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Notation

o N

(the following was presented on the blackboard)

joint work with J. Muller

M, -=11,2,...,n}, S, :={n : M,, - M, bijective}

7 - means first 7, then ¢ for mappings throughout

S WISy := (Sp X -+« X Spp,) xSy, (Wreath product)
n factors

= |Sp Wr Sy, = (mh)™ - n!l, Sp,wrS, < Spn

Qnn = S WE Sp\Smn = {(SmWrSy) -7 | ™€ Spn }

o |
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Foulkes conjecture

o N

Lemma:

If m > n, then |S,, wr S,,,| < |S,, wr.S,|.
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Foulkes' conjecture

Lemma:

If m > n, then |S,, wr S,,| < |Sy, Wr.S,|.

Conjecture:

Let m > n. Then the permutation module Qf2,,,, Is a
submodule of the permutation module Qf2,, ,.
(as QS,,.,-modules)

|
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| mplementation of Action of S,,.,, on €2,, ,,

fG = Sm, H: =S, wrsS,,,S:=5,,U:=5, x---xS5,,<H T
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| mplementation of Action of S,,.,, on €2,, ,,

fG = Sm, H: =S, wrsS,,,S:=5,,U:=5, x---xS5,,<H T
Vo=yimn) .—
{v: My, — M, | vtakes every value exactly m times}
— store as vectors of length m - n with entries in M,,.
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| mplementation of Action of S,,.,, on €2,, ,,

fG = Sm, H: =S, wrsS,,,S:=5,,U:=5, x---xS5,,<H T
Vo=yimn) .—
{v: My, — M, | vtakes every value exactly m times}
— store as vectors of length m - n with entries in M,,.

We get transitive actions
of SonVbyVxS—V, (vr)—wv-7mand

o |
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| mplementation of Action of S,,.,, on €2,, ,,

fG = Sm, H: =S, wrsS,,,S:=5,,U:=5, x---xS5,,<H T
Vo=yimn) .—
{v: My, — M, | vtakes every value exactly m times}
— store as vectors of length m - n with entries in M,,.

We get transitive actions
of SonVbyVxS—V, (vr)—wv-7mand
of GonVbyV xG—V, (v,¥) — ! -v=wup.

o |
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| mplementation of Action of S,,.,, on €2,, ,,

fG = Sm, H: =S, wrsS,,,S:=5,,U:=5, x---xS5,,<H T
Vo=yimn) .—
{v: My, — M, | vtakes every value exactly m times}
— store as vectors of length m - n with entries in M,,.

We get transitive actions

of SonVbyVxS—V, (vr)—wv-7mand

of GonVbyV xG—V, (v,¥) — ! -v=wup.
These actions commute:

(v-m)Y) =y~ t-v-7=(vy)-rforall v,

o |
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| mplementation of Action of S,,.,, on €2,, ,,

fG = Sm, H: =S, wrsS,,,S:=5,,U:=5, x---xS5,,<H T
Vo=yimn) .—
{v: My, — M, | vtakes every value exactly m times}
— store as vectors of length m - n with entries in M,,.

We get transitive actions

of SonVbyVxS—V, (vr)—wv-7mand

of GonVbyV xG—V, (v,¥) — ! -v=wup.
These actions commute:

(v-m)Y) =y~ t-v-7=(vy)-rforall v,
— (& acts on the set of S-orbits, let ) :=V/S.

o |
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| mplementation of Action of S,,.,, on €2,, ,,

fG = Sm, H: =S, wrsS,,,S:=5,,U:=5, x---xS5,,<H T
Vo=yimn) .—
{v: My, — M, | vtakes every value exactly m times}
— store as vectors of length m - n with entries in M,,.

We get transitive actions

of SonVbyVxS—V, (vr)—wv-7mand

of GonVbyV xG—V, (v,¥) — ! -v=wup.
These actions commute:

(v-m)Y) =y~ t-v-7=(vy)-rforall v,
— (& acts on the set of S-orbits, let ) :=V/S.

— Stabg(vy) = U with vy .= [1,...,1,2,....,2,...,n,...,n]

o |
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| mplementation of Action of S,,.,, on €2,, ,,

fG = Sm, H: =S, wrsS,,,S:=5,,U:=5, x---xS5,,<H T
Vo=yimn) .—
{v: My, — M, | vtakes every value exactly m times}
— store as vectors of length m - n with entries in M,,.

We get transitive actions

of SonVbyVxS—V, (vr)—wv-7mand

of GonVbyV xG—V, (v,¥) — ! -v=wup.
These actions commute:

(v-m)Y) =y~ t-v-7=(vy)-rforall v,
— (& acts on the set of S-orbits, let ) :=V/S.

