
Enumerating large orbits and direct
condensation

Frank Lübeck and Max Neunhöffer

Abstract

We describe a new implementation of direct condensation, which
is a tool in computational representation theory. The crucial point
for this is the enumeration of very large orbits for a group acting on
some set. We present a variation of the standard orbit enumeration
algorithm that reduces the amount of storage needed and behaves
well under parallelization. For the special case of matrices acting on
a finite vector space an efficient implementation is described. This al-
lows to use condensation methods for considerably larger permutation
representations as could be handled before.

1 Introduction

Notation. Let G = 〈g1, . . . , gr〉 be a group given by r generators. Let M
be a set, Sym(M) the symmetric group on M and π : G → Sym(M) a
homomorphism. We say that G is acting on M , and for m ∈ M , g ∈ G
we write mg := π(g)(m). Clearly, π is uniquely determined by the images
π(gi), 1 ≤ i ≤ r, of its generators. We call the elements of M points, and for
m ∈ M the set mG := {mg | g ∈ G} is called the G-orbit of m (under the
action π). Let m0 ∈M such that its G-orbit m0G is finite.

Let K be a subgroup of G, also given by a finite number of generators.
The main purpose of this paper is the discussion of an algorithm which
computes for each K-orbit mK ⊂ m0G, m ∈ m0G, the intersection numbers
of its translates mKgi with all such K-orbits. This is explained in section 2
which starts with the description of two basic algorithms for enumerating an
orbit.

1

An interesting interpretation of these numbers in the representation the-
ory of the group G is shortly explained in section 5, which also contains two
explicit examples. This application, called direct condensation, was our orig-
inal motivation for this note. But we hope that our general remarks about
enumerating large orbits will be useful for other applications as well.

The result in 5.3 is of independent interest because it can be used to finish
the determination of the decomposition numbers of the symmetric groups Sn,
21 ≤ n ≤ 23, in characteristic 5. These were previously unknown.

The emphasis in algorithm 2.5 is to give it in a way which makes it easy
to find variations allowing the practical application to very large cases. For
example it may not be possible to store all points of the orbit on a computer
because it would need too much memory. Therefore we introduce a concept
of minimal points in an orbit and only those need to be stored during the
algorithm.

In section 3 we make this explicit in the important practical case were
G is acting via matrices on a (finite) vector space. We show a way to de-
fine minimal elements which allows to get very efficiently from an arbitrary
vector in the orbit to a minimal one in the same K-orbit. This is the key
point which makes our algorithm for direct condensation much more efficient
than a previous implementation described in [2] (see section 5.2 for more
details). In section 4 we discuss a parallelization of the algorithm and our
implementation. This can be used to treat substantially larger cases as could
be handled before.

Acknowledgement. We would like to thank J. Müller for very useful
discussions on the topic.

2 The orbit algorithm and variations

In this section we first describe algorithms to enumerate the G-orbit m0G
from the given m0 ∈M and given π(gi), 1 ≤ i ≤ r. (Recall that we assumed
that m0G is finite.)

2.1 The basic algorithm

We start with the basic algorithm.

Algorithm 2.1 Orbit

Input: m0 ∈M , π(gi), 1 ≤ i ≤ r

2

Output: a list L containing the elements of m0G
Initialize: L := [m0]
for m in L do

for i from 1 to r do
x := mgi
if x is not contained in L then

append x to the list L
end if

end for
end for
return L

The algorithm terminates because of the assumption that the orbit m0G
is finite. It is clear that the resulting list L contains only elements from the
G-orbit of m0. Furthermore L is invariant under the action of the generators
gi and so under their inverses g−1

i . Since each element of G is a finite product
of these generators and their inverses L is invariant under the action of G.
This shows that L contains exactly the elements of the orbit m0G.

Counting the number of necessary operations in the algorithm we find:

Proposition 2.2 The algorithm 2.1 needs r times the length of m0G opera-
tions consisting of an application of a generator of G to a point and a lookup
of the resulting point in the list of known points.

Note that with a naive implementation of the lookup of points in L by
sequential comparison the lookup part of an operation described in the propo-
sition would take most of the running time in case of large orbits. But using
a standard technique like hash tables, see [5, 6.4], the time for a single lookup
becomes (almost) independent of the length of the orbit.

