Max Neunhöffer

The problem

Matrix groups
The (ultimate) aim

Reductions

Finding norma

Subgroups
A helper theorem

The algorithm
Involution centralise

Blind desce

Applications

Imprimitive groups

What can gwrong?

Finding normal subgroups of even order

Max Neunhöffer

University of St Andrews

Columbus, 8.10.2009

Max Neunhöffer

The problem

Matrix groups
The (ultimate) aim
The (immediate) aim
Reductions

Finding normal subgroups

Subgroups
A helper theorem
The algorithm
Involution centralise
Done?

Blind descer

Applications
Performance in examples

What can g

The problem

Problem

Let $1 < N \triangleleft G = \langle g_1, \dots, g_k \rangle$ be a finite group and N be a normal subgroup.

Produce a non-trivial element of N as a word in the g_i with "high probability".

- Assume no more knowledge about G or N.
- I shall tell you soon why we want to do this.
- We are looking for a randomised algorithm.
- Assume we can generate uniformly distributed random elements in G.
- "High probability" means for the moment "higher than 1/[G:N]".

The problem

Matrix groups
The (ultimate) aim

Finding normal subgroups

A helper theo

The algorithm
Involution centralis

Blind descen

Applications

Performance in examples Imprimitive groups

What can gwrong?

Matrix groups

Let \mathbb{F}_q be the field with q elements and

$$\operatorname{GL}_n(\mathbb{F}_q) := \{ M \in \mathbb{F}_q^{n \times n} \mid M \text{ invertible} \}$$

Given: $M_1, \ldots, M_k \in \operatorname{GL}_n(\mathbb{F}_q)$

Then the M_i generate a group $G \leq GL_n(\mathbb{F}_q)$.

It is finite, we have $|GL_n(\mathbb{F}_q)| = q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$

What do we want to determine about *G*?

- The group order |G|
- Membership test: Is $M \in GL_n(\mathbb{F}_q)$ in G?
- Homomorphisms $\varphi : G \rightarrow H$?
- Kernels of homomorphisms? Is *G* simple?
- Comparison with known groups
- (Maximal) subgroups?
-

The problem

Matrix groups
The (ultimate) aim
The (immediate) aim

Finding normal

A helper theorem
The algorithm

The algorithm
Involution centralise
Done?

Blind descen

Applications
Performance in examples

What can go

Constructive recognition

Problem

Let \mathbb{F}_q be the field with q elements and

$$M_1,\ldots,M_k\in \mathrm{GL}_n(\mathbb{F}_q).$$

Find for $G := \langle M_1, \ldots, M_k \rangle$:

- The group order |G| and
- an algorithm that, given $M \in GL_n(\mathbb{F}_q)$,
 - decides, whether or not $M \in G$, and,
 - if so, expresses M as word in the M_i.
- The runtime should be bounded from above by a polynomial in n, k and log q.
- A Monte Carlo Algorithm is enough. (Verification!)

If this problem is solved, we call

 $\langle M_1, \dots, M_k \rangle$ recognised constructively.

The problem

Matrix groups
The (ultimate) aim
The (immediate) aim

Reductions
Finding normal subgroups

A helper theorem
The algorithm
Involution centralise

Blind descer

Applications
Performance in examples

What can gwrong?

What is a reduction?

Let
$$G := \langle M_1, \ldots, M_k \rangle \leq \operatorname{GL}_n(\mathbb{F}_q)$$
.

A reduction is a group homomorphism

$$\varphi : G \to H$$
 $M_i \mapsto P_i$ for all i

with the following properties:

- $\varphi(M)$ is explicitly computable for all $M \in G$
- φ is surjective: $H = \langle P_1, \dots, P_k \rangle$
- H is in some sense "smaller"
- or at least "easier to recognise constructively"
- e.g. $H \leq S_m$ or $H \leq \operatorname{GL}_{n'}(\mathbb{F}_{q'})$ with $n' \log q' < n \log q$

Max Neunhöffer

The probler

Matrix groups
The (ultimate) aim

Reductions

Finding normal subgroups

The algorithm
Involution centralise

Blind desce

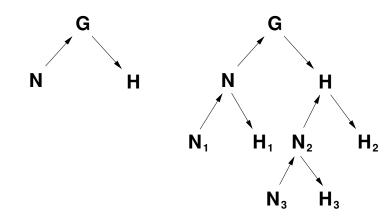
Applications

Performance in exampl Imprimitive groups

What can g

Recursion: composition trees

We get a tree:



Up arrows: inclusions

Down arrows: homomorphisms

Old idea, substantial improvements are still being made

Max Neunhöffer

The problem

Matrix groups
The (ultimate) aim
The (immediate) aim

Reductions
Finding normal subgroups

A helper theorem
The algorithm
Involution centraliser

Blind descen

Applications
Performance in example

What can gwrong?

