REPRESENTATION THEORY An Electronic Journal of the American Mathematical Society Volume 00, Pages 000–000 (Xxxx XX, XXXX) S 1088-4165(XX)0000-0

A NEW CONSTRUCTION OF THE ASYMPTOTIC ALGEBRA ASSOCIATED TO THE q-SCHUR ALGEBRA

OLIVIER BRUNAT AND MAX NEUNHÖFFER

ABSTRACT. We denote by A the ring of Laurent polynomials in the indeterminate v and by K its field of fractions. In this paper, we are interested in representation theory of the "generic" q-Schur algebra $S_q(n,r)$ over A. We will associate to every non-degenerate symmetrising trace form τ on $KS_q(n,r)$ a subalgebra \mathcal{J}_{τ} of $KS_q(n,r)$ which is isomorphic to the "asymptotic" algebra $\mathcal{J}(n,r)_A$ defined by J. Du. As a consequence, we give a new criterion for James' conjecture.

1. INTRODUCTION

This article is concerned with the representation theory of the "generic" q-Schur algebra $S_q(n, r)$ over $A = \mathbb{Z}[v, v^{-1}]$. The q-Schur algebra was introduced by Dipper and James in [3] and [4]. There is an interest in studying the representations of this algebra, because they relate informations about the modular representation theory of the finite general linear group $\operatorname{GL}_n(q)$ and of the quantum groups.

Using a new basis of $S_q(n,r)$ constructed in [5] (which is analogous to the Kazhdan-Lusztig basis in Iwahori-Hecke algebras), J. Du introduced in [7] the asymptotic algebra $\mathcal{J}(n,r)_A$ over A and defined a homomorphism, $\Phi : S_q(n,r) \to \mathcal{J}(n,r)_A$, the so-called Du-Lusztig homomorphism because its construction is similar to the Lusztig homomorphism for Iwahori-Hecke algebras.

There is a relevant open question in the representation theory of the q-Schur algebra, the so-called James' conjecture. A precise formulation of this conjecture is recalled in Section 6. In [9] Meinolf Geck obtained a new formulation of this conjecture. More precisely, for k any field of characteristic ℓ and for R any integral domain with quotient field k, if $q \in R$ is invertible, we can define the corresponding q-Schur algebra $S_q(n, r)_R$ over R and its extension of scalars $S_q(n, r)_k$. Similarly, we can define $\mathcal{J}(n, r)_k$.

In [9, 1.2] M. Geck has shown that James' conjecture holds if and only if, for $\ell > r$, the rank of the homomorphism $\Phi_k : S_q(n, r)_k \to \mathcal{J}(n, r)_k$ only depends on the multiplicative order of q in k^{\times} , but not on ℓ .

Thus, in order to prove James' conjecture, it is relevant to understand the rank of the Du-Lusztig homomorphism. The motivation of this paper is to develop new methods allowing to study this rank. More precisely, we will give a new construction of the asymptotic algebra. Indeed, thanks to methods developed in [14] by the second author and adapted to our situation, we prove that $\mathcal{J}(n, r)_A$ is isomorphic to an algebra \mathcal{J}_{τ} , which only depends on the choice of a non-degenerate symmetrising trace form τ on the semisimple algebra

©XXXX American Mathematical Society

Received by the editors 3 October 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 20C08, 20F55; Secondary 20G05.

 $KS_q(n,r)$ (here $K = \mathbb{Q}(v)$) such that

$$\mathcal{S}_q(n,r) \subseteq \mathcal{J}_\tau \subseteq K\mathcal{S}_q(n,r).$$

Our main tool is to use the structure of the left cell modules of $S_q(n, r)$ to construct an explicit Wedderburn basis of $KS_q(n, r)$ (see Theorem 4.11). The main result of this paper is Theorem 5.5.

The article is organized as follows. In Section 2, we recall the definition of the "generic" q-Schur algebra and of its analogue of the Kazhdan-Lusztig basis for Iwahori-Hecke algebras. In Section 3 we prove that the q-Schur algebra satisfies properties which are very similar to Lusztigs conjectures **P1**,..., **P15** for Iwahori-Hecke algebras. In Section 4 we develop some tools to prove our main result in Section 5. Finally, in Section 6 we state a new criterion for James' conjecture.

2. The Iwahori-Hecke algebra of type A and the q-Schur algebra

Let v be an indeterminate. We set $A = \mathbb{Z}[v, v^{-1}]$ to be the ring of Laurent polynomials in v and $K := \mathbb{Q}(v)$ its field of fractions. In order to introduce the q-Schur algebra over A, we have to recall some definitions and properties about Iwahori-Hecke algebras. We follow [13].

2.1. Iwahori-Hecke algebras and the Kazhdan-Lusztig basis. Let (W, S) be a Coxeter group (here S is the set of simple reflections). We define the corresponding Iwahori-Hecke algebra \mathcal{H} as the free A-module with basis $\{T_w\}_{w \in W}$ satisfying

$$\begin{array}{ll} T_w T_{w'} = T_{ww'} & \text{if } l(ww') = l(w) + l(w'), \\ (T_s - v)(T_s + v^{-1}) = 0 & \text{for } s \in S, \end{array}$$

where l is the length function on W. In [12, §1] Kazhdan and Lusztig define an A-basis $\{C_w \mid w \in W\}$ of \mathcal{H} which satisfies

$$\overline{C}_w = C_w$$
 and $C_w = \sum_{y \le w} p_{y,w} T_y$ for $w \in W$,

where \leq is the Bruhat-Chevalley order on W, and $\overline{}: \mathcal{H} \to \mathcal{H}$ is the involutive automorphism of \mathcal{H} defined by $\overline{v} = v^{-1}$ and $\overline{\sum_{w \in W} a_w T_w} = \sum_{w \in W} \overline{a}_w T_{w^{-1}}^{-1}$ and $p_{y,w} \in \langle v^k \mid k \leq 0 \rangle_{\mathbb{Z}}$ and $p_{w,w} = 1$.

Note that we use the more modern notation from [13], that is, our elements T_w here are the same as in [13] and were denoted by $v^{-l(w)}T_w$ in [12], and our elements C_w here were denoted by C'_w in [12] and by c_w in [13].

We denote by $g_{x,y,z}$ the structure constants of \mathcal{H} with respect to the basis $\{C_w \mid w \in W\}$, that is, we have

$$C_x C_y = \sum_{z \in W} g_{x,y,z} C_z \quad \text{for } x, y \in W.$$

We define a relation $y \preccurlyeq_L w$ on W by: either y = w or there is an $s \in S$ such that $g_{s,w,y} \neq 0$. Let \leq_L be the transitive closure of the relation \preccurlyeq_L and denote by \sim_L the associated equivalence relation on W. The classes for this relation are the so-called left cells. Similarly, we define \leq_R and \sim_R , and we call the corresponding equivalence classes right cells. For $y, w \in W$, we write $y \leq_{LR} w$ if there is a sequence $y = y_0, y_1 \dots, y_n = w$ of elements of W such that, for $i \in \{0, \dots, n-1\}$, we have $y_i \leq_L y_{i+1}$ or $y_i \leq_R y_{i+1}$. The classes of the equivalence relation \sim_{LR} on W corresponding to \leq_{LR} are the so-called two-sided cells.

In [13, §3.6], Lusztig shows that for $z \in W$, there is a unique integer $\mathbf{a}(z)$ such that for every $x, y \in W$, we have $g_{x,y,z} \in v^{\mathbf{a}(z)}\mathbb{Z}[v^{-1}]$ and $g_{x,y,z} \notin v^{\mathbf{a}(z)-1}\mathbb{Z}[v^{-1}]$. Moreover, for $z \in W$, we define $\Delta(z) = -\deg p_{1,z}$. For $x, y, z \in W$, we write $\gamma_{x,y,z^{-1}} \in \mathbb{Z}$ for the coefficient of $v^{\mathbf{a}(z)}$ in $g_{x,y,z}$ and we set

$$\mathcal{D} = \{ d \in W \mid \mathbf{a}(d) = \Delta(d) \}$$

the set of distinguished involutions. In the case that W is a finite Weyl group, an affine Weyl group, or a dihedral group, Lusztig proved that the following conjectures hold (see [13, §§15–17]):