2.2 Large orbits

Our interest here is the practical enumeration of large orbits. Two problems
arise: the list of all points in an orbit does not fit into the computer memory
and the running time of the algorithm may be longer than we want to wait
for the result.

Both problems are addressed by the following variation of algorithm 2.1.
We will now assume that we have a partition of M which is a refinement

of the partition into G-orbits. As a typical example think of the partition

3

into orbits under a subgroup of G. Furthermore we assume that for each part
a non-empty subset is defined whose points we will call minimal. Finally we
assume in the following algorithm that we have three functions available:
• part, which returns for a given m ∈ M a list of the points in the part
containing m.
• minimals, which returns for a given m ∈M a list of the minimal points of
part(m).
• minimal, which returns for a given m ∈M one minimal point in part(m).

To save computer memory for the orbit m0G the following algorithm will
compute only a list of its minimal points.

Algorithm 2.3 OrbitByPartition

Input: m0 ∈M , π(gi), 1 ≤ i ≤ r
Output: a list L containing the minimal elements of m0G with one element of
each part marked as representative
Initialize: L := minimals(m0) and mark first element as representative
for m′ in L which is marked as representative do

L1 := part(m′)
for m in L1 do

for i from 1 to r do
x := minimal(mgi)
if x is not contained in L then

append the elements of minimals(x) to L and
mark one of the new points as representative

end if
end for

end for
end for
return L

Note that with the output L of this algorithm it is possible to run through
all points in m0G using the function part as above. Also, one can check for an
arbitrary point m ∈M whether it is contained in m0G by checking whether
minimal(m) is in L.

The order in which the parts are handled in the outer loop of this algo-
rithm does not matter (except for the ordering of the points in the resulting
list L). We will show in section 4 how to use this for parallelizing the algo-
rithm.

4

2.3 Orbit intersection matrices

Let K = 〈k1, . . . , ks〉 be a subgroup of G given by s generators and let
m1, . . . ,mm be representatives of the K-orbits within m0G.

Definition 2.4 In the setting above we call the matrices (akl(gi))1≤k,l≤m
with

akl(gi) := |mkKgi ∩mlK| ,

for 1 ≤ i ≤ r, the K-orbit intersection matrices of the gi on m0G.

We are interested in the practical computation of these orbit intersection
matrices. In section 5 we will discuss an application of these matrices in the
representation theory of the group G.

From now on we will assume that the partition of M described in 2.2 is
a refinement of its partition into K-orbits.

In the following algorithm we use 2.3 OrbitByPartition in two ways:
First, we use it for the whole orbit m0G, the partition being given by the
K-orbits, and supplemented by some bookkeeping for the orbit intersection
matrices. And second, we use it as it is, the parts being as before, to compute
the K-orbits.

Algorithm 2.5 OrbitIntersectionMatrices

Input: m0, π(gi), 1 ≤ i ≤ r, π(kj), 1 ≤ j ≤ s
Output:
• a list L containing the minimal elements of m0G with one element

of each part marked as representative
• a map nr : L→ {1, . . . ,m} with nr(a) = l if a ∈ mlK
• the orbit intersection matrices A(i) := (akl(gi)) for 1 ≤ i ≤ r

Initialize:
• k := 1 (loop variable for number of K-orbit)
• L := OrbitByPartition(m0, π(k1), . . . , π(ks))

(start with minimal elements in first K-orbit m0K)
• n := 1 (number of last found K-orbit)
• nr(a) := 1 for all a ∈ L
• A(i) := (0) for 1 ≤ i ≤ r (initialize A(i) with 1× 1 zero matrices)

while k ≤ n do
(loop over K-orbits in m0G, we evaluate only one of its parts at one time)
L1 := list of a ∈ L with nr(a) = k

5

for m′ in L1 which is marked as representative of its part do
L2 := part(m′)
for m in L2 do

for i from 1 to r do
x := minimal(mgi)
if x is not contained in L then

(K-orbit xK is not yet known, we compute it now)
n := n+ 1
append OrbitByPartition(x, π(k1), . . . , π(ks)) to L
set nr(a) := n for the new points in L
enlarge all A(j), 1 ≤ j ≤ r, by a zero-column and -row
A