Reduction in the imprimitive case

One case, in which we want to find a reduction, is:

Situation

Let $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ acting linearly on $V := \mathbb{F}_q^{1 \times n}$, such that V is irreducible. Assume there is N with $Z(G) < N \triangleleft G$ such that

$$V|_{N} = W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k},$$

all W_i are invariant under N, and G permutes the W_i transitively. Then there is a reduction $\varphi : G \to S_k$.

We can compute the reduction once *N* is found.

Since we can compute normal closures, our initial problem is exactly, what we need to do.

The problem

Matrix groups
The (ultimate) aim
The (immediate) aim

Finding normal

subgroups
A helper theorem

The algorithm
Involution centralise
Done?

Blind descer

Applications
Performance in example

What can gwrong?

Finding even order normal subgroups

Theorem

Let $1 < N \le G$ with $2 \mid |N|$.

Let
$$1 \neq x \in G \setminus Z(G)$$
 with $x^2 = 1$.

Then, for $C := C_G(x)$, we have:

- 1 < *C* ∩ *N* ⊴ *C* and
- $2 \mid |C \cap N|$.

Proof: We have xNx = N and |N| is even. The orbits of $\langle x \rangle$ on N have lengths 1 and 2, so there must be an even number of orbits of length 1.

In particular, $C \cap N$ contains an involution.

That is, we can replace (N, G) with $(C \cap N, C)$ and use the statement again, provided we find another non-central involution.

The problem

Matrix groups
The (ultimate) aim
The (immediate) ain

Finding normal subgroups

A helper theorem

The algorithm
Involution centralise
Done?

Blind descen

Applications
Performance in example
Imprimitive groups

What can gwrong?

Finding $N \triangleleft G$

We want to find an N with $1 < N \le G$ and $2 \mid |N|$, or conclude that there is none.

Algorithm 1: INVOLUTION DESCENT

Initialise H := G. Then

- Find a non-central involution $x \in H$. If none found, goto 4.
- **2** Compute its involution centraliser $C := C_H(x)$.
- Replace H with C and goto 1.
- 4 Let D be the group generated by all central involutions we found.
- **5** For all $1 \neq x \in D$: Test if $\langle x^G \rangle \neq G$.
- If no normal closure is properly contained, conclude that G does not contain such an |N| as assumed.

We find involutions by powering up random elements.

Max Neunhöffer

The problem

Matrix groups
The (ultimate) aim

Finding normal

A helper theor

The algorithm Involution centralisers

Blind descent

Applications
Performance in examples

What can go

Involution centralisers

How can we compute the centraliser of an involution?

The following method by John Bray does the job:

Algorithm 2: INVOLUTIONCENTRALISER

```
Input: G = \langle g_1, \dots, g_k \rangle and an involution x \in G. initialise gens := [x] repeat y := \mathsf{RANDOMELEMENT}(G) c := x^{-1}y^{-1}xy and o := \mathsf{ORDER}(c) if o is even then append c^{o/2} and (x^{-1}yxy^{-1})^{o/2} to gens
```

append $z := y \cdot c^{(o-1)/2}$ to *gens* until o was odd often enough or gens long enough

return gens

else

Note: If xy = yx then $c = 1_G$ and o = 1 and z = y. And: If o is odd, then z is uniformly distributed in $C_G(x)$.

Max Neunhöffer

The problem

Matrix groups
The (ultimate) aim

The (immediate) aim
Reductions

Finding normal subgroups

A helper theorem

The algorithm

The algorithm
Involution centralise
Done?

Blind descen

Applications
Performance in examples
Imprimitive groups

What can g wrong?

Finding $N \triangleleft G$

We want to find an N with $1 < N \le G$ and $2 \mid |N|$, or conclude that there is none.

Algorithm 1: INVOLUTION DESCENT

Initialise H := G. Then

- Find a non-central involution $x \in H$. If none found, goto 4.
- **2** Compute its involution centraliser $C := C_H(x)$.
- Replace H with C and goto 1.
- 4 Let *D* be the group generated by all central involutions we found.
- **5** For all $1 \neq x \in D$: Test if $\langle x^G \rangle \neq G$.
- If no normal closure is properly contained, conclude that G does not contain such an |N| as assumed.