- For any $z \in W$ we have $\mathbf{a}(z) \leq \Delta(z)$. **P1**
- Let $x, y \in W$; if $\gamma_{x,y,d} \neq 0$ for some $d \in \mathcal{D}$, then we have $x = y^{-1}$. **P2**
- **P3** If $y \in W$, there exists a unique $d \in \mathcal{D}$ such that $\gamma_{y^{-1},y,d} \neq 0$.
- **P4** If $x \leq_{LR} y$, then $\mathbf{a}(x) \geq \mathbf{a}(y)$.
- If $d \in \mathcal{D}$ and $y \in W$ are such that $\gamma_{y^{-1},y,d} \neq 0$, then $\gamma_{y^{-1},y,d} = \pm 1$. P5
- **P6** For $d \in \mathcal{D}$, we have $d = d^{-1}$.
- **P7**
- For every $x, y, z \in W$, we have $\gamma_{x,y,z} = \gamma_{y,z,x} = \gamma_{z,x,y}$. Let $x, y, z \in W$ be such that $\gamma_{x,y,z} \neq 0$, then $x \sim_{\scriptscriptstyle L} y^{-1}, y \sim_{\scriptscriptstyle L} z^{-1}$ and **P8** $z \sim_L x^{-1}$.
- **P9** If $x \leq_{\scriptscriptstyle L} y$ and $\mathbf{a}(x) = \mathbf{a}(y)$, then $x \sim_{\scriptscriptstyle L} y$.
- **P10** If $x \leq_R y$ and $\mathbf{a}(x) = \mathbf{a}(y)$, then $x \sim_R y$.
- **P11** If $x \leq_{LR} y$ and $\mathbf{a}(x) = \mathbf{a}(y)$, then $x \sim_{LR} y$.
- P13 Every left cell contains a unique element $d \in \mathcal{D}$ and $\gamma_{y^{-1},y,d} \neq 0$ for every $y \sim_L d$.
- **P14** For every $x \in W$, we have $x \sim_{LR} x^{-1}$.
- **P15** Let v' be a second indeterminate and let $g'_{x,y,z} \in \mathbb{Z}[v', v'^{-1}]$ be obtained from $g_{x,y,z}$ by the substitution $v \mapsto v'$. If $x, x', y, w \in W$ satisfy $\mathbf{a}(w) = \mathbf{a}(y)$, then

$$\sum_{y'} g'_{w,x',y'} g_{x,y',y} = \sum_{y'} g_{x,w,y'} g'_{y',x',y}$$

Note that in this paper we only consider the case of type A, in which W is the symmetric group on |S| + 1 points.

2.2. The q-Schur algebra $S_q(n,r)$. In the following, we denote by W the symmetric group of degree r, and by S the set of transpositions $s_i = (i, i+1)$ for $1 \le i \le r-1$ and \mathcal{H} is the associated Iwahori-Hecke algebra as in §2.1. Let $n, r \geq 1$, we denote by $\Lambda(n,r)$ the set of compositions of r into at most n parts. For $\lambda \in \Lambda(n,r)$, we denote by $W_{\lambda} \subseteq W$ the corresponding Young subgroup. For $\lambda, \mu \in \Lambda(n, r)$, we set $D_{\lambda, \mu}$ to be the set of distinguished double coset representatives of W with respect to W_{λ} and W_{μ} . We set

$$M(n,r) = \{ (\lambda, w, \mu) \mid \lambda, \mu \in \Lambda(n,r), w \in D_{\lambda,\mu} \}.$$

For $\underline{a} = (\lambda, w, \mu) \in M(n, r)$, we write $ro(\underline{a}) = \lambda$ and $co(\underline{a}) = \mu$ and we set $\underline{a}^t = u$ (μ, w^{-1}, λ) . For $\lambda, \mu \in \Lambda(n, r)$, we set $M_{\lambda,\mu} = \{\underline{a} \in M(n, r) \mid ro(\underline{a}) = \lambda, co(\underline{a}) = \mu\}.$ We remark that if $w \in D_{\lambda,\mu}$, then the double coset $W_{\lambda}wW_{\mu}$ has a unique longest element. To prove this, we can proceed as follows: we denote by w_0 the longest element of W, then ${}^{w_0}W_{\mu} = W_{\widetilde{\mu}}$. Here $\widetilde{\mu} = (\mu_s, \mu_{s-1}, \dots, \mu_1)$, where $\mu = (\mu_1, \dots, \mu_s)$. Moreover, $r_{w_0}: W \to W, x \mapsto xw_0$ induces a bijection from the double coset $W_\lambda ww_0 W_{\widetilde{\mu}}$ to the double coset $W_{\lambda}wW_{\mu}$. Thanks to [13, 11.3], we deduce that r_{w_0} reverses the Bruhat-order. Since the double coset $W_{\lambda}ww_0W_{\tilde{\mu}}$ has a unique element of minimal length, the result follows. We write $D^+_{\lambda,\mu}$ for the set of double coset representatives of maximal length. We denote by $\ell_{\lambda,\mu}$ the bijection from $D_{\lambda,\mu}$ to $D^+_{\lambda,\mu}$ that associates to the representative of minimal length w of the double coset $W_{\lambda}wW_{\mu}$ the representative of maximal length. We remark that if $w \in D_{\lambda,\mu}$, then $w^{-1} \in D_{\mu,\lambda}$. Moreover, we have

$$\ell_{\lambda,\mu}(w)^{-1} = \ell_{\mu,\lambda}(w^{-1}).$$

In the following, we set $\sigma(\underline{a}) := \ell_{\lambda,\mu}(w)$ for $\underline{a} = (\lambda, w, \mu)$.

We now recall the definition of the q-Schur algebra $S_q(n, r)$ introduced by Dipper and James in [3]. We set $q = v^2$, then the q-Schur algebra $S_q(n,r)$ of degree (n,r) is the endomorphism algebra

$$\mathcal{S}_q(n,r) = \operatorname{End}_{\mathcal{H}} \left(\bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} \mathcal{H} \right),$$

where $x_{\lambda} = \sum_{w \in W_{\lambda}} v^{l(w)} T_w \in \mathcal{H}$. In [2, 3.4] Dipper and James prove that $S_q(n,r)$ has

a standard basis $\{\phi_{\lambda,\mu}^w \mid (\lambda, w, \mu) \in M(n, r)\}$ indexed by the set M(n, r), which plays the same role as the basis $\{T_w \mid w \in W\}$ for the Iwahori-Hecke algebra \mathcal{H} . Moreover, in [5] Du proves that $S_q(n,r)$ has another basis $\{\theta_{\underline{a}} \mid \underline{a} \in M(n,r)\}$ whose construction is analogous to the Kazhdan-Lusztig basis of \mathcal{H} . We denote by $f_{\underline{a},\underline{b},\underline{c}} \in A$ the structure constants with respect to this basis, that is, we have

$$\theta_{\underline{a}}\theta_{\underline{b}} = \sum_{\underline{c} \in M(n,r)} f_{\underline{a},\underline{b},\underline{c}}\theta_{\underline{c}} \qquad \text{for all } \underline{a},\underline{b} \in M(n,r).$$

We recall the following lemma:

Lemma 2.3. We have $f_{\underline{a},\underline{b},\underline{c}} \neq 0$ only if $co(\underline{a}) = ro(\underline{b})$ and $(ro(\underline{a}), co(\underline{b})) = (ro(\underline{c}), co(\underline{c}))$. In this case, we have

$$f_{\underline{a},\underline{b},\underline{c}} = h_{\mu}^{-1} g_{\sigma(\underline{a}),\sigma(\underline{b}),\sigma(\underline{c})}.$$

where $\mu = co(\underline{a}) = ro(\underline{b})$ and $h_{\mu} = \sum_{w \in W_{\mu}} v^{2l(w) - l(w_{\mu})}$ (here w_{μ} denotes the longest element in W) and $g_{\sigma(\underline{a}),\sigma(\underline{b}),\sigma(\underline{c})}$ is the structure constant of H defined in Section 2.1.

Proof. See [5, Prop. 3.4]. We want to explain why we have a further hypothesis here than in [5, Prop. 3.4]: For $\underline{a} = (\lambda, w, \mu) \in M(n, r)$ the element θ_a is by definition a linear combination of basis elements $\phi_{\lambda,\mu}^z$ for $z \in \mathcal{D}_{\lambda,\mu}$. Thus, viewed as endomorphism of $\bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} \mathcal{H}$ it vanishes on all summands except on $x_{\mu} \mathcal{H}$ and maps into the summand $x_{\lambda}\mathcal{H}$. Thus, if either $co(\underline{a}) \neq ro(\underline{b})$ or $(ro(\underline{a}), co(\underline{b})) \neq (ro(\underline{c}), co(\underline{c}))$, the structure constant $f_{a,b,c}$ vanishes also. If both equations hold, the proof in [5, Prop. 3.4] works using $g_{\sigma(\underline{a}),\sigma(\underline{b}),\sigma(\underline{c})}$.

We are not claiming that [5, Prop. 3.4] is wrong as stated there. However, the notation $g_{a,b,c}$ there needs proper interpretation (see [5, Section 3.3]), a problem we avoid here. \Box

Remark 2.4. To further explain the just mentioned change of notation, consider the following: Let n = r = 3, $\lambda := (2, 1, 0)$, $\mu := (1, 1, 1)$, and $\nu := (2, 1, 0)$. Then W is the symmetric group on 3 letters, generated by the two Coxeter generators $s_1 = (1,2)$ and $s_2 = (2,3)$. Thus $\mathcal{D}^+_{\lambda,\mu} := \{s_1, s_1s_2, s_1s_2s_1\}, \mathcal{D}^+_{\mu,\nu} = \{s_1, s_2s_1, s_1s_2s_1\}$ and

 $\begin{aligned} \mathcal{D}_{\lambda,\nu}^+ &= \{s_1, s_1 s_2 s_1\}. \\ \text{By the relations, we have } T_{s_1} \cdot T_{s_2 s_1} = T_{s_1 s_2 s_1} \text{ and thus } g_{s_1, s_2 s_1, s_1 s_2 s_1} = 1. \text{ We now set } \underline{a} := (\lambda, \text{id}, \mu), \underline{b} := (\mu, s_2, \nu) \text{ and } \underline{c} := (\lambda, s_2, \nu). \text{ Thus, we get} \end{aligned}$

$$f_{\underline{a},\underline{b},\underline{c}} = 1 \cdot g_{\sigma(\underline{a}),\sigma(\underline{b}),\sigma(\underline{c})} = g_{s_1,s_2s_1,s_1s_2s_1} = 1$$

since $h_{\mu} = 1$ here.

