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Notation

(the following was presented on the blackboard)

joint work with J. Müller
Mn := {1, 2, . . . , n}, Sn := {π : Mn →Mn bijective}
π · ϕ means first π, then ϕ for mappings throughout
Sm wrSn := (Sm × · · · × Sm

︸ ︷︷ ︸

n factors

) o Sn (wreath product)

=⇒ |Sm wrSn| = (m!)n · n!, Sm wrSn ≤ Sm·n

Ωm,n := Sm wrSn\Sm·n = {(Sm wrSn) · π | π ∈ Sm·n}
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Foulkes’ conjecture

Lemma:

If m > n, then |Sn wrSm| < |Sm wrSn|.

Conjecture:

Let m > n. Then the permutation module QΩm,n is a
submodule of the permutation module QΩn,m.
(as QSm·n-modules)

Some Calculations regarding Foulkes’ Conjecture – p.3/15



Foulkes’ conjecture

Lemma:

If m > n, then |Sn wrSm| < |Sm wrSn|.

Conjecture:

Let m > n. Then the permutation module QΩm,n is a
submodule of the permutation module QΩn,m.
(as QSm·n-modules)

Some Calculations regarding Foulkes’ Conjecture – p.3/15



Implementation of Action of Sm·n on Ωm,n

G := Sm·n, H := Sm wrSn, S := Sn, U := Sm × · · · × Sm / H

V := V (m,n) :=

{v : Mm·n →Mn | v takes every value exactly m times}
→ store as vectors of length m · n with entries in Mn.
We get transitive actions

of S on V by V × S → V , (v, π) 7→ v · π and
of G on V by V ×G→ V , (v, ψ) 7→ ψ−1 · v =: vψ.

These actions commute:
((v · π)ψ) = ψ−1 · v · π = (vψ) · π for all v, π, ψ

=⇒ G acts on the set of S-orbits, let Ω := V/S.

=⇒ StabG(v1) = U with v1 := [1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n]

and StabG(v1S) = H =⇒ this is the action on Ωm,n.
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Implementation of Action of Sm·n on Ωm,n

Def.: We call the lexicographically smallest vector in each
S-orbit S-minimal.

This means: In an S-minimal vector the first entry is a 1,
the first entry bigger than 1 is 2. The first entry bigger than 2
is a 3 etc.

Algorithm: Identify Ωm,n with {v ∈ V (m,n) | v is S − minimal}.

Act with an element ψ ∈ G by:

1. v′ := vψ = ψ−1 · v

2. S-minimalize the result v′ (→ doable in O(m · n))

This can all be implemented efficiently on a computer.

We need typically 1 byte per entry or m · n bytes per vector.
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The Idea of Black and List

Construct a QG-module homomorphism

ϕ(m,n) : QΩm,n → QΩn,m

and show injectivity.

For v ∈ Ωm,n set

I(v) := {w ∈ Ωn,m | ∀(i, j) ∈Mn ×Mm ∃!k ∈Mm·n s.t.

v(k) = i and w(k) = j}

and ϕ(m,n)(v) :=
∑

w∈I(v)

w ∈ QΩn,m.

Example: m = 3, n = 2, v = v1 = [1, 1, 1, 2, 2, 2]

ϕ(3,2)

7−→ [

S-minimal
︷ ︸︸ ︷

1, 2, 3, 1, 2, 3
︸ ︷︷ ︸

all permutations

] + [1, 2, 3, 1, 3, 2] + · · ·
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The Idea of Black and List

This is a QG-module homomorphism.

Black & List (1989):
ϕ(m,n) injective =⇒ Foulkes’ conjecture is true for m,n.

Lemma: m > n and ϕ(m,n+1) injective =⇒ ϕ(m,n) injective.

Theorem: ϕ(m,n) injective for certain m ≥ n > 1,
=⇒ Foulkes’ conjecture true for all (m, r) with 1 ≤ r ≤ n.