(i)
kn := 1

else
(in this case we know the number of the K-orbit of x)
l := nr(x)

A
(i)
kl := A

(i)
kl + 1

end if
end for

end for
end for

end while
return L, nr and A(i) for 1 ≤ i ≤ r

Note that in this algorithm only the minimal points ofm0G plus the points
of one part at a time have to be stored. Typical orbit intersection matrices
are dense. That means that during the execution of this algorithm there
are two phases. During the first phase mainly new K-orbits are evaluated.
After the computation of the first few rows of the orbit intersection matrices
the list L is complete. In the second phase the remaining part of the orbit
intersection matrices is determined.

Remark 2.6 Assume that we have already run the algorithm 2.5 once and
want to know the orbit intersection matrices for additional elements of G.
This can be achieved by a small modification of the previous algorithm: Input
are the elements of G whose orbit intersection matrices we want to know and
the resulting L and nr from a previous call of OrbitIntersectionMatrices.
The only difference is now that in the initialization L and nr are set to the
given ones. Of course, here the case x 6∈ L in the inner loop never occurs.

6

3 The case of matrices acting on vectors

One case for the setup in section 2 is that the set M is a finite dimensional
vector (row) space over a finite field and the action of the generators gi (and
the kj) is described by matrices acting on M by right multiplication.

There is an implementation of a parallelized algorithm for computing
orbit intersection matrices in this case by G. Cooperman and M. Tselman,
see [2]. An important aspect of their algorithm is also to save memory by
not storing all points in the orbit. But if the proportion of stored elements
in such an orbit is 1/α, then one needs in average about α vector-matrix
multiplications to find from an arbitrary point in this K-orbit one of the
stored points. This essentially leads to a multiplication of the total running
time of the algorithm by a factor α.

Another approach was taken by R. Parker and R. Wilson who have a
(sequential) program which uses ”tadpoles” for saving memory. Since there
does not seem to exist any reference for this, here is the idea: One defines a
”random-looking” successor function on the set of points and stores only ”at-
tracting points” under repeated application of this function. Under certain
statistical assumptions one expects to pay for a saving factor 1/α in memory
usage with a log(α) time penalty factor. But it seems to be very difficult to
predict the behavior of the algorithm in practical cases.

We will now explain a way to realize our functions minimals, minimal
and part described in 2.2 efficiently for this case. This allows to reduce the
needed memory by a large factor. But the computing time is only increased
by a small constant factor compared to the basic orbit algorithm.

We consider a subgroup U of K with the following properties:
(1) U is small enough that we can store all elements of U in our process for
computing the orbit intersection matrices
(2) there is a U -invariant subspace V of M such that all U -orbits of the
quotient space M/V can easily be computed
(3) the average length of the U -orbits on M/V is ”close to” |U |

In practical examples it turned out that it is not difficult to find such U
and V . The space M viewed as a G-module is typically irreducible. Small
subgroups of K as candidates for U can be found by considering some sub-
groups generated by random elements. Now M considered as U -module
usually has a composition series consisting of many small dimensional mod-
ules. This can be found using the MeatAxe, see [9], and so we find candidates
for V .

7

Assume that we have found U and V as above. Let pr : M → M/V be
the projection map. Note that the action of U on M and the induced action
on M/V commute with pr. We enumerate M/V and call m ∈ M minimal,
if pr(m) is minimal in its U -orbit with respect to this enumeration. (pr is
particularly easy to implement when the basis of M is chosen to contain a
basis of V .)

In a precomputation (short, because of (2)) we compute by a variation of
the basic orbit algorithm 2.1 for each point of M/V either an element of U
mapping it onto the minimal element in its U -orbit or, if the point is already
minimal, the elements of U stabilizing this point.

Now we implement part(m) by computing all mu, u ∈ U , and removing
multiple points. Because of (3) this takes not much more than one vector-
matrix multiplication per element in part(m).

For minimal(m) we use the precomputation, for pr(m) we have stored a
u ∈ U such that mu is minimal. All minimals(m) are computed by applying
all u′ from the stabilizer of pr(mu) to mu and removing multiples. (Because
of (3) this stabilizer is often trivial.)