However, if we set $\underline{a}' := (\mu, s_1, \mu)$, then $f_{\underline{a}', \underline{b}, \underline{c}} = 0$, because of $ro(\underline{a}') \neq ro(\underline{c})$ and the arguments in the proof of Lemma 2.3. On the other hand, we have $ro(\underline{a}') = co(\underline{b})$ and $g_{\sigma(\underline{a}'), \sigma(\underline{b}), \sigma(\underline{c})} = g_{s_1, s_2 s_1, s_1 s_2 s_1} = 1$. This shows, that we indeed need all the hypothesis in Lemma 2.3. The statement in [5, Prop. 3.4] is true if one interprets $g_{\underline{a}', \underline{b}, \underline{c}}$ to be zero.

Definition 2.5 (The a-function and the distinguished elements). Following [7, Section 2], we extend the a-function to M(n,r) by setting $\mathbf{a}(\underline{a}) = \mathbf{a}(\sigma(\underline{a}))$ for every $\underline{a} \in M(n,r)$ and we extend the set \mathcal{D} to the set

$$\mathcal{D}(n,r) = \{ \underline{d} \in M(n,r) \mid co(\underline{d}) = ro(\underline{d}), \, \sigma(\underline{d}) \in \mathcal{D} \}.$$

Moreover, for every $\underline{a}, \underline{b}, \underline{c} \in M(n, r)$, we define

$$\gamma_{\underline{a},\underline{b},\underline{c}^{t}} = \begin{cases} \gamma_{\sigma(\underline{a}),\sigma(\underline{b}),\sigma(\underline{c}^{t})} = \gamma_{\sigma(\underline{a}),\sigma(\underline{b}),\sigma(\underline{c})^{-1}} & \text{if } f_{\underline{a},\underline{b},\underline{c}} \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Remark 2.6. Note that our definition for $\gamma_{\underline{a},\underline{b},\underline{c}}$ differs slightly from the one in [7, Section 2.2]. His $\gamma_{\underline{a},\underline{b},\underline{c}}$ is our $\gamma_{\underline{a},\underline{b},\underline{c}^t}$. With our definition we follow the setup in [13] more closely and get nicer cyclic symmetries in our formulas.

Remark 2.7. In comparison to [7, Section 2.1] we added the explicit hypothesis for the elements $\underline{d} \in \mathcal{D}(n, r)$ that $ro(\underline{d}) = co(\underline{d})$. However, this hypothesis is implicit in [7], since otherwise the statements in [7, 4.1,(a)–(d)] and some others would not be true.

Now, for $\underline{a}, \underline{b} \in M(n, r)$, if there is $\underline{c} \in M(n, r)$ such that $f_{\underline{c},\underline{b},\underline{a}} \neq 0$ then we write $\underline{a} \leq_L \underline{b}$. We define \leq_R by $\underline{a} \leq_R \underline{b}$ if and only if $\underline{a}^t \leq_L \underline{b}^t$. Moreover, we define \leq_{LR} as in the Iwahori-Hecke algebra case. These relations induce corresponding equivalence relations \sim_L , \sim_R and \sim_{LR} . We call the corresponding equivalence classes the left, right and two-sided cells of M(n, r) respectively.

Let Γ be a left cell of M(n, r). We set

$$\mathcal{S}_{\leq \Gamma} = \sum_{\underline{b} \leq {_L}\underline{a}} A\theta_{\underline{b}} \quad \text{and} \quad \mathcal{S}_{<\Gamma} = \sum_{\underline{b} \leq {_L}\underline{a}, \ \underline{b} \not\sim_{_L}\underline{a}} A\theta_{\underline{b}},$$

for some $\underline{a} \in \Gamma$, both are clearly left ideals of $S_q(n, r)$ by the definition of \leq_L . Then the left cell module $LC^{(\Gamma)}$ corresponding to Γ is defined as the quotient $S_{<\Gamma}/S_{<\Gamma}$.

We define the right cell module $\mathrm{RC}^{(\Gamma)}$ corresponding to a right cell Γ of M(n, r) similarly. To see that we get right ideals we have to use Lemma 2.3 and $g_{x,y,z} = g_{y^{-1},x^{-1},z^{-1}}$ for $x, y, z \in W$ (see [13, 13.2.(e)]) together with $\sigma(\underline{a}^t) = \sigma(\underline{a})^{-1}$. This implies $f_{\underline{a},\underline{b},\underline{c}} = 0$ if and only if $f_{\underline{b}^t,\underline{a}^t,\underline{c}^t} = 0$.

3. Lusztig's conjectures for the q-Schur Algebra

In this section, we prove that the q-Schur algebra satisfies properties very similar to $P1, \ldots, P15$ for the Iwahori-Hecke algebra. First, we give some preliminary results.

Lemma 3.1. If $\underline{a} \leq_{L} \underline{b}$ (resp. \leq_{R}, \leq_{LR}), then $\sigma(\underline{a}) \leq_{L} \sigma(\underline{b})$ (resp. \leq_{R}, \leq_{LR}).

 $\begin{array}{l} \textit{Proof. Since } \underline{a} \leq_{\scriptscriptstyle L} \underline{b}, \text{ there is } \underline{c} \in M(n,r) \text{ such that } f_{\underline{c},\underline{b},\underline{a}} \neq 0. \text{ But we have } f_{\underline{c},\underline{b},\underline{a}} = h_{co(\underline{a})}^{-1}g_{\sigma(\underline{c}),\sigma(\underline{b}),\sigma(\underline{a})} \text{ with } h_{co(\underline{a})}^{-1} \neq 0. \text{ Thus } g_{\sigma(\underline{c}),\sigma(\underline{b}),\sigma(\underline{a})} \neq 0 \text{ and } \sigma(\underline{a}) \leq_{\scriptscriptstyle L} \sigma(\underline{b}). \end{array}$

Lemma 3.2. If
$$\underline{a} \leq_{L} \underline{b}$$
, then $co(\underline{a}) = co(\underline{b})$. If $\underline{a} \leq_{R} \underline{b}$, then $ro(\underline{a}) = ro(\underline{b})$.

Proof. Since $\underline{a} \leq_L \underline{b}$ there is $\underline{c} \in M(n, r)$ such that $f_{\underline{c}, \underline{b}, \underline{a}} \neq 0$. From Lemma 2.3 follows that $(ro(\underline{a}), co(\underline{a})) = (ro(\underline{c}), co(\underline{b}))$ and the result is proved.

Lemma 3.3. Let λ , μ , $\nu \in \Lambda(n, r)$, $x \in D^+_{\lambda,\mu}$ and $y \in D^+_{\mu,\nu}$. If $g_{x,y,z} \neq 0$ for some $z \in W$, then $z \in D^+_{\lambda,\nu}$.

Proof. For $\lambda \in \Lambda(n, r)$ we set $S_{\lambda} := W_{\lambda} \cap S$, the set of Coxeter generators of the parabolic subgroup W_{λ} . Let $x \in \mathcal{D}^+_{\lambda,\mu}$ and $y \in \mathcal{D}^+_{\mu,\nu}$ and $g_{x,y,z} \neq 0$. On one hand, this means that l(sx) < l(x) for all $s \in S_{\lambda}$ and l(ys) < l(y) for all $s \in S_{\nu}$. On the other hand, we get $z \leq_L y$ and $z \leq_R x$ and thus l(zs) < l(z) for all $s \in S$ with l(ys) < l(y) and l(sz) < l(s) for all $s \in S$ with l(sx) < l(x) by [13, Lemma 8.6]. Thus we have in particular that l(zs) < l(z) for all $s \in S_{\nu}$ and l(sz) < l(z) for all $s \in S_{\lambda}$. Hence z is the longest element in its W_{λ} - W_{ν} -double coset in W.

Lemma 3.4. We have $\underline{a} \leq_R \underline{b}$ if and only if there is $a \underline{c} \in M(n, r)$ with $f_{\underline{b}, \underline{c}, \underline{a}} \neq 0$.

Proof. By definition, $\underline{a} \leq_R \underline{b}$ is equivalent to $\underline{a}^t \leq_L \underline{b}^t$. This in turn means that there is a $\underline{c} \in M(n,r)$ such that $f_{\underline{c}^t,\underline{b}^t,\underline{a}^t} \neq 0$. As mentioned at the end of Section 2.2 we have $f_{\underline{b},\underline{c},\underline{a}} = 0$ if and only if $f_{\underline{c}^t,\underline{b}^t,\underline{a}^t} = 0$ which directly implies the statement in the lemma.

