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Constructive recognition
Problem
Let G be Sn or GLn(Fq) or PGLn(Fq) and

M1, . . . , Mk ∈ G.

Find for G := 〈M1, . . . , Mk 〉:
The group order |G | and
a procedure that, given M ∈ G,

decides, whether or not M ∈ G and
if so, expresses M as an SLP in the Mi .

The runtime should be bounded from above by a
polynomial in n, k and log q.
A Monte Carlo Algorithmus is enough. (Verification!)

If this problem is solved, we call

〈M1, . . . , Mk 〉 recognised constructively.
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Recursion
We build a so-called composition tree:

G

N H

2211

3 3N H

HNHN

Up arrows: inclusions
Down arrows: homomorphisms
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Example

Recognising image and kernel suffices
Let ϕ : G→ H be an epimorphism and assume that both
H and the kernel N = 〈N1, . . . , Nm〉 of ϕ are already
recognised constructively (assume the Ni are expressed
in terms of the Mj ).

Then we have recognised G constructively:
|G | = |H| · |N|. And for M ∈ G:

1 map M with ϕ onto ϕ(M) ∈ H = 〈P1, . . . , Pk 〉,
2 express ϕ(M) = SLP1(P1, . . . , Pk ),
3 evaluate the same SLP: M ′ := SLP1(M1, . . . , Mk ),
4 get element M ′ ∈ G such that M ·M ′−1 ∈ N,
5 express M ·M ′−1 = SLP2(N1, . . . , Nm),
6 get M as SLP in the Mi and Nj :

⇒ M = SLP2(N1, . . . , Nm) · SLP1(M1, . . . , Mk ).
7 If M /∈ G, then at least one step does not work.
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Long SLPs
Typical examples:

(1) G := (2× 21+8) : U4(2) : 2 < GL78(2)

(7th maximal subgroup of the sporadic simple group Fi22)

G has 53 084 160 elements, generated by 2 elements.

Composition tree of depth 8 with 3 non-trivial leaves.

Typical elements in G give SLPs of length ≈ 900.

(2) W := S12 o S5 < S60

W has 3 025 980 091 991 082 565 958 286 705 898 291 200 000 000 000 elements and
is generated by 12 elements.

Composition tree of depth 4 with 6 non-trivial leaves.
Typical elements in W give SLPs of length ≈ 10000.
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Example

Learning from base and strong generators

The same groups with stabiliser chains:

G := (2× 21+8) : U4(2) : 2 < S3510

(7th maximal subgroup of the sporadic simple group Fi22)

Stabiliser chain of length 4 with 14 strong generators.

Typical elements in G give SLPs of length ≈ 15.

W := S12 o S5 < S60

Stabiliser chain of length 55 with 434 strong generators.

Typical elements in W give SLPs of length ≈ 500.
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Typical elements in W give SLPs of length ≈ 500.
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Comparison

We compare lengths of SLPs:

Stabiliser chain Composition tree
in strong

in gens in nice

in gens
G 15

290 15

900
S12 o S5 500

4300 300

10000

We want to change the generating system!

=⇒ “nice generators”
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Problems with recursion

G

N H

2211

3 3N H

HNHN

Recall: Generators of H were images of those of G.

Having changed the generators in H,

we can no longer find preimages!

Solution: Nice generators of G are
preimages of the nice generators of H
together with
nice generators of N.

Note: The first allows to compute N once H is recognised!
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Constructive recognition revisited
Problem — new formulation
Let G be Sn or GLn(Fq) or PGLn(Fq) and

M1, . . . , Mk ∈ G.

Find for G := 〈M1, . . . , Mk 〉:
The group order |G |,

new nice generators G = 〈N1, . . . , Nm〉 and
a procedure that, given M ∈ G,

decides, whether or not M ∈ G and
if so, expresses M as an SLP in the Nj and

another procedure that, given preimages M̂1, . . . , M̂k
of the Mi under some homomorphism onto G,
produces preimages of the nice generators.

If this problem is solved, we call

〈M1, . . . , Mk 〉 recognised constructively.
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Example

Recursion works again

Having recognised H in this sense, we can:

ask H to generate preimages of its nice generators,

compute generators for N,
recursively recognise N and
put together the nice generators for G.

If we remember how we created the generators for N,
then we have recognised G constructively:

Using H and N we can test membership in G,
express elements as SLPs in the nice generators,
and, given preimages of the original generators of G
under some homomorphism, we can find preimages
of the nice generators.
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Example
Let

G := S12 oM12 < S144

G has about 10109 elements and is generated by 27
elements.

Composition tree of depth 5 with 13 non-trivial leaves.

Typical elements in G give

SLPs of length ≈ 800 in 33 nice generators.

SLPs of length ≈ 40000 in 27 original generators!

Note that a stabiliser chain for G has
length 132 and 2512 strong generators,
typical SLP in the strong generators: ≈ 2700 lines,
typical SLP in the original generators: ≈ 12000 lines.
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