Using these considerations we can count the basic operations which are
needed in 2.5.

Proposition 3.1 We assume that in the situation above the computation of
minimals(m) takes in average less than 2 vector-matrix multiplications and
that the computation of part(m) takes in average less than 2 vector-matrix
multiplications per point in the part.

(a) Then the algorithm 2.3 OrbitByPartition needs 2+2r vector-matrix
multiplications and r list lookups per point in the considered orbit (neglecting
the computation of all minimal points once for each part).

(b) Then the algorithm 2.5 OrbitIntersectionMatrices needs (2+2s)+
(2 + 2r) vector-matrix multiplications and s + r list lookups per point in the
considered orbit (here we neglect the calls to minimals once for each part and
the bookkeeping effort for the orbit intersection matrices).

We remark that a similar idea also works in the case of G acting on the
subspaces of M , instead of the vectors.

In certain cases one can think of further improvements by choosing sub-
groups U with additional nice properties. For example, if M is a semisimple
U -module then one can take a basis of M such that elements of U have a
(very sparse) block diagonal form. (In general one can reach a block trian-
gular form.)

8

4 Parallelization

We do not see an improvement of algorithm 2.5 OrbitIntersectionMatrices
which reduces the computation time considerably. But we can reduce the
waiting time for the result by distributing the computations in parallel among
several computer processors. We are mainly thinking of using networks of
workstations. In this section we describe our approach to a parallelization of
OrbitIntersectionMatrices.

4.1 Parallel version of OrbitIntersectionMatrices

Looking at the algorithm we see that it is essential to have a central place
where the list L and the map nr are managed (in form of a hash table) to
avoid many computations of the same K-orbits by several processes and also
to guarantee a unique numbering of the K-orbits found.

We divide the whole work into pieces by giving single runs through a
K-orbit as jobs to single processors. In such a job - corresponding to a run
through the body of the outer loop in algorithm 2.5 - one row of each of the
orbit intersection matrices is computed.

We have written a small library which allows communication of processes
running on computers connected via a network (using UNIX domain sockets,
which are available on many computer operating systems). The communica-
tion is of the type that one process sends to another a number indicating a
type of a request plus some data. The other process may do some computa-
tion and then sends back an answer in form of a block of data. Using this
we have implemented three different programs which work together.

First there is one process called the jobserver: It can be asked for a
job to do (a number k in algorithm 2.5), or for a number for a newly found
K-orbit, and it collects the computed rows of the orbit intersection matrices
and stores them into files.

Then there is one process (or several, see below) called the hashserver:
This one manages the hash table for the list L. It can be asked to send
for a given list of points the corresponding numbers of their K-orbits or
the information which points are lying in a not yet known K-orbit. Also this
process can be asked to store the information about a new K-orbit in its hash
table (it writes it to a file, too), and also to send a list of representatives for
the parts which are contained in the K-orbit with a given number.

9

Finally there can be many processes called dcclient: They ask the job-
server for a job, get the representatives for the K-orbit they have to handle
from the hashserver, then run through the body of the outer loop of al-
gorithm 2.5, send the computed rows of the orbit intersection matrices to
the jobserver, and start from the beginning. When such a process has to
check whether a point is contained in L and wants to know the number of its
K-orbit then it sends the point to the hashserver to get the answer. When
a new K-orbit is computed it is sent to the hashserver (which ignores it
in the rare case that this K-orbit was in the meanwhile already computed
by another process). Actually a dcclient does not send single points as re-
quests to the hashserver but always computes minimal(mgi) for all m in
a fixed part and puts a collected request to the hashserver into a queue.
Before computing the next such request it checks for available answers from
the hashserver. This way the client process does not have to be idle in case
of a temporarily overloaded network.