Proposition 3.5. The following properties hold for the q-Schur algebra:

- **Q1** For any $\underline{a} \in M(n,r)$ we have $\mathbf{a}(\underline{a}) \leq \Delta(\sigma(\underline{a}))$.
- **Q2** If $\gamma_{a,b,d} \neq 0$ for some $\underline{d} \in \mathcal{D}(n,r)$, then we have $\underline{b} = \underline{a}^t$.
- **Q3** For every $\underline{a} \in M(n, r)$, there is a unique $\underline{d} \in \mathcal{D}(n, r)$ with $\gamma_{\underline{a}^t, \underline{a}, \underline{d}} \neq 0$.
- **Q4** If $\underline{a} \leq_{LR} \underline{b}$, then $\mathbf{a}(\underline{a}) \geq \mathbf{a}(\underline{b})$.
- **Q5** If $\underline{d} \in \mathcal{D}(n,r)$ and $\underline{a} \in M(n,r)$ are such that $\gamma_{a^t,a,d} \neq 0$, then $\gamma_{a^t,a,d} = 1$.
- **Q6** For $\underline{d} \in \mathcal{D}(n, r)$, we have $\underline{d} = \underline{d}^t$.
- **Q7** For every $\underline{a}, \underline{b}, \underline{c} \in M(n, r)$, we have $\gamma_{\underline{a}, \underline{b}, \underline{c}} = \gamma_{\underline{b}, \underline{c}, \underline{a}} = \gamma_{\underline{c}, \underline{a}, \underline{b}}$.
- **Q8** Let $\underline{a}, \underline{b}, \underline{c} \in M(n, r)$ be such that $\gamma_{\underline{a}, \underline{b}, \underline{c}} \neq 0$, then $\underline{a} \sim_{L} \underline{b}^{t}, \underline{b} \sim_{L} \underline{c}^{t}$ and $\underline{c} \sim_{L} \underline{a}^{t}$.
- **Q9** If $\underline{a} \leq_{\scriptscriptstyle L} \underline{b}$ and $\mathbf{a}(\underline{a}) = \mathbf{a}(\underline{b})$, then $\underline{a} \sim_{\scriptscriptstyle L} \underline{b}$.
- **Q10** If $\underline{a} \leq_{R} \underline{b}$ and $\mathbf{a}(\underline{a}) = \mathbf{a}(\underline{b})$, then $\underline{a} \sim_{R} \underline{b}$.
- **Q11** If $\underline{a} \leq_{LR} \underline{b}$ and $\mathbf{a}(\underline{a}) = \mathbf{a}(\underline{b})$, then $\underline{a} \sim_{LR} \underline{b}$.
- **Q13** Every left cell contains a unique element $\underline{d} \in \mathcal{D}(n, r)$ and $\gamma_{\underline{a}^t, \underline{a}, \underline{d}} \neq 0$ for every $\underline{a} \sim_{L} \underline{d}$.
- **Q14** For every $\underline{a} \in M(n, r)$, we have $\underline{a} \sim_{LR} \underline{a}^t$.
- **Q15** Let v' be a second indeterminate and let $f'_{x,y,z} \in \mathbb{Z}[v', v'^{-1}]$ be obtained from $f_{x,y,z}$ by the substitution $v \mapsto v'$. If $\underline{a}, \underline{a}', \underline{b}, \underline{c} \in W$ satisfy $\mathbf{a}(\underline{c}) = \mathbf{a}(\underline{b})$, then

$$\sum_{\underline{b}'} f'_{\underline{c},\underline{a}',\underline{b}'} f_{\underline{a},\underline{b}',\underline{b}} = \sum_{\underline{b}'} f_{\underline{a},\underline{c},\underline{b}'} f'_{\underline{b}',\underline{a}',\underline{b}}.$$

Proof. We note that **Q1** is a direct consequence of Property **P1**.

We now will prove Property Q2. We suppose that $\gamma_{\underline{a},\underline{b},\underline{d}} \neq 0$ for some $\underline{a}, \underline{b} \in M(n,r)$ and $\underline{d} \in \mathcal{D}(n,r)$. Since $\gamma_{\underline{a},\underline{b},\underline{d}} \neq 0$, it follows that $f_{\underline{a},\underline{b},\underline{d}} \neq 0$. Thus we have $co(\underline{a}) = ro(\underline{b})$, $ro(\underline{a}) = ro(\underline{d})$ and $co(\underline{b}) = co(\underline{d})$ by Lemma 2.3. But $co(\underline{d}) = ro(\underline{d})$ implies $ro(\underline{a}) = co(\underline{b})$. We now write $\underline{a} = (\lambda, w_a, \mu)$ and $\underline{b} = (\mu, w_b, \lambda)$. We have $\gamma_{\underline{a},\underline{b},\underline{d}} = \gamma_{\sigma(\underline{a}),\sigma(\underline{b}),\sigma(\underline{d})}$. From $\sigma(\underline{d}) \in \mathcal{D}$ we deduce using P2 that $\sigma(\underline{a}) = \sigma(\underline{b})^{-1}$. It follows that $\ell_{\lambda,\mu}(w_a) = \ell_{\mu,\lambda}(w_b)^{-1} = \ell_{\lambda,\mu}(w_b^{-1})$, we get $w_a = w_b^{-1}$ and thus Q2 holds.

Let $\underline{a} = (\lambda, w, \mu) \in M(n, r)$. Thanks to Property **P3**, there is a unique $d \in \mathcal{D}$ such that $\gamma_{\sigma(\underline{a})^{-1}, \sigma(\underline{a}), d} \neq 0$. Since $\sigma(\underline{a})^{-1} = \sigma(\underline{a}^t)$, we deduce that $g_{\sigma(\underline{a}^t), \sigma(\underline{a}), d} \neq 0$. But $\sigma(\underline{a}^t) \in D^+_{\mu, \lambda}$ and $\sigma(\underline{a}) \in D^+_{\lambda, \mu}$, then Lemma 3.3 gives $d \in D^+_{\mu, \mu}$. We denote by \widetilde{d} the

representative of minimal length of the coset $W_{\mu}dW_{\mu}$ and we set $\underline{d} := (\mu, \tilde{d}, \mu)$. Then $\underline{d} \in \mathcal{D}(n, r)$ and $\sigma(\underline{d}) = d$. It follows that $\gamma_{\underline{a}^t, \underline{a}, \underline{d}} \neq 0$ and thus **Q3** holds.

The property Q4 follows from P4 and Lemma 3.1. The property Q5 directly follows from P5, since in our case W is of type A and thus all coefficients of all Kazhdan-Lusztig polynomials are non-negative by [13, 15.1].

Let $\underline{d} = (\lambda, w, \lambda) \in \mathcal{D}(n, r)$; we have $\sigma(\underline{d}) \in \mathcal{D}$, thus **P6** gives $\sigma(\underline{d})^{-1} = \sigma(\underline{d})$. Therefore, we have $\ell_{\lambda,\lambda}(w) = \sigma(\underline{d})^{-1} = \sigma(\underline{d}^t) = \ell_{\lambda,\lambda}(w^{-1})$, and it follows that $w = w^{-1}$; thus **Q6** holds. The property **Q7** follows directly from **P7**.

Suppose that $\gamma_{\underline{a},\underline{b},\underline{c}} \neq 0$ for some $\underline{a}, \underline{b}, \underline{c} \in M(n, r)$, then $f_{\underline{a},\underline{b},\underline{c}^t} \neq 0$ and it follows that $co(\underline{a}) = ro(\underline{b})$ and $(ro(\underline{a}), co(\underline{b})) = (ro(\underline{c}^t), co(\underline{c}^t))$. Then we have

$$\begin{split} f_{\underline{b}^{t},\underline{a}^{t},\underline{c}} &= h_{co(\underline{a})}g_{\sigma(\underline{b}^{t}),\sigma(\underline{a}^{t}),\sigma(\underline{c})} \\ &= h_{co(\underline{a})}g_{\sigma(\underline{b})^{-1},\sigma(\underline{a})^{-1},\sigma(\underline{c})} \\ &= h_{co(\underline{a})}g_{\sigma(\underline{a}),\sigma(\underline{b}),\sigma(\underline{c})^{-1}} \\ &= f_{\underline{a},\underline{b},\underline{c}^{t}}. \end{split}$$

It follows that $\underline{c}^t \leq_L \underline{b}$ and $\underline{c} \leq_L \underline{a}^t$. Using **Q7** and the same arguments applied to $\gamma_{\underline{b},\underline{c},\underline{a}} = \gamma_{\underline{c},\underline{a},\underline{b}} \neq 0$, we deduce that $\underline{a} \sim_L \underline{b}^t$, $\underline{b} \sim_L \underline{c}^t$ and $\underline{c} \sim_L \underline{a}^t$. Thus **Q8** holds.

Next we prove Q13. Let $\underline{a} \in M(n, r)$. By Q3 there is a unique $\underline{d} \in \mathcal{D}(n, r)$ with $\gamma_{\underline{a}^t, \underline{a}, \underline{d}} \neq 0$ and for this \underline{d} holds $\underline{a} \sim_L \underline{d}$ by Q8. But for $\underline{d}, \underline{d}' \in \mathcal{D}(n, r)$ with $\underline{d} \sim_L \underline{d}'$ we conclude $ro(\underline{d}) = co(\underline{d}) = co(\underline{d}') = ro(\underline{d}')$ using Lemma 3.2 and $\sigma(\underline{d}) = \sigma(\underline{d}')$ using P13 since $\sigma(\underline{d}) \sim_L \sigma(\underline{d}')$ because of Lemma 3.1. Thus we have proved Q13.