How do we test if we have a proper normal subgroup? What if *D* is large?

The problem

Matrix groups
The (ultimate) aim
The (immediate) ain

Finding normal subgroups

A helper theore

Done?

Blind descent

Applications
Performance in examples

What can gwrong?

Blind descent (Babai, Beals)

Let $1 \neq x, y \in G$ and G non-abelian.

Assume at least one of x, y is contained in a non-trivial proper normal subgroup.

We do not know which!

Aim: Produce $1 \neq z \in G$ that is contained in a non-trivial proper normal subgroup.

Algorithm 3: BLINDDESCENT

- Consider $c := [x, y] := x^{-1}y^{-1}xy$, if $c \ne 1$, we take z := c.
- If c = 1, the elements x and y commute. If $x \in Z(G)$, take z := x.
- **3** Compute generators $\{y_i\}$ for $Y := \langle y^G \rangle$.
 - If some $c_i := [x, y_i] \neq 1$, then take $z := c_i$ as in 1.
 - Otherwise $x \in C_G(Y)$ but $x \notin Z(G)$, thus $Y \neq G$, we take z := y.

The problem

Matrix groups
The (ultimate) aim
The (immediate) aim

Finding normal subgroups

A helper theorem
The algorithm
Involution centralisers

Blind descent

Applications
Performance in example:
Imprimitive groups

What can gwrong?

Combining Algorithms 1 and 3

Algorithm 4: FINDELMOFEVENNORMALSUBGROUP

Let $G = \langle g_1, \ldots, g_k \rangle \leq \operatorname{GL}(d, q)$.

- Use Algorithm INVOLUTIONDESCENT to produce candidate elements.
 (If there are too many central involutions, select some randomly.)
- Use BLINDDESCENT to combine them.
- If any of the candidates is in a proper normal subgroup, then the result will be.
 - One non-trivial group element is returned.
 - The algorithm is Monte Carlo and could return a wrong result.

Max Neunhöffer

The problem

Matrix groups
The (ultimate) aim
The (immediate) aim

Finding normal

subgroups A helper theorem The algorithm

The algorithm Involution centralise Done?

Blind descen

Performance in examples Imprimitive groups

What can g wrong?

Examples

This approach works well in many important cases:

G	N	time
<i>A</i> ₂₀ ≀ <i>A</i> ₃₀	$A_5^{ imes 30}$	120
$SL(3,3) \wr A_{10} < GL(30,3)$	$SL(3,3)^{\times 10}$	724
$Sp(6,3) \otimes 2.O(7,3) < GL(48,3)$	Sp(6, 3) ⊗ 1	645
(computing projectively)	or $1 \otimes 2.0(7,3)$	
6.Suz < GL(12, 25)	central 2	227
S ₁₀₀	A ₁₀₀	165
A ₁₀₀		148
PSL(10,5)	_	1248
PGL(10, 5)	PSL(10, 5)	1260

(here we have averaged over 10 runs, times in ms)

The success rate was 100% in all cases (using 200 runs).

The problem

Matrix groups

The (ultimate) aim
The (immediate) ai

Reductions

Finding normal

A helper theorem
The algorithm

The algorithm
Involution centralis
Done?

Blind descen

Applications

Performance in example Imprimitive groups

What can gwrong?

Reductions for imprimitive matrix groups

Situation

Let $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ acting linearly on $V := \mathbb{F}_q^{1 \times n}$, such that V is irreducible. Assume there is N with $Z(G) < N \triangleleft G$ such that

$$V|_{N} = W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k},$$

all W_i are invariant under N, and G permutes the W_i transitively. Then there is a reduction $\varphi : G \to S_k$.

We use Algorithm FINDELMOFEVENNORMALSUBGROUP, for the result *x*, do:

- compute the normal closure $M := \langle x^G \rangle$,
- use the MeatAxe to check whether $V|_M$ is reducible,
 - if $x \in N$, we find a reduction.

Max Neunhöffer

The probler

Matrix groups
The (ultimate) aim
The (immediate) ain
Reductions

Finding normal subgroups

A helper theorem
The algorithm
Involution centralised
Done?

Blind descer

Applications
Performance in examples
Imprimitive groups

What can go wrong?

What can go wrong?

Actually, lots of things!

- We could have trouble to find elements of even order.
- An order computation could take unpleasantly long.
- There could be no non-central involutions.
- There could be extremely many central involutions.
- We could get an involution centraliser wrong.
- We might not find all non-central involutions.
- G might not have an even order normal subgroup.