— Stabg(vy) = U with vy .= [1,...,1,2,....,2,...,n,...,n]
Land Stabg(v1S) = H = this Is the action on €, ,,. J
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| mplementation of Action of S,,.,, on €2,, ,,

o N

Def.. We call the lexicographically smallest vector in each
S-orbit S-minimal.



| mplementation of Action of S,,.,, on €2,, ,,
fDef.: We call the lexicographically smallest vector in each T
S-orbit S-minimal.
This means: In an S-minimal vector the first entry is a 1,
the first entry bigger than 1 is 2. The first entry bigger than 2

IS a 3 etc.

o |
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| mplementation of Action of S,,.,, on €2,, ,,

fDef.: We call the lexicographically smallest vector in each T
S-orbit S-minimal.
This means: In an S-minimal vector the first entry is a 1,
the first entry bigger than 1 is 2. The first entry bigger than 2

IS a 3 etc.
Algorithm: Identify Q,,,, with {v € V(™) | 4 is S — minimal}
Act with an element ¢ € G by:

1. v :=vp =9~ v
2. S-minimalize the result v' (— doable in O(m - n))

o |
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| mplementation of Action of S,,.,, on €2,, ,,

fDef.: We call the lexicographically smallest vector in each T
S-orbit S-minimal.
This means: In an S-minimal vector the first entry is a 1,
the first entry bigger than 1 is 2. The first entry bigger than 2

IS a 3 etc.

Algorithm: Identify Q,,,, with {v € V(™) | 4 is S — minimal}
Act with an element ¢ € G by:
1. v :=vp =9~ v
2. S-minimalize the result v' (— doable in O(m - n))

This can all be implemented efficiently on a computer.
LWe need typically 1 byte per entry or m - n bytes per vector.J
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-

Theldea of Black and List

Construct a QG-module homomorphism

¢(m,n) : Qﬂm,n — @Qn,m

and show injectivity.



Theldea of Black and List
-

Construct a QG-module homomorphism

¢(m,n) : Qﬂm,n — @Qn,m
and show injectivity. For v € Q,, ,, set

[(v) :={weQym | V(7)€ M, x My, Ik e My, St
v(k)=14and w(k) =j}
and o™ (V) = 3 w € QQum.

wel(v)

o |
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Theldea of Black and List
-

Construct a QG-module homomorphism

¢(m,n) : Qﬂm,n — @Qn,m
and show injectivity. For v € Q,, ,, set

[(v) :={weQym | V(7)€ M, x My, Ik e My, St
v(k)=14and w(k) =j}
and o™ (V) = 3 w € QQum.

wel(v)
Example:m =3, n=2,v=v; =|1,1,1,2,2,2]
S-minimal

(3,2)

s 1,2,3,1,2,3] +1[1,2,3,1,3,2] + - - -
N all permutations |
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Theldea of Black and List

o N

This is a QG-module homomorphism.

Black & List (1989):
»™") injective = Foulkes’ conjecture is true for m, n.



Theldea of Black and List

o N

This is a QG-module homomorphism.

Black & List (1989):
»™") injective = Foulkes’ conjecture is true for m, n.

Lemma: m > n and ™" *Y) injective = »(™™) injective.
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Theldea of Black and List

o N

This is a QG-module homomorphism.

Black & List (1989):
»™") injective = Foulkes’ conjecture is true for m, n.

Lemma: m > n and ™" *Y) injective = »(™™) injective.

Theorem: o™ injective for certain m > n > 1,
—> Foulkes’ conjecture true for all (m,r) with 1 <r < n.

o |
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Theldea of Black and List

o N

This is a QG-module homomorphism.

Black & List (1989):
»™") injective = Foulkes’ conjecture is true for m, n.

Lemma: m > n and ™" *Y) injective = »(™™) injective.

Theorem: o™ injective for certain m > n > 1,
—> Foulkes’ conjecture true for all (m,r) with 1 <r < n.

Observation: ¢33) and ©(22) injective.

o |
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Theldea of Black and List

o N

This is a QG-module homomorphism.

Black & List (1989):
»™") injective = Foulkes’ conjecture is true for m, n.

Lemma: m > n and ™" *Y) injective = »(™™) injective.

Theorem: o™ injective for certain m > n > 1,
—> Foulkes’ conjecture true for all (m,r) with 1 <r < n.

Observation: ¢33) and ©(22) injective.

Juby Jacob, Jirgen Miller (2003): »(*4 injective

o |
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Theldea of Black and List

o N

This is a QG-module homomorphism.

Black & List (1989):
»™") injective = Foulkes’ conjecture is true for m, n.

Lemma: m > n and ™" *Y) injective = »(™™) injective.