Now we prove **Q9**. Let $\underline{a}, \underline{b} \in M(n, r)$ with $\underline{a} \leq_L \underline{b}$ and $\mathbf{a}(\underline{a}) = \mathbf{a}(\underline{b})$. We denote the unique element of $\mathcal{D}(n, r)$ in the left cell of \underline{a} by \underline{d}_a (resp. \underline{d}_b for \underline{b}). Using **Q4** we deduce that $\mathbf{a}(\underline{d}_a) = \mathbf{a}(\underline{a})$ and $\mathbf{a}(\underline{d}_b) = \mathbf{a}(\underline{b})$. Moreover, we have $\underline{d}_a \leq_L \underline{d}_b$. Thus using Lemma 3.1 shows that $\sigma(\underline{d}_a) \leq_L \sigma(\underline{d}_b)$. Hence, using Property **P9**, we have $\sigma(\underline{d}_a) \sim_L \sigma(\underline{d}_b)$. However, $\sigma(\underline{d}_a)$ and $\sigma(\underline{d}_b)$ lie in \mathcal{D} . Therefore, using **P13** in the Iwahori-Hecke algebra, we deduce that $\sigma(\underline{d}_a) = \sigma(\underline{d}_b)$. We now prove that $f_{\underline{d}_a,\underline{d}_a,\underline{d}_b} \neq 0$. Since $ro(\underline{d}_a) = co(\underline{d}_a) = co(\underline{d}_b) = ro(\underline{d}_b)$ (thanks to Lemma 3.2), we deduce that

$$f_{\underline{d}_a,\underline{d}_a,\underline{d}_b} = h_{co(\underline{d}_a)}^{-1} g_{\sigma(\underline{d}_a),\sigma(\underline{d}_a),\sigma(\underline{d}_b)}.$$

Using **P13**, we deduce that $\gamma_{\sigma(\underline{d}_a)^{-1},\sigma(\underline{d}_a),\sigma(\underline{d}_b)} \neq 0$; hence $g_{\sigma(\underline{d}_a),\sigma(\underline{d}_a),\sigma(\underline{d}_b)} \neq 0$. Since $h_{co(\underline{d}_a)}^{-1} \neq 0$, it follows that $f_{\underline{d}_a,\underline{d}_a,\underline{d}_b} \neq 0$. Hence $\underline{d}_b \leq_L \underline{d}_a$ and **Q9** follows.

Property Q10 follows from Q9 by transposition since $\mathbf{a}(\underline{a}) = \mathbf{a}(\underline{a}^t)$ for all $\underline{a} \in M(n, r)$ (use [13, 13.9 (a)]). Property Q11 follows from Q9 and Q10 and induction.

Let $\underline{a} \in M(n,r)$ and $\underline{d} \in \mathcal{D}(n,r)$ be the unique element such that $\underline{a} \sim_L \underline{d}$ given by Q13. Then $\underline{a}^t \sim_R \underline{d}^t = \underline{d}$ and Q14 holds.

Finally, we prove Q15. We first remark that $f'_{\underline{c},\underline{a}',\underline{b}'} \neq 0$ if and only if $f_{\underline{a},\underline{c},\underline{b}'} \neq 0$, and $f_{\underline{a},\underline{b}',\underline{b}} \neq 0$ if and only if $f'_{\underline{b}',\underline{a}',\underline{b}} \neq 0$. Moreover if $f'_{\underline{c},\underline{a}',\underline{b}'} \neq 0$, then $f'_{\underline{c},\underline{a}',\underline{b}'} = h'_{ro(\underline{a}')}g_{\sigma(\underline{c}),\sigma(\underline{a}'),\sigma(\underline{b}')}$ and $f_{\underline{a},\underline{c},\underline{b}'} = h_{co(\underline{a})}g_{\sigma(\underline{a}),\sigma(\underline{c}),\sigma(\underline{b}')}$. If $f_{\underline{a},\underline{c},\underline{b}'} \neq 0$, then $f_{\underline{a},\underline{c},\underline{b}'} = h_{co(\underline{a})}g_{\sigma(\underline{a}),\sigma(\underline{c}),\sigma(\underline{b}')}$ and $f'_{\underline{b}',\underline{a}',\underline{b}} = h'_{ro(\underline{a}')}g_{\sigma(\underline{b}'),\sigma(\underline{a}'),\sigma(\underline{b})}$. Here h'_{μ} is obtained from h_{μ} by the substitution $v \mapsto v'$. We note that $h_{ro(\underline{a}')}$ and $h_{co(\underline{a})}$ do not depend on \underline{b}' . It follows from **P15** that

$$\begin{split} \sum_{\underline{b}'} f'_{\underline{c},\underline{a}',\underline{b}'} f_{\underline{a},\underline{b}',\underline{b}} &= h_{ro(\underline{a}')} h_{co(\underline{a})} \sum_{\underline{b}'} g'_{\sigma(\underline{c}),\sigma(\underline{a}'),\sigma(\underline{b}')} g_{\sigma(\underline{a}),\sigma(\underline{b}'),\sigma(\underline{b})} \\ &= h_{ro(\underline{a}')} h_{co(\underline{a})} \sum_{\underline{b}'} g_{\sigma(\underline{a}),\sigma(\underline{c}),\sigma(\underline{b}')} f'_{\sigma(\underline{b}'),\sigma(\underline{a}'),\sigma(\underline{b})} \\ &= \sum_{\underline{b}'} f_{\underline{a},\underline{c},\underline{b}'} f'_{\underline{b}',\underline{a}',\underline{b}}. \end{split}$$

Proposition 3.6. If $\underline{a} \sim_{\scriptscriptstyle L} \underline{b}$ and $\underline{a} \sim_{\scriptscriptstyle R} \underline{b}$, then $\underline{a} = \underline{b}$.

Proof. Let $\underline{a} = (\lambda_a, w_a, \mu_a)$ and $\underline{b} = (\lambda_b, w_b, \mu_b)$ be such that $\underline{a} \sim_L \underline{b}$ and $\underline{a} \sim_R \underline{b}$. We have $\underline{a} \leq_L \underline{b}$ and $\underline{a}^t \leq_L \underline{b}^t$, then using Lemma 3.2 we deduce that $\mu_a = \mu_b$ and $\lambda_a = \lambda_b$. Using Lemma 3.1, we deduce that $\sigma(\underline{a}) \sim_L \sigma(\underline{b})$ and $\sigma(\underline{a}) \sim_R \sigma(\underline{b})$. Since \mathcal{H} is of type A, it follows that $\sigma(\underline{a}) = \sigma(\underline{b})$, that is $\ell_{\lambda_a,\mu_a}(w_a) = \ell_{\lambda_a,\mu_a}(w_b) = \ell_{\lambda_b,\mu_b}(w_b)$. Hence we get $w_a = w_b$.

4. IRREDUCIBLE CELL MODULES AND DUAL BASIS

In this section we view the extension of scalars $KS_q(n, r)$ of the q-Schur algebra $S_q(n, r)$ as a symmetric algebra. This is possible, since it is semisimple (see [1, (9.8)]). We can take as symmetrising trace form any K-linear form $\tau : KS_q(n, r) \to K$ that is a K-linear combination

$$\tau = \sum_{\chi \in \operatorname{Irr}(K\mathcal{S}_q(n,r))} \frac{\chi}{c_{\chi}}$$

of the irreducible characters where the c_{χ} are non-zero constants, the so-called Schur elements (see [10, 7.1.1 and 7.2.6]). Clearly, τ is non-degenerate.

Having fixed τ , we denote for any K-basis $(B_{\underline{a}})_{\underline{a}\in M(n,r)}$ of $KS_q(n,r)$ its dual basis with respect to τ by $(B_{\underline{b}}^{\vee})_{\underline{b}\in M(n,r)}$. That is, we have $\tau(B_{\underline{a}} \cdot B_{\underline{b}}^{\vee}) = \tau(B_{\underline{b}}^{\vee} \cdot B_{\underline{a}}) = \delta_{\underline{a},\underline{b}}$ for all $\underline{a}, \underline{b} \in M(n,r)$. Note that this immediately implies that we can write every element $x \in KS_q(n,r)$ in the following form:

(4.1)
$$x = \sum_{\underline{a} \in M(n,r)} \tau(x \cdot B_{\underline{a}}^{\vee}) B_{\underline{a}} = \sum_{\underline{a} \in M(n,r)} \tau(x \cdot B_{\underline{a}}) B_{\underline{a}}^{\vee}$$

(just write x as a linear combination of the B_a , multiply by some B_b and apply τ).