As a variant we also allow multiple hashservers: Here we use a func-
tion which computes for a given point the number of a hashserver which is
responsible to store this point and to answer requests about it. This makes
the preparation of hashserver requests by a dcclient slightly more com-
plicated but it can be very useful in certain situations: For example if the
data for the requests are computed so fast that the network bandwidth is
too small and if we have a switched network (which allows several parallel
connections with full bandwidth) then multiple hashservers can increase
the overall available network bandwidth for the requests. And this is similar
when a hashserver cannot handle all the requests fast enough. Another
point is that the hashserver is usually the process which needs most of the
memory. For efficiency it is desirable that a hashserver can keep the list L
in the physical memory of the computer. Using multiple hashservers we
can use the physical memory of several computers for this purpose.

Concerning the memory needed by these processes the hash servers need
to hold all minimal points of m0G and a client process needs to store at most
all minimal elements of a K-orbit and the points in one part of the partition.
The orbit intersection matrices can also become very big (there may be up
to 10000 K-orbits, say). But it is never necessary to store more than one
row in a client. Once a row is computed it can be stored in a file and is not
needed any more. (We only have to append some zeros when we use them,
because some new K-orbits can be found after finishing a row.)

The computation time for the algorithm scales almost linearly with the

10

number of clients as long as the bandwidth of the communication between the
clients and the hash servers or the computing power of the hash servers do not
reach their limit. And the amounts of data which have to be transfered can
be estimated very well from 3.1. If network bandwidth becomes a problem
one can at least speed up linearly the second phase of the algorithm described
after 2.5: We interrupt the computation after finding all K-orbits and start
it again in the form of 2.6 with several hash servers who all use the same
already computed data.

4.2 Comments on the implementation

Our implementation of the parallel version of OrbitIntersectionMatrices
is written as far as possible in a generic way (the programming language is
C), where we assume almost nothing about how the points of M , elements
of G and the action are given. To get a program for a special case one has
to write a file containing functions for initializing the clients, operation of
group elements on points, the functions part, minimal and minimals, and
hash functions for the points. This can then be linked easily with the main
part of the program.

The part for the client-server communication is a separate small package
which can be used for other programs as well. It supports simple blocking
requests, i.e., where a process waits for an answer, as well as queues of non-
blocking requests.

An advantage of our communication approach seems to be robustness:
The crash of any single process involved in a computation does not waste the
computing time spent so far. Client processes can be terminated and new
ones started up at any time. Of course the whole computation crashes when
one of the server processes is terminated for some reason. But we are saving
the results which are already obtained into files and this makes it possible
to restart the computation almost at the point where it was stopped. This
feature is very important for the use of such programs on networks where
any single machine can be down at any time for various reasons. The lack
of this feature was also the reason that we did not use a (in certain aspects
much more sophisticated) communication protocol like MPI, see [8].

The initial revision of our package contains two versions of the programs.
One with permutations as group elements for doing the computation de-
scribed in 5.3 and another more general one for matrices acting on vectors
over a finite field. In the latter we use some basic functions from M. Ringe’s

11

MeatAxe package, see [9]. Since we want to use this program for very large
examples we have put some effort in optimizing the vector-matrix arithmetic,
e.g., by precomputing certain linear combinations of rows of the operating
matrices (R. Parker calls this ”greasing”) and by using partial row operations
for sparse rows.

Our software is freely available under GPL [4], see [6].

5 Direct condensation

Let A be a finite dimensional algebra over a field F and let e = e · e ∈ A an
idempotent. The idea of condensation is to get information on A-modules
M by studying the eAe-modulesMe. In particular this is an important tool
in computational representation theory. The latter modules can be of much
smaller dimension but still encode interesting information on the structure
of M, since the map M 7→ Me is an exact functor from the category of
A-modules to the category of eAe-modules.

For more details we refer to [1] and the references given there. The first
reference describing the use of this method in modular representation theory
is J. Thackray’s thesis [10].

5.1 Interpretation of the OrbitIntersectionMatrices

We want to consider the special case when A = FG is the group algebra of
a finite group G over the field F , e is the idempotent 1/|K| ·

∑
k∈K k ∈ FG

corresponding to the subgroup K of G whose order is not a multiple of the
characteristic of F , and M is a permutation module of FG. (If e is of this
form then K is called the condensation subgroup).