Theorem: o™ injective for certain m > n > 1,
—> Foulkes’ conjecture true for all (m,r) with 1 <r < n.

Observation: ¢33) and ©(22) injective.
Juby Jacob, Jirgen Miller (2003): o4 injective
What about (%5227

o |
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End.-Ring of a Permutation Module

o N

Let G acton Q, v; € Q, H := Stabg(vy).
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End.-Ring of a Permutation Module

o N

Let G acton Q, v; € Q, H := Stabg(vy).

Q=viHUvHU---UyH (disjoint)

for some v, ..., v; € €.



End.-Ring of a Permutation Module

o N

Let G acton Q, v; € Q, H := Stabg(vy).

Q=viHUvHU---UyH (disjoint)
for some vy, ..., v; € Q. Then
() x () = (2}1, vl)G U (2}1, UQ)G J---u (Ul, UZ)G (disjoint)

are the G-orbits in 2 x € (diagonal action).
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End.-Ring of a Permutation Module

o N

Let G acton Q, v; € Q, H := Stabg(vy).

Q=viHUvHU---UyH (disjoint)
for some vy, ..., v; € Q. Then
() x () = (2}1, vl)G U (2}1, UQ)G J---u (Ul, UZ)G (disjoint)

are the G-orbits in €2 x € (diagonal action). The Schur

basis of End(Q€) consists of matrices A1), A@) . A0
with

A(Z) o 1 if (w,w’) - (Ul,?}i)G
"] 0 otherwise

L(Wi’[h respect to the natural basis, column convention). J
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»(mm) expressed in the Schur basis
By n

™™ is an endomorphism of Q€,,, ...
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»(mm) expressed in the Schur basis
- N

™™ is an endomorphism of Q€,,, ...
To express it in the Schur basis, look at first row of matrix:



»(mm) expressed in the Schur basis
- N

™™ is an endomorphism of Q€,,, ...
To express it in the Schur basis, look at first row of matrix:
Which vectors v € Q,, ,, have the property, that

v = |1,1,...,1,2,....2, ... ,m,...,m)|

occurs in mm) (y)?

o |
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»(mm) expressed in the Schur basis
- N

™™ is an endomorphism of Q€,,, ...
To express it in the Schur basis, look at first row of matrix:
Which vectors v € Q,, ,, have the property, that

v = |1,1,...,1,2,....2, ... ,m,...,m)|

occurs in mm) (y)?
Exactly those of the form

vo = 11,2,3,....,m,1,2,3,....m, ... ,1,2,3,...,7@]

_J/

perrﬁruted perr;{uted

o |
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»(mm) expressed in the Schur basis
- N

™™ is an endomorphism of Q€,,, ...
To express it in the Schur basis, look at first row of matrix:
Which vectors v € Q,, ,, have the property, that

v = |1,1,...,1,2,....2, ... ,m,...,m)|

occurs in mm) (y)?
Exactly those of the form

vo = 11,2,3,....,m,1,2,3,....m, ... ,1,2,3,...,7@]

J/

perrﬁruted perr;{uted

This is exactly the H-orbit vy H = matrix of (™™ is A2),

o |
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Use regular representation of End(QX?)
- -

We compute using the left regular representation:

[
AR AD =3 py - AW
k=1

Use structure constants of End(Q€2,, ).



Use regular representation of End(QX?)
- -

We compute using the left regular representation:
z
AR) . 20) —. ijk . A(K)
k=1

Use structure constants of End(Q€2,, ).

Structure constants with respect to the Schur basis are
Intersection numbers:

—1
P2k = |voHg, NwjH|
where ¢1,..., g € G with v; = v1g; (* some involution).

o |
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Use regular representation of End(QX?)
- -

We compute using the left regular representation:
z
AR) . 20) —. ijk . A(K)
k=1

Use structure constants of End(Q€2,, ).

Structure constants with respect to the Schur basis are
Intersection numbers:

P2k = \’U2H9k_1 Ny« H|

where ¢1,..., g € G with v; = v1g; (* some involution).

So: Run through v H, apply gk_l, recognize H-orbit, count.

o |
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Size of the Problem

o N

G| =25!~15-10*  |H|=|SswrS;| ~3-10'
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Size of the Problem

f\G| = 25!~ 1.5-10%°  |H| = |S5wrSs| ~ 3 -10'°
Q5 5] =~ 5 - 101, one vector uses 25 bytes

— 1.3 - 10™ bytes ~ 130 Terabyte!
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Size of the Problem

f\G| = 25!~ 1.5-10%°  |H| = |S5wrSs| ~ 3 -10'°
Q5 5] =~ 5 - 101, one vector uses 25 bytes
— 1.3 - 10™ bytes ~ 130 Terabyte!

lvoH | ~ 2-10%, [ = 1856 (character theory).

o |
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Slize of the Problem
f\G| = 25!~ 1.5-10%°  |H| = |S5wrSs| ~ 3 -10'° T
Q5 5] =~ 5 - 101, one vector uses 25 bytes
— 1.3 - 10™ bytes ~ 130 Terabyte!
lvoH | ~ 2 -10%, | = 1856 (character theory).