Remark 4.1. We have $f_{\underline{a},\underline{b},\underline{c}} = \tau(\theta_{\underline{a}} \cdot \theta_{\underline{b}} \cdot \theta_{\underline{c}}^{\vee})$ for all $\underline{a}, \underline{b}, \underline{c} \in M(n, r)$. Moreover, we note that Formula (4.1) immediately gives us nice formulas for the matrix representations coming from the left cell modules. For a left cell Γ and an element $h \in S_q(n, r)$ the representing matrix of h on the left cell module $\mathrm{LC}^{(\Gamma)}$ with respect to the basis $\{\theta_{\underline{a}} + S_{<\Gamma} \mid \underline{a} \in \Gamma\}$ is $\left(\tau(\theta_{\underline{b}}^{\vee} \cdot h \cdot \theta_{\underline{a}})\right)_{\underline{b},\underline{a}\in\Gamma}$ since $h \cdot \theta_{\underline{a}} = \sum_{\underline{b}\in M(n,r)} \tau(\theta_{\underline{b}}^{\vee} \cdot h \cdot \theta_{\underline{a}}) \cdot \theta_{\underline{b}}$ and it is enough to sum over those \underline{b} with $\underline{b} \leq_{L} \underline{a}$.

Lemma 4.2 (Characterisation of \leq_L and \leq_R). We have $\underline{a} \leq_L \underline{b}$ if and only if $\theta_{\underline{b}} \theta_{\underline{a}}^{\vee} \neq 0$ and $\underline{a} \leq_R \underline{b}$ if and only if $\theta_{\underline{a}}^{\vee} \theta_{\underline{b}} \neq 0$.

Proof. We only show the version with \leq_L , the other is completely analogous thanks to Lemma 3.4. If $\underline{a} \leq_L \underline{b}$ there exists a $\underline{c} \in M(n, r)$ with $f_{\underline{c}, \underline{b}, \underline{a}} = \tau(\theta_{\underline{c}} \theta_{\underline{b}} \theta_{\underline{a}}^{\vee}) \neq 0$ which implies $\theta_{\underline{b}} \theta_{\underline{a}}^{\vee} \neq 0$. If we assume the latter, then by the non-degeneracy of τ there is some $\underline{c} \in M(n, r)$ with $\tau(\theta_{\underline{c}} \theta_{\underline{b}} \theta_{\underline{a}}^{\vee}) \neq 0$ and $\underline{a} \leq_L \underline{b}$ follows.

The other major ingredient is the fact that cell modules are simple, more precisely:

Theorem 4.3 (Simple cell modules, see [6] or [7, 4.3]). Let Γ be a left cell and recall $K = \mathbb{Q}(v)$. The extension of scalars $K \operatorname{LC}^{(\Gamma)}$ of the left cell module $\operatorname{LC}^{(\Gamma)}$ for a left cell Γ is a simple $KS_q(n, r)$ -module.

Proof. See [6] or [7, 4.3].

Remark 4.4. This in particular implies that all simple $KS_q(n, r)$ -modules can be realised over the ring A, since their corresponding representating matrices involve only structure constants of $S_q(n, r)$.

We now directly obtain useful algebra elements by using the simple cell modules:

Theorem 4.5 (Basis of an isotypic component). Let Γ be a left cell and χ the corresponding irreducible character of the left cell module $LC^{(\Gamma)}$, then the elements

$$\left(c_{\chi}^{-1}\theta_{\underline{a}}\,\theta_{\underline{b}}^{\vee}\right)_{\underline{a},\underline{b}\in\Gamma}$$

are K-linearly independent and span the isotypic component of $KS_q(n,r)$ belonging to the character χ . Furthermore, we have the relations

$$\left(c_{\chi}^{-1}\theta_{\underline{a}}\,\theta_{\underline{b}}^{\vee}\right)\cdot\left(c_{\chi}^{-1}\theta_{\underline{a'}}\,\theta_{\underline{b'}}^{\vee}\right)=\delta_{\underline{b},\underline{a'}}\cdot c_{\chi}^{-1}\theta_{\underline{a}}\,\theta_{\underline{b'}}^{\vee}$$

for all $\underline{a}, \underline{b}, \underline{a}', \underline{b}' \in \Gamma$. That is, these elements form a matrix unit for the isotypic component of $KS_a(n, r)$ corresponding to the simple module $K \operatorname{LC}^{(\Gamma)}$.

Proof. By [10, 7.2.7] we get a matrix unit for the isotypic component of $KS_q(n, r)$ corresponding to the simple module $K \operatorname{LC}^{(\Gamma)}$ by the elements

$$\frac{1}{c_{\chi}}\sum_{\underline{c}\in M(n,r)}\tau(\theta_{\underline{b}}^{\vee}\cdot\theta_{\underline{c}}\cdot\theta_{\underline{a}})\cdot\theta_{\underline{c}}^{\vee} = \frac{1}{c_{\chi}}\sum_{\underline{c}\in M(n,r)}\tau(\theta_{\underline{c}}\cdot\theta_{\underline{a}}\theta_{\underline{b}}^{\vee})\cdot\theta_{\underline{c}}^{\vee}$$

for $\underline{a}, \underline{b} \in \Gamma$. But this is equal to $c_{\chi}^{-1} \theta_{\underline{a}} \theta_{b}^{\vee}$ by Formula (4.1).

Corollary 4.6. Let Γ be a left cell and χ the corresponding irreducible character of the left cell module $LC^{(\Gamma)}$. Then the element

$$e_{\Gamma} := \frac{1}{c_{\chi}} \sum_{a \in \Gamma} \theta_{\underline{a}} \theta_{\underline{a}}^{\vee}$$

is the central primitive idempotent of $KS_q(n,r)$ corresponding to the irreducible character χ .

Proof. By Theorem 4.5 e_{Γ} lies in the isotypic component corresponding to the character χ and is mapped to the identity matrix in the corresponding matrix representation.

Lemma 4.7 (Isomorphism of left cell modules and two-sided cells). Let Γ and Γ' be left cells. If $K \operatorname{LC}^{(\Gamma)}$ and $K \operatorname{LC}^{(\Gamma')}$ are isomorphic $KS_q(n, r)$ -modules then Γ and Γ' lie in the same two-sided cell.

Proof. Let χ be the irreducible character of the left cell module $LC^{(\Gamma)}$ and χ' that of $LC^{(\Gamma')}$. The modules $KLC^{(\Gamma)}$ and $KLC^{(\Gamma')}$ are isomorphic if and only if $e_{\Gamma} \cdot e_{\Gamma'} = e_{\Gamma'} \cdot e_{\Gamma} \neq 0$ (and in this case $e_{\Gamma} = e_{\Gamma'}$). Now assume this case. Then

$$0 \neq \frac{1}{c_{\chi}^2} \sum_{\underline{a} \in \Gamma} \sum_{\underline{b} \in \Gamma'} \theta_{\underline{a}} \theta_{\underline{a}}^{\vee} \theta_{\underline{b}} \theta_{\underline{b}}^{\vee} = \frac{1}{c_{\chi}^2} \sum_{\underline{a} \in \Gamma} \sum_{\underline{b} \in \Gamma'} \theta_{\underline{b}} \theta_{\underline{b}}^{\vee} \theta_{\underline{a}} \theta_{\underline{a}}^{\vee}$$

and thus there is at least one pair $(\underline{a}, \underline{b}) \in \Gamma \times \Gamma'$ such that $\theta_{\underline{a}}^{\vee} \theta_{\underline{b}} \neq 0$. By Lemma 4.2 this implies $\underline{a} \leq_R \underline{b}$. Since e_{Γ} and $e_{\Gamma'}$ commute, the same argument shows $\underline{b}' \leq_R \underline{a}'$ for some $\underline{a}' \in \Gamma$ and $\underline{b}' \in \Gamma'$. Thus, Γ and Γ' lie in the same two-sided cell in that case. \Box

For what follows we need the following statement about Iwahori-Hecke-Algebras of type A:

Theorem 4.8 (Equal cell modules in the Iwahori-Hecke algebra). Let \mathcal{H} be a generic Iwahori-Hecke-Algebra of type A as in Section 2. If $x \sim_L y$ and $z \sim_L w$ and $x \sim_R z$ and $y \sim_R w$, then $C_x D_{y^{-1}} = C_z D_{w^{-1}}$. In particular, we have

$$g_{u,x,y} = \tau(C_u C_x D_{y^{-1}}) = \tau(C_u C_z D_{w^{-1}}) = g_{u,z,w}$$

for all $u \in W$.

Proof. This statement is already implicitly stated in [12]. Namely, it is shown there in the proof of Theorem 1.4 that the two left cell modules defined by the left cell containing x, y and the one containing z, w are isomorphic since all four lie in the same two-sided. The exact statement there is that two W-graphs are isomorphic, which means in particular that not only the two left cell modules are isomorphic, but that even the matrix representations with respect to the bases $\{C_v \mid v \sim_L x\}$ and $\{C_w \mid w \sim_L z\}$ are equal. But this exactly means, that

$$\tau(D_{y^{-1}}C_uC_x) = \tau(D_{w^{-1}}C_uC_z)$$

for all $u \in W$ which we claim.

