremely many central involutions.

We could get an involution centraliser wrong.

We could get a normal closure wrong.

We could get an order estimate wrong.

G might not have an even order normal subgroup.
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