Some Calculations regarding Foulkes' Conjecture

Max Neunhöffer

max.neunhoeffer@math.rwth-aachen.de

2nd Sino-German Workshop on

Representation theory and the theory of finite groups

February 9-13, 2004

Notation

(the following was presented on the blackboard)

joint work with J. Müller

$$M_n := \{1, 2, \dots, n\}, \ S_n := \{\pi : M_n \to M_n \ \text{bijective}\}$$
 $\pi \cdot \varphi \text{ means first } \pi, \text{ then } \varphi \text{ for mappings throughout } S_m \text{ wr } S_n := (\underbrace{S_m \times \dots \times S_m}) \rtimes S_n \text{ (wreath product)}$
 $n \text{ factors}$
 $\implies |S_m \text{ wr } S_n| = (m!)^n \cdot n!, \ S_m \text{ wr } S_n \leq S_{m \cdot n}$
 $\Omega_{m,n} := S_m \text{ wr } S_n \backslash S_{m \cdot n} = \{(S_m \text{ wr } S_n) \cdot \pi \mid \pi \in S_{m \cdot n}\}$

Foulkes' conjecture

Lemma:

If m > n, then $|S_n \operatorname{wr} S_m| < |S_m \operatorname{wr} S_n|$.

Conjecture:

Let m > n. Then the permutation module $\mathbb{Q}\Omega_{m,n}$ is a submodule of the permutation module $\mathbb{Q}\Omega_{n,m}$. (as $\mathbb{Q}S_{m\cdot n}$ -modules)

Implementation of Action of $S_{m\cdot n}$ on $\Omega_{m,n}$

```
G:=S_{m,n}, H:=S_m wr S_n, S:=S_n, U:=S_m\times\cdots\times S_m\triangleleft H
V := V^{(m,n)} :=
    \{v: M_{m\cdot n} \to M_n \mid v \text{ takes every value exactly } m \text{ times}\}
\rightarrow store as vectors of length m \cdot n with entries in M_n.
We get transitive actions
        of S on V by V \times S \to V, (v,\pi) \mapsto v \cdot \pi and
        of G on V by V \times G \to V, (v, \psi) \mapsto \psi^{-1} \cdot v =: v \psi.
These actions commute:
        ((v \cdot \pi)\psi) = \psi^{-1} \cdot v \cdot \pi = (v\psi) \cdot \pi for all v, \pi, \psi
\Longrightarrow G acts on the set of S-orbits, let \Omega := V/S.
\implies Stab<sub>G</sub>(v_1) = U with v_1 := [1, ..., 1, 2, ..., 2, ..., n, ..., n]
and \operatorname{Stab}_G(v_1S) = H \Longrightarrow this is the action on \Omega_{m,n}.
```

Implementation of Action of $S_{m\cdot n}$ on $\Omega_{m,n}$

Def.: We call the lexicographically smallest vector in each S-orbit S-minimal.

This means: In an S-minimal vector the first entry is a 1, the first entry bigger than 1 is 2. The first entry bigger than 2 is a 3 etc.

Algorithm: Identify $\Omega_{m,n}$ with $\{v \in V^{(m,n)} \mid v \text{ is } S - \text{minimal}\}$ Act with an element $\psi \in G$ by:

- 1. $v' := v\psi = \psi^{-1} \cdot v$
- 2. S-minimalize the result v' (\rightarrow doable in $O(m \cdot n)$)

This can all be implemented efficiently on a computer.

We need typically 1 byte per entry or $m \cdot n$ bytes per vector.

The Idea of Black and List

Construct a $\mathbb{Q}G$ -module homomorphism

$$\varphi^{(m,n)}: \mathbb{Q}\Omega_{m,n} \to \mathbb{Q}\Omega_{n,m}$$

and show injectivity. For $v \in \Omega_{m,n}$ set

$$I(v):=\{w\in\Omega_{n,m}\mid \forall (i,j)\in M_n\times M_m\;\exists!k\in M_{m\cdot n}\; \text{s.t.} \ v(k)=i\; \text{and}\; w(k)=j\}$$

and
$$\varphi^{(m,n)}(v):=\sum_{w\in I(v)}w\in\mathbb{Q}\Omega_{n,m}$$
 .

Example:
$$m = 3$$
, $n = 2$, $v = v_1 = [1, 1, 1, 2, 2, 2]$

S-minimal

$$\stackrel{\varphi^{(3,2)}}{\longmapsto} \qquad \overbrace{[1,2,3,1,2,3]+[1,2,3,1,3,2]+\cdots}$$
 all permutations

The Idea of Black and List

This is a $\mathbb{Q}G$ -module homomorphism.

Black & List (1989):

 $\varphi^{(m,n)}$ injective \Longrightarrow Foulkes' conjecture is true for m,n.

Lemma: m > n and $\varphi^{(m,n+1)}$ injective $\Longrightarrow \varphi^{(m,n)}$ injective.

Theorem: $\varphi^{(m,n)}$ injective for certain $m \ge n > 1$, \Longrightarrow Foulkes' conjecture true for all (m,r) with $1 \le r \le n$.