Now we begin to use statements **Q1** to **Q14**:

Theorem 4.9 (Equality of different left cell modules). Let Γ, Γ' be left cells such that $K \operatorname{LC}^{(\Gamma)}$ and $K \operatorname{LC}^{(\Gamma')}$ are isomorphic $KS_q(n, r)$ -modules. Let \underline{d} be the unique element in $\Gamma' \cap \mathcal{D}(n, r)$ (use **Q13**) and $\underline{c} \sim_L \underline{d}$ that is $\underline{c} \in \Gamma'$. Then there are unique $\underline{a}, \underline{b} \in \Gamma$ with $\underline{a} \sim_R \underline{c}$ and $\underline{b} \sim_R \underline{d}$ and we have $\theta_{\underline{a}} \theta_{\underline{b}}^{\vee} = \theta_{\underline{c}} \theta_{\underline{d}}^{\vee}$.

Proof. Let χ be the irreducible character of the left cell module $LC^{\Gamma'}$. We denote by c_{χ} the corresponding Schur element. Since $\underline{c} \sim_L \underline{d}$, it follows from Theorem 4.5 that

$$\theta_{\underline{d}}\,\theta_{\underline{c}}^{\vee}\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee} = c_{\chi}\theta_{\underline{d}}\,\theta_{\underline{d}}^{\vee}$$

Therefore we have $\tau(\theta_{\underline{c}}^{\vee}\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee}\theta_{\underline{d}}) \neq 0$ and hence $\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee}$ acts non-trivially on the module $\mathrm{LC}^{(\Gamma')}$ (see Remark 4.1) and thus also on the isomorphic module $\mathrm{LC}^{(\Gamma)}$.

This means that there is at least one pair $(\underline{a}, \underline{b}) \in \Gamma \times \Gamma$ such that

$$\tau(\theta_{\underline{b}}\,\theta_{\underline{a}}^{\vee}\cdot\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee}) = \tau(\theta_{\underline{a}}^{\vee}\cdot\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee}\cdot\theta_{\underline{b}}) = \tau(\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee}\cdot\theta_{\underline{b}}\,\theta_{\underline{a}}^{\vee}) \neq 0.$$

But then in particular $\theta_{\underline{a}}^{\vee}\theta_{\underline{c}} \neq 0$ and thus $a \leq_R c$ by Lemma 4.2. Since Γ and Γ' lie in the same two-sided cell by Lemma 4.7, we conclude $\underline{a} \sim_{LR} \underline{c}$ and thus by **Q4** and **Q10** $\underline{a} \sim_R \underline{c}$. Analogously, we show $\underline{b} \sim_R \underline{d}$. By Proposition 3.6 we conclude that there is only one such pair ($\underline{a}, \underline{b}$) since both are uniquely defined by their membership in a left and a right cell.

We now show that $f_{\underline{e},\underline{a},\underline{b}} = f_{\underline{e},\underline{c},\underline{d}}$ for all $\underline{e} \in M(n,r)$ and thus $\theta_{\underline{a}} \theta_{\underline{b}}^{\vee} = \theta_{\underline{c}} \theta_{\underline{d}}^{\vee}$. We have $co(\underline{a}) = co(\underline{b})$ and $co(\underline{c}) = co(\underline{d}) = ro(\underline{d}) = ro(\underline{b})$ and $ro(\underline{a}) = ro(\underline{c})$ by Lemma 3.2 and the fact that $\underline{d} \in \mathcal{D}(n,r)$. Thus, if $ro(\underline{e}) \neq ro(\underline{b})$ or $co(\underline{e}) \neq ro(\underline{a})$ then both sides are zero by Lemma 2.3. Otherwise, we have

$$f_{\underline{e},\underline{a},\underline{b}} = h_{co(\underline{e})}^{-1} \cdot g_{\sigma(\underline{e}),\sigma(\underline{a}),\sigma(\underline{b})} \quad \text{and} \quad f_{\underline{e},\underline{c},\underline{d}} = h_{co(\underline{e})}^{-1} \cdot g_{\sigma(\underline{e}),\sigma(\underline{c}),\sigma(\underline{d})}$$

and thus the equality $f_{\underline{e},\underline{a},\underline{b}} = f_{\underline{e},\underline{c},\underline{d}}$ follows from

$$\sigma(\underline{a}) \sim_{\scriptscriptstyle L} \sigma(\underline{b}) \sim_{\scriptscriptstyle R} \sigma(\underline{d}) \sim_{\scriptscriptstyle L} \sigma(\underline{c}) \sim_{\scriptscriptstyle R} \sigma(\underline{a})$$

using Lemma 3.1 and Theorem 4.8. The non-degeneracy of τ now immediately implies $\theta_a \theta_b^{\vee} = \theta_c \theta_d^{\vee}$.

With this we get the following result, for which we first need one more piece of notation:

Definition 4.10 (Schur elements of characters of left cell modules). Let $\underline{d} \in \mathcal{D}(n, r)$ and Γ the unique left cell with $\underline{d} \in \Gamma$ (remember Q13). We denote the left cell module $LC^{(\Gamma)}$ by $LC^{(\underline{d})}$ and the Schur element corresponding to the irreducible character of $LC^{(\underline{d})}$ by c_d .

Theorem 4.11 (Wedderburn basis). Let τ be an arbitrary non-degenerate symmetrising trace form on $KS_q(n, r)$. The set

$$\mathcal{B} := \{ c_{\underline{d}}^{-1} \theta_{\underline{c}} \, \theta_{\underline{d}}^{\vee} \mid \underline{c} \in M(n,r), \underline{d} \in \mathcal{D}(n,r), \underline{c} \sim_{\scriptscriptstyle L} \underline{d} \}$$

is a Wedderburn basis of $KS_q(n,r)$. Two elements $c_{\underline{d}}^{-1}\theta_{\underline{c}} \theta_{\underline{d}}^{\vee}$ and $c_{\underline{d'}}^{-1}\theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee}$ lie in the same isotypic component if and only if $LC^{(\underline{d})} \cong LC^{(\underline{d'})}$.

For $c_d^{-1}\theta_{\underline{c}} \theta_{\underline{d}}^{\vee}, c_{\underline{d'}}^{-1}\theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee} \in \mathcal{B}$ we have the following equation:

$$c_{\underline{d}}^{-1}\theta_{\underline{c}} \,\theta_{\underline{d}}^{\vee} \cdot c_{\underline{d'}}^{-1}\theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee} = \begin{cases} 0 & \text{if } \operatorname{LC}^{(\underline{d})} \cong \operatorname{LC}^{(\underline{d'})} \\ 0 & \text{if } \operatorname{LC}^{(\underline{d})} \cong \operatorname{LC}^{(\underline{d'})} \text{ and } \underline{d} \not\sim_{\scriptscriptstyle R} \underline{c'} \\ c_{\underline{d'}}^{-1}\theta_{\underline{c''}} \theta_{\underline{d'}}^{\vee} & \text{if } \operatorname{LC}^{(\underline{d})} \cong \operatorname{LC}^{(\underline{d'})} \text{ and } \underline{d} \sim_{\scriptscriptstyle R} \underline{c'} \end{cases}$$

Here, $\underline{c''}$ in the last case is the unique element with $\underline{c''} \sim_L \underline{d'}$ and $\underline{c''} \sim_R \underline{c}$ and the statement contains the information that such a $\underline{c''}$ in fact exists.

Proof. By Theorem 4.5 the elements $c_{\underline{d}}^{-1}\theta_{\underline{c}} \theta_{\underline{d}}^{\vee}$ and $c_{\underline{d'}}^{-1}\theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee}$ both lie in an isotypic component. Thus, if $\mathrm{LC}^{(\underline{d})} \cong \mathrm{LC}^{(\underline{d'})}$ then clearly their product is zero.

Now assume that the left cell modules are isomorphic. Let Γ be an arbitrary left cell, such that $K \operatorname{LC}^{(\Gamma)}$ is isomorphic to $K \operatorname{LC}^{(\underline{d})}$ and $K \operatorname{LC}^{(\underline{d}')}$ and denote the corresponding irreducible character by χ . By Theorem 4.9 there are unique $\underline{a}, \underline{b}, \underline{a'}, \underline{b'} \in \Gamma$ with

$$\underline{a} \sim_{\scriptscriptstyle R} \underline{c}$$
 and $\underline{b} \sim_{\scriptscriptstyle R} \underline{d}$ and $\underline{a'} \sim_{\scriptscriptstyle R} \underline{c'}$ and $\underline{b'} \sim_{\scriptscriptstyle R} \underline{d'}$

and we have $\theta_{\underline{a}} \theta_{\underline{b}}^{\vee} = \theta_{\underline{c}} \theta_{\underline{d}}^{\vee}$ and $\theta_{\underline{a'}} \theta_{\underline{b'}}^{\vee} = \theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee}$. Thus, Theorem 4.5 implies that the product in the theorem is 0 if $\underline{b} \neq \underline{a'}$ and equal to $c_{\chi}^{-1} \theta_{\underline{a}} \theta_{\underline{b'}}^{\vee}$ otherwise. We remark that if $\underline{d} \sim_R \underline{c'}$, then $\underline{a'} \sim_R \underline{b}$ by transitivity. But using Proposition 3.6, $\underline{a'}, \underline{b} \in \Gamma$ implies $\underline{b} = \underline{a'}$. Hence $\underline{b} = \underline{a'}$ if and only if $\underline{d} \sim_R \underline{c'}$ which proves case two in the equation.