Observation: ϕ(3,3) and ϕ(2,2) injective.

Juby Jacob, Jürgen Müller (2003): ϕ(4,4) injective

What about ϕ(5,5)???
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End.-Ring of a Permutation Module

Let G act on Ω, v1 ∈ Ω, H := StabG(v1).

Ω = v1H ∪ v2H ∪ · · · ∪ vlH (disjoint)

for some v2, . . . , vl ∈ Ω. Then

Ω × Ω = (v1, v1)G ∪ (v1, v2)G ∪ · · · ∪ (v1, vl)G (disjoint)

are the G-orbits in Ω × Ω (diagonal action). The Schur
basis of End(QΩ) consists of matrices A(1), A(2), . . . , A(l)

with

A
(i)
ω,ω′ :=

{

1 if (ω, ω′) ∈ (v1, vi)G

0 otherwise

(with respect to the natural basis, column convention).
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ϕ(m,m) expressed in the Schur basis

ϕ(m,m) is an endomorphism of QΩm,m.

To express it in the Schur basis, look at first row of matrix:
Which vectors v ∈ Ωm,m have the property, that

v1 = [1, 1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m]

occurs in ϕ(m,m)(v)?
Exactly those of the form

v2 := [1, 2, 3, . . . ,m, 1, 2, 3, . . . ,m
︸ ︷︷ ︸

permuted

, . . . , 1, 2, 3, . . . ,m
︸ ︷︷ ︸

permuted

]

This is exactly the H-orbit v2H =⇒ matrix of ϕ(m,m) is A(2).
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Use regular representation of End(QΩ)

We compute using the left regular representation:

A(2) · A(j) =:
l∑

k=1

p2,j,k · A(k)

Use structure constants of End(QΩm,m).

Structure constants with respect to the Schur basis are
intersection numbers:

p2,j,k = |v2Hg
−1
k ∩ vj∗H|

where g1, . . . , gl ∈ G with vi = v1gi (∗ some involution).

So: Run through v2H, apply g−1
k , recognize H-orbit, count.
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Size of the Problem

|G| = 25! ≈ 1.5 · 1025 |H| = |S5 wrS5| ≈ 3 · 1012

|Ω5,5| ≈ 5 · 1012, one vector uses 25 bytes

=⇒ 1.3 · 1014 bytes ≈ 130 Terabyte!

|v2H| ≈ 2 · 108, l = 1856 (character theory).

So: 1856 · 2 · 108 ≈ 3.8 · 1011 operations,
for each: recognize H-orbit.

=⇒ DOABLE by parallelization!

But how can we recognize the H-orbit a vector v lies in?

(without storing the full orbit!)
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A Trick

Let U := S5 × · · · × S5 / H.
Consider first all vectors in V := V (5,5).

Def.: We again call the lexicographically smallest vector in
each U -orbit U -minimal.

Idea: Only store U -minimal vectors.
Problem: Action is perm. of entries + S-minimalization.
Lemma:
v S-minimal =⇒ the U -minimalization of v is S-minimal.
So:
(1) permute, (2) S-minimalize, (3) U -minimalize, (4) lookup.
→ get S-minimal and U -minimal vector
(there are only 2298891 of those).

Those we can classify beforehand into H-orbits.
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The Computation

Precomputation:

Enumerate all U - and S-minimal vectors in Ω5,5.

Determine their distribution into the 1856 H-orbits.

Compute at the same time permutations g1, . . . , g1856.

Main Computation (parallel, distribute data):
Run (parallelized) through v2H, apply all g−1

i , and do:

S-minimalize

U -minimalize

lookup H-orbit

count
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The Result

≈ 20 modern PCs ≈ 12 hours CPU time (special C-program).

→ get 1856×1856 matrix for A(2) in left-regular represen-
tation with respect to Schur basis of End(QΩ5,5).

RESULT:

ϕ(5,5) is NOT INJECTIVE!
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