Observation: $\varphi^{(3,3)}$ and $\varphi^{(2,2)}$ injective.

Juby Jacob, Jürgen Müller (2003): $\varphi^{(4,4)}$ injective

What about $\varphi^{(5,5)}$???

End.-Ring of a Permutation Module

Let G act on Ω , $v_1 \in \Omega$, $H := \mathsf{Stab}_G(v_1)$.

$$\Omega = v_1 H \cup v_2 H \cup \cdots \cup v_l H$$
 (disjoint)

for some $v_2, \ldots, v_l \in \Omega$. Then

$$\Omega \times \Omega = (v_1, v_1)G \cup (v_1, v_2)G \cup \cdots \cup (v_1, v_l)G$$
 (disjoint)

are the G-orbits in $\Omega \times \Omega$ (diagonal action). The Schur basis of $\operatorname{End}(\mathbb{Q}\Omega)$ consists of matrices $A^{(1)}, A^{(2)}, \ldots, A^{(l)}$ with

$$A_{\omega,\omega'}^{(i)} := \begin{cases} 1 & \text{if } (\omega,\omega') \in (v_1,v_i)G \\ 0 & \text{otherwise} \end{cases}$$

(with respect to the natural basis, column convention).

$\varphi^{(m,m)}$ expressed in the Schur basis

 $\varphi^{(m,m)}$ is an endomorphism of $\mathbb{Q}\Omega_{m,m}$. To express it in the Schur basis, look at first row of matrix: Which vectors $v \in \Omega_{m,m}$ have the property, that

$$v_1 = [1, 1, \dots, 1, 2, \dots, 2, \dots, m, \dots, m]$$

occurs in $\varphi^{(m,m)}(v)$?

Exactly those of the form

$$v_2 := [1, 2, 3, \dots, m, \underbrace{1, 2, 3, \dots, m}, \dots, \underbrace{1, 2, 3, \dots, m}]$$
 permuted permuted

This is exactly the H-orbit $v_2H \Longrightarrow \text{matrix of } \varphi^{(m,m)}$ is $A^{(2)}$.

Use regular representation of End($\mathbb{Q}\Omega$)

We compute using the left regular representation:

$$A^{(2)} \cdot A^{(j)} =: \sum_{k=1}^{l} p_{2,j,k} \cdot A^{(k)}$$

Use structure constants of $\operatorname{End}(\mathbb{Q}\Omega_{m,m})$.

Structure constants with respect to the Schur basis are intersection numbers:

$$p_{2,j,k} = |v_2 H g_k^{-1} \cap v_{j^*} H|$$

where $g_1, \ldots, g_l \in G$ with $v_i = v_1 g_i$ (* some involution).

So: Run through v_2H , apply g_k^{-1} , recognize H-orbit, count.

Size of the Problem

 $|G|=25! \approx 1.5 \cdot 10^{25}$ $|H|=|S_5 \, \mathrm{wr} \, S_5| \approx 3 \cdot 10^{12}$ $|\Omega_{5,5}| \approx 5 \cdot 10^{12}$, one vector uses 25 bytes $\implies 1.3 \cdot 10^{14}$ bytes ≈ 130 Terabyte! $|v_2H| \approx 2 \cdot 10^8$, l=1856 (character theory). So: $1856 \cdot 2 \cdot 10^8 \approx 3.8 \cdot 10^{11}$ operations, for each: recognize H-orbit. \implies DOABLE by parallelization!

But how can we recognize the H-orbit a vector v lies in? (without storing the full orbit!)

A Trick

Let $U := S_5 \times \cdots \times S_5 \triangleleft H$.

Consider first all vectors in $V := V^{(5,5)}$.

Def.: We again call the lexicographically smallest vector in each U-orbit U-minimal.

Idea: Only store *U*-minimal vectors.

Problem: Action is perm. of entries + S-minimalization.

Lemma:

v S-minimal \Longrightarrow the U-minimalization of v is S-minimal.

So:

(1) permute, (2) S-minimalize, (3) U-minimalize, (4) lookup.

 \rightarrow get S-minimal and U-minimal vector (there are only 2298891 of those).

Those we can classify beforehand into H-orbits.

The Computation

Precomputation:

- Enumerate all U- and S-minimal vectors in $\Omega_{5,5}$.
- Determine their distribution into the 1856 H-orbits.
- Compute at the same time permutations g_1, \ldots, g_{1856} .

Main Computation (parallel, distribute data):

Run (parallelized) through v_2H , apply all g_i^{-1} , and do:

- S-minimalize
- U-minimalize
- lookup H-orbit
- count

The Result

- pprox 20 modern PCs pprox 12 hours CPU time (special C-program).
- \rightarrow get 1856×1856 matrix for $A^{(2)}$ in left-regular representation with respect to Schur basis of End($\mathbb{Q}\Omega_{5,5}$).

RESULT:

 $\varphi^{(5,5)}$ is NOT INJECTIVE!

Bibliography

[1] H. O. Foulkes: Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, *J. London Math. Soc.*, **25** (1950), 205–209.

[2] S. C. Black and R. J. List, A note on plethysm, *European J. Combin.*, **10** (1989), no. 1, 111–112.