Now we assume that G and M are finite. A permutation representation
G → Sym(M) of G describes a permutation module M of FG. A basis for
this module is parameterized by the elements of M . Let x =

∑
m∈M amm ∈

M and O be a K-orbit of M . Then for all m ∈ O the coefficient of m in xe
is 1/|O| ·

∑
m′∈O am′ . This shows that the orbit sums χO :=

∑
m∈Om for all

K-orbits in M are a basis of Me. Furthermore we see how for g ∈ G the
element ege is acting on this basis: for another K-orbit O′ the coefficient of
χO′ in χOege is 1/|O′| · aO,O′ with aO,O′ := |{m ∈ O | mg ∈ O′}|.

Clearly M is a direct sum of the permutation modules on the G-orbits
in M . Our algorithm 2.5 OrbitIntersectionMatrices computes exactly

12

the numbers aO,O′ for all K-orbits in a single G-orbit. (Note that the sum of
entries in a fixed row or column of an orbit intersection matrix gives the length
of the corresponding K-orbit.) The method was called direct condensation
by R. Parker and R. Wilson because one only needs to know for a given point
m ∈M and g ∈ G its image mg but one does not need to write down in full
detail the explicit permutation induced by g on M .

5.2 An application with G = Th

As first example for our program we have checked the computations in [1].
There G is the sporadic simple Thompson group acting linearly on a vector
space M of dimension 248 over the field with 2 elements. The considered
G-orbit has about 109 elements. The cited paper contains enough details
that we could redo the computations starting with the matrices for this
representation given in R. Wilson’s WWW-Atlas of group representations,
see [11].

We used the approach described in section 3. As subgroup U for the
partition of the orbit we constructed a group of order 336 which has an
invariant subspace in M of codimension 20. It turned out that about 1 out
of 257 points in the considered G-orbit is minimal. The minimal vectors can
be stored in 125 Megabytes of memory using one bit per field element.

After measuring the time needed for a single vector-matrix multiplica-
tion we estimated the total running time of the condensation using Proposi-
tion 3.1. We found that this estimate was very close to the actual running
time. The computations were done on 18 machines (Pentium II, 450MHz
processors) of a cluster at the university of St.Andrews1 which are connected
by a “switched fast ethernet network”. We used one hashserver which had
to handle about 65 Gigabytes of lookup requests. The computation needed
less than 4 hours. (To compare with [1, 3.3]: There 8 machines computed for
one month - a single vector-matrix multiplication took about the same time
as in our case - and 610 Megabytes of vectors had to be stored.)

We have also done some larger computations for other sporadic simple
groups. The results can hopefully contribute to the determination of the
modular character tables of these groups. Details will be given elsewhere.

1This hardware was provided by EPSRC grant GR/M32351.

13

5.3 An application with G = S21 a symmetric group

As another application we condensed the permutation module of a Young
subgroup of type (8, 8, 4, 1) in the symmetric group G = S21. The motiva-
tion was a question by G. James and A. Mathas who could determine the
decomposition matrix for the irreducible representations of G in characteris-
tic 5 up to a single entry. The question was whether in the Specht module
of G labelled by the partition (8, 8, 4, 1) reduced modulo 5 the irreducible
module labelled by (12, 9) occurs once or twice.

J. Müller has found a subgroup K of G with the property that the permu-
tation module of type (8, 8, 4, 1) condensed with K as condensation subgroup
has either 761 or 762 constituents in a composition series depending on the
two possible cases. Such a consideration can be made using only the two
possible tables of Brauer characters for G and the character table of K.
(See again [1] for a more detailed explanation.) The group K is a transitive
subgroup of order 47, 029, 248 which has the number 147 in the database of
transitive groups contained in GAP [3].

In this case our M consists of 21-tuples of numbers on which G acts by
permutation. The permutation module we want to condense is described by
the orbit of [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3]. It has dimension
1, 309, 458, 150. As generators of G we took two random elements and K
was also given by two generating permutations. As partition of the orbit for
algorithm 2.5 we took again orbits under a subgroup of K. There is a nice
subgroup which is a direct product of 7 symmetric groups S3, each factor
permuting the entries of 3 consecutive positions. We define for each part a
unique minimal point, namely that one whose entries are sorted in positions
{1, 2, 3}, {4, 5, 6} and so on. There are only about 660, 000 minimal points in
the orbit. So, the operation of group elements on the points and the functions
part, minimal and minimals are implemented easily and efficiently for this
case.

