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v

If this problem is solved, we call

(My, ..., M) recognised constructively.




Short(er) SLPs in

group recognition ReCU rSIOn

Max Neunhoffer

We build a so-called composition tree:

G
N/ \H

Constructive recognition

Up arrows: inclusions
Down arrows: homomorphisms




Short(er) SLPs in

group recognition ReCU rSIOn

Max Neunhoffer

We build a so-called composition tree:

Constructive recognition

Up arrows: inclusions
Down arrows: homomorphisms




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-INJ.




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-|N|. And for M € G:




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-|N|. And for M € G:

@ map M with o onto (M) € H=(Ps,..., Px),




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-|N|. And for M € G:

@ map M with o onto (M) € H=(Ps,..., Px),
Q express p(M) = SLP4(Py, ..., Px),




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-|N|. And for M € G:

@ map M with o onto (M) € H=(Ps,..., Px),
Q express p(M) = SLP4(Py, ..., Px),
© evaluate the same SLP: M’ := SLP{(M, ..., M),




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-|N|. And for M € G:

@ map M with o onto (M) € H=(Ps,..., Px),

Q express p(M) = SLP4(Py, ..., Px),

© evaluate the same SLP: M’ := SLP{(M, ..., M),
Q getelement M € Gsuchthat M- M'~' € N,




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-|N|. And for M € G:

@ map M with o onto (M) € H=(Ps,..., Px),

Q express p(M) = SLP4(Py, ..., Px),

© evaluate the same SLP: M’ := SLP{(M, ..., M),
Q getelement M € Gsuchthat M- M'~' € N,

© express M- M1 = SLPy(Ny, ..., Npy),




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-|N|. And for M € G:

@ map M with o onto (M) € H=(Ps,..., Px),
Q express p(M) = SLP4(Py, ..., Px),
© evaluate the same SLP: M’ := SLP{(M, ..., M),
Q getelement M € Gsuchthat M- M'~' € N,
© express M- M1 = SLPy(Ny, ..., Npy),
O get Mas SLP inthe M; and N;:
= M = SLPs(Ny,...,Np) - SLP{(My, ..., My).




Myl R ccognising image and kernel suffices

Max Neunhsffer Let ¢ : G — H be an epimorphism and assume that both
H and the kernel N = (Ny, ..., Npy) of ¢ are already
recognised constructively (assume the N; are expressed
in terms of the M}).

Then we have recognised G constructively:
|G| = |H|-|N|. And for M € G:

@ map M with o onto (M) € H=(Ps,..., Px),
Q express p(M) = SLP4(Py, ..., Px),
© evaluate the same SLP: M’ := SLP{(M, ..., M),
Q getelement M € Gsuchthat M- M'~' € N,
© express M- M1 = SLPy(Ny, ..., Npy),
O get Mas SLP inthe M; and N;:
= M = SLP,(Ny, ..., Np) - SLPy (M, ..., My).
@ If M ¢ G, then at least one step does not work.
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Long SLPs

Typical examples:
(1) G:= (2 X 21+8) : U4(2) 2 < GL78(2)
(7th maximal subgroup of the sporadic simple group Fi»2)

G has 53084 160 elements, generated by 2 elements.

Composition tree of depth 8 with 3 non-trivial leaves.
Typical elements in G give SLPs of length ~ 900.
(2) W = S121 55 < Sgo

W has 3025980091 991 082 565 958 286 705 898 291 200 000 000 000 €lements and
is generated by 12 elements.

Composition tree of depth 4 with 6 non-trivial leaves.
Typical elements in W give SLPs of length ~ 10000.
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The same groups with stabiliser chains:
G = (2 X 21+8) : U4(2) 2 < S3510

(7th maximal subgroup of the sporadic simple group Fi»2)
Stabiliser chain of length 4 with 14 strong generators.

Typical elements in G give SLPs of length ~ 15.
W = 512155 < Sgp
Stabiliser chain of length 55 with 434 strong generators.

Typical elements in W give SLPs of length ~ 500.
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Stabiliser chain Composition tree
in strong | in gens | in nice | in gens

G 15 290 15 900

S121S85 500 4300 300 10000

We want to change the generating system!

= “nice generators”
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N/G\H

Recall: Generators of H were images of those of G.

Having changed the generators in H,
we can no longer find preimages!

Solution: Nice generators of G are

@ preimages of the nice generators of H
together with

@ nice generators of N.

Note: The first allows to compute N once H is recognised!
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Having recognised H in this sense, we can:

@ ask H to generate preimages of its nice generators,
@ compute generators for N,

@ recursively recognise N and
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Having recognised H in this sense, we can:

@ ask H to generate preimages of its nice generators,
@ compute generators for N,

@ recursively recognise N and

@ put together the nice generators for G.

If we remember how we created the generators for N,
then we have recognised G constructively:

@ Using H and N we can test membership in G,

@ express elements as SLPs in the nice generators,

@ and, given preimages of the original generators of G
under some homomorphism, we can find preimages
of the nice generators.
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sl 2 mple
Max Neunhaffer Le‘t
G := Si2 1 Mj2 < Siaa
G has about 10'%° elements and is generated by 27
elements.
Composition tree of depth 5 with 13 non-trivial leaves.

Typical elements in G give
SLPs of length ~ 800 in 33 nice generators.

SLPs of length ~ 40000 in 27 original generators!

Note that a stabiliser chain for G has
@ length 132 and 2512 strong generators,
@ typical SLP in the strong generators: ~ 2700 lines,
@ typical SLP in the original generators: ~ 12000 lines.
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