So: 1856 - 2 - 10% ~ 3.8 - 10! operations,
for each: recognize H-orbit.

o |
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Slize of the Problem
f\G| = 25!~ 1.5-10%°  |H| = |S5wrSs| ~ 3 -10'° T
Q5 5] =~ 5 - 101, one vector uses 25 bytes
— 1.3 - 10™ bytes ~ 130 Terabyte!
lvoH | ~ 2-10%, [ = 1856 (character theory).

So: 1856 - 2 - 10% ~ 3.8 - 10! operations,
for each: recognize H-orbit.

— DOABLE by parallelization!
But how can we recognize the H-orbit a vector v lies In?

(without storing the full orbit!)

o |
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-

Llet U := 55 x --- X S5 < H.
Consider first all vectors in V := 1/ 5:5),



A Trick

o N

Llet U := 55 x --- X S5 < H.

Consider first all vectors in V := V/(5:5),

Def.: We again call the lexicographically smallest vector in
each U-orbit U-minimal.

o |
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-

A Trick

Llet U := 55 x --- X S5 < H. —‘
Consider first all vectors in V := 1/ 5:5),

Def.: We again call the lexicographically smallest vector in
each U-orbit U-minimal.

ldea: Only store U-minimal vectors.
Problem: Action is perm. of entries + S-minimalization.

|
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-

A Trick

Llet U := 55 x --- X S5 < H. —‘
Consider first all vectors in V := 1/ 5:5),

Def.: We again call the lexicographically smallest vector in
each U-orbit U-minimal.

ldea: Only store U-minimal vectors.
Problem: Action is perm. of entries + S-minimalization.

Lemma:
v S-minimal = the U-minimalization of v is S-minimal.

|
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-

A Trick
-

Llet U := 55 x --- X S5 < H.

Consider first all vectors in V := V(5:5),

Def.: We again call the lexicographically smallest vector in
each U-orbit U-minimal.

ldea: Only store U-minimal vectors.

Problem: Action is perm. of entries + S-minimalization.

Lemma:
v S-minimal = the U-minimalization of v is S-minimal.

So:

(1) permute, (2) S-minimalize, (3) U-minimalize, (4) lookup.
— get S-minimal and U-minimal vector

(there are only 2298891 of those).

|
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-

A Trick

Llet U := 55 x --- X S5 < H. —‘

Consider first all vectors in V := V(5:5),

Def.: We again call the lexicographically smallest vector in
each U-orbit U-minimal.

ldea: Only store U-minimal vectors.

Problem: Action is perm. of entries + S-minimalization.

Lemma:
v S-minimal = the U-minimalization of v is S-minimal.

So:

(1) permute, (2) S-minimalize, (3) U-minimalize, (4) lookup.
— get S-minimal and U-minimal vector

(there are only 2298891 of those).

Those we can classify beforehand into H-orbits. J
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The Computation

-

Precomputation:

# Enumerate all U- and S-minimal vectors in Q5 5.

# Determine their distribution into the 1856 H-orbits.

# Compute at the same time permutations g1, ..., 91856

o |
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The Computation

-

Precomputation:

# Enumerate all U- and S-minimal vectors in Q5 5.

# Determine their distribution into the 1856 H-orbits.

# Compute at the same time permutations g1, ..., 91856

Main Computation (parallel, distribute data):
Run (parallelized) through vs H, apply all g; !, and do:

® S-minimalize

#® U-minimalize

# lookup H-orbit
& count

o |
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The Result

o -

~ 20 modern PCs = 12 hours CPU time (special C-program).



The Result
-

~ 20 modern PCs = 12 hours CPU time (special C-program).

— get 1856 x 1856 matrix for A2 in left-regular represen-
tation with respect to Schur basis of End(Qf25 5).

|
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The Result
-

~ 20 modern PCs = 12 hours CPU time (special C-program).

— get 1856 x 1856 matrix for A2 in left-regular represen-
tation with respect to Schur basis of End(Qf25 5).

RESULT:

|
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The Result
.

~ 20 modern PCs = 12 hours CPU time (special C-program).

— get 1856 x 1856 matrix for A2 in left-regular represen-
tation with respect to Schur basis of End(Qf25 5).

RESULT:
055 is NOT INJECTIVE!



-
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