In this example the operation of group elements on the points can be com-
puted so fast that already in a parallel computation with a few clients the
network bandwidth can be reached with the requests for the hashserver.
Here our approach with multiple hashservers improves the situation con-
siderably. On 20 machines of the network already mentioned in 5.2 using
20 client and 20 hash server processes the orbit intersection matrices for the
two generators of G could be computed in 38 minutes and during this time
about 96 Gigabytes of data were sent over the network.

14

The condensed module has dimension 4197. A composition series of this
module for the algebra generated by the two computed elements of form
ege can be found with the MeatAxe [9] within a few hours of computation
time. We found 761 constituents and this rules out the possibility for the
decomposition number which would imply 762 constituents. (Note that it is
not clear whether our two elements ege generate the whole algebra eFGe,
but taking further generators into account cannot increase the number of
constituents.)

Proposition 5.1 Let G = S21 and F be a field of characteristic 5. The
multiplicity of the simple FG-module labeled by the partition (12, 9) in the
FG-Specht module labeled by (8, 8, 4, 1) is one.

This result together with work of A. Mathas and G. James, in particular
the software package Specht [7], determine the decomposition numbers in
characteristic 5 for all symmetric groups Sn with n ≤ 23.

References

[1] G. Cooperman, G. Hiss, K. Lux, and J. Müller. The Brauer tree of the
principal 19-block of the sporadic simple Thompson group. Experimental
Mathematics, 6(4):293–300, 1997.

[2] G. Cooperman and M. Tselman. New sequential and parallel algorithms
for generating high dimension Hecke algebras using the condensation
technique. In Y. N. Lakshman, editor, Proceedings of ISSAC 96, pages
155–160, New York, 1996. ACM Press.

[3] The GAP Group, Aachen, St Andrews. GAP – Groups,
Algorithms, and Programming, Version 4.2, 1999. (see
http://www-gap.dcs.st-and.ac.uk/~gap).

[4] GNU General Public License. see
http://www.gnu.org/copyleft/gpl.html.

[5] D. E. Knuth. The Art of Computer Programming, volume 3, Sorting
and Searching. Addison Wesley, second edition edition, 1997.

15

[6] F. Lübeck and M. Neunhöffer. DC – a package for Direct Condensation
programs. Lehrstuhl D für Mathematik, RWTH Aachen, 2000. (see
http://www.math.rwth-aachen.de/~DC).

[7] A. Mathas. Specht - Decomposition matrices for the Hecke algebras
of type A (manual for version 2.4). University of Sydney, 1997. (see
http://www.maths.usyd.edu.au:8000/u/mathas/specht/).

[8] MPI, collected information. see http://www-unix.mcs.anl.gov/mpi/.

[9] M. Ringe. The C-MeatAxe, a manual. Lehrstuhl D für Mathematik,
RWTH Aachen, 1998. (see http://www.math.rwth-aachen.de/~MTX/).

[10] J. G. Thackray. Modular representations of finite groups. Ph.d. thesis,
Cambridge University, 1981.

[11] R. Wilson. WWW-Atlas of group representations. (see
http://www.mat.bham.ac.uc/atlas/).

Authors: Frank Lübeck, Max Neunhöffer
Mail address: Lehrstuhl D für Mathematik, RWTH Aachen, Templergraben 64,
52062 Aachen, Germany

e-mail: Frank.Luebeck@Math.RWTH-Aachen.De
Max.Neunhoeffer@Math.RWTH-Aachen.De

WWW: http://www.math.rwth-aachen.de/~Frank.Luebeck
http://www.math.rwth-aachen.de/~Max.Neunhoeffer

16

	Introduction
	The orbit algorithm and variations
	The basic algorithm
	Large orbits
	Orbit intersection matrices

	The case of matrices acting on vectors
	Parallelization
	Parallel version of OrbitIntersectionMatrices
	Comments on the implementation

	Direct condensation
	Interpretation of the OrbitIntersectionMatrices
	An application with G = Th
	An application with G=S21 a symmetric group