Hence $\underline{b} = \underline{a'}$ if and only if $\underline{d} \sim_R \underline{c'}$ which proves case two in the equation. Finally, we assume also $\underline{d} \sim_R \underline{c'}$. Then, as $\underline{c''}$ runs through the left cell that contains $\underline{d'}$, we can apply Theorem 4.9 to each $\theta_{\underline{c''}} \theta_{\underline{d'}} = 0$ and the left cell Γ . Since $\underline{b'} \in \Gamma$ and $\underline{b'} \sim_R \underline{d'}$ we get that

$$\{\theta_{\underline{c''}}\theta_{\underline{d'}}^{\vee} \mid \underline{c''} \sim_{\scriptscriptstyle L} \underline{d'}\} = \{\theta_{\underline{a''}}\theta_{\underline{b'}}^{\vee} \mid \underline{a''} \in \Gamma\}$$

and both sets have cardinality $|\Gamma|$. Thus, there is a unique $\underline{c''}$ with $\theta_{\underline{c''}}\theta_{\underline{d'}}^{\vee} = \theta_{\underline{a}}\theta_{\underline{b'}}^{\vee}$ characterised by $\underline{a} \sim_{R} \underline{c''} \sim_{L} \underline{d'}$ and the theorem is proved.

Corollary 4.12 (Idempotents). The elements $c_{\underline{d}}^{-1}\theta_{\underline{d}}\theta_{\underline{d}}^{\vee}$ with $\underline{d} \in \mathcal{D}(n,r)$ are pairwise orthogonal primitive idempotents whose sum is the identity $1 \in S_q(n,r)$. The central primitive idempotent corresponding to an irreducible character χ of $KS_q(n,r)$ is equal to

$$\sum_{\substack{\underline{d} \in \mathcal{D}(n,r) \\ \mathrm{LC}^{(\underline{d})} \text{ has character } \chi}} c_{\underline{d}}^{-1} \theta_{\underline{d}} \theta_{\underline{d}}^{\chi}$$

Proof. This follows directly from Theorems 4.11, 4.9 and 4.5.

Corollary 4.13 (Left cell modules as submodules). Let $\underline{d} \in \mathcal{D}(n, r)$. Then the A-span

$$\mathcal{L}_{\underline{d}} := \langle \theta_{\underline{c}} \ \theta_{\underline{d}}^{\vee} \mid \underline{c} \sim_{\scriptscriptstyle L} \underline{d} \rangle_A$$

is a left $S_q(n,r)$ -module by the multiplication in $KS_q(n,r)$ that is isomorphic to the left cell module $LC^{(\underline{d})}$. In fact, the representing matrices with respect to the basis $(\theta_c \ \theta_d^{\vee})_{\underline{c}\sim \underline{L}\underline{d}}$

are equal to the representing matrices coming from the left cell module $LC^{(\underline{d})}$ with respect to its standard basis.

Proof. Let Γ be the left cell that contains \underline{d} . Then by Formula (4.1) we have for every $h \in S_q(n, r)$:

$$h\theta_{\underline{c}} = \sum_{\underline{c'} \in M(n,r)} \tau(\theta_{\underline{c'}}^{\vee} \cdot h\theta_{\underline{c}}) \cdot \theta_{\underline{c'}}.$$

Moreover, for $\underline{a} \in A$, there is $\alpha_{\underline{a}} \in A$ such that

$$h = \sum_{\underline{a} \in M(n,r)} \alpha_{\underline{a}} \theta_{\underline{a}}.$$

Hence, for $\underline{c}, \underline{c'} \in M(n, r)$, we have $\tau(\theta_{\underline{c'}}^{\vee} \cdot h\theta_{\underline{c}}) \in A$, because $\tau(\theta_{\underline{c'}}^{\vee} \cdot \theta_{\underline{a}}\theta_{\underline{c}}) \in A$ (see Remark 4.1). Multiplying this from the right with θ_d^{\vee} we get

$$h\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee} = \sum_{\underline{c'}\in M(n,r)} \tau(h\theta_{\underline{c}}\,\theta_{\underline{c'}}^{\vee})\cdot\theta_{\underline{c'}}\theta_{\underline{d}}^{\vee},$$

where we only have to sum over $\underline{c'} \in \Gamma$, since all the summands are zero unless $\underline{d} \leq_{L} \underline{c'} \leq_{L} \underline{c}$ by Lemma 4.2, which is equivalent to $\underline{c'} \in \Gamma$. We then deduce that $\mathcal{L}_{\underline{d}}$ is a left $\mathcal{S}_{q}(n, r)$ -module. Moreover, comparing with Remark 4.1, this shows the statement about the representing matrices.

Corollary 4.14. The Schur algebra $S_q(n, r)$ is contained in the A-span of the Wedderburn basis \mathcal{B} :

$$\mathcal{S}_q(n,r) \subseteq \langle \mathcal{B} \rangle_A$$

Proof. Let $\Gamma_1, \ldots, \Gamma_n$ be left cells, such that the corresponding left cell modules form a system of representatives for the isomorphism types of simple left $KS_q(n, r)$ -modules. The mapping that maps $h \in KS_q(n, r)$ to its tuple of representing matrices in the cell modules $\mathrm{LC}^{(\Gamma_1)}, \ldots, \mathrm{LC}^{(\Gamma_n)}$ with respect to their standard basis is an explicit isomorphism to a direct sum of full matrix rings over K. In this isomorphism, the elements of \mathcal{B} are mapped to a matrix unit, that is, to tuples of matrices, in which exactly one matrix is non-zero, and this matrix contains exactly one non-zero coefficient equal to 1. The elements of $S_q(n, r)$ are mapped to tuples of matrices with entries in A, since their representing matrices on the cell modules have entries in A (see the remark after Theorem 4.3). Therefore, $S_q(n, r)$ lies in the A-span of \mathcal{B} .

Proposition 4.15. Let τ be a non-degenerate symmetrising trace form on $KS_q(n, r)$. We denote by \mathcal{B} the corresponding Wedderburn basis obtained in Theorem 4.11. Then, the dual basis of \mathcal{B} relative to τ is

$$\mathcal{B}^{\vee} = \{ \theta_{\underline{c}} \theta_d^{\vee} \mid \underline{c} \in M(n, r), \, \underline{d} \in \mathcal{D}(n, r), \, \underline{c} \sim_{\scriptscriptstyle L} \underline{d} \}.$$

Proof. Note first, that since τ is non-degenerate and \mathcal{B} is a basis of $KS_q(n, r)$, there must be at least one element $c_{\underline{d'}}^{-1} \theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee} \in \mathcal{B}$ such that $\tau(c_{\underline{d}}^{-1} \theta_{\underline{c}} \theta_{\underline{d}}^{\vee} \cdot c_{\underline{d'}}^{-1} \theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee})$ is non-zero. Since $c_{\underline{d'}} \neq 0$, we have in particular $\tau(c_{\underline{d}}^{-1} \theta_{\underline{c}} \theta_{\underline{d'}} \theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee}) \neq 0$. We try to find out, which element $\theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee}$ this can be:

By Theorem 4.11, the value $\tau(c_{\underline{d}}^{-1} \theta_{\underline{c}} \theta_{\underline{d}}^{\vee} \theta_{\underline{c}'} \theta_{\underline{d}'}^{\vee})$ is equal to zero, if $\mathrm{LC}^{(\underline{d})} \cong \mathrm{LC}^{(d')}$ or $\underline{d} \not\sim_R \underline{c'}$. If however $\mathrm{LC}^{(\underline{d})} \cong \mathrm{LC}^{(d')}$ and $\underline{d} \sim_R \underline{c'}$, then it is equal to $\tau(\theta_{\underline{c''}} \theta_{\underline{d}'}^{\vee})$ where $\underline{c''}$ is uniquely defined by $\underline{c''} \sim_L \underline{d'}$ and $\underline{c''} \sim_R \underline{c}$. If $\underline{c''} \neq \underline{d'}$, then this value is also equal to 0 because of the original definition of $\{\theta_{\underline{a}}^{\vee} \mid \underline{a} \in M(n, r)\}$. If however $\underline{c''} = \underline{d'}$ we can

show that $\underline{c'} = \underline{c}^t$ using Proposition 3.6: Namely, we have $\underline{c'} \sim_L \underline{d'} = \underline{c''} \sim_R \underline{c}$ and thus $\underline{c'} \sim_L \underline{c}^t$ by transposition. Further, we have $\underline{c'} \sim_R \underline{d} \sim_L \underline{c}$ and thus again by transposition $\underline{c'} \sim_R \underline{c}^t$. Thus, $\underline{c'}$ and \underline{c}^t are both left and right equivalent and therefore equal.

Thus, we deduce that

$$\tau(c_{\underline{d}}^{-1}\,\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee}\cdot\theta_{\underline{c'}}^{\vee}\theta_{\underline{d'}}^{\vee}) = \delta_{\underline{c'},\underline{c^t}}$$

for all $\underline{c} \in M(n,r)$ and $\underline{d} \in \mathcal{D}(n,r)$ with $\underline{c} \sim_{L} \underline{d}$, and all $\underline{c}' \in M(n,r)$ and $\underline{d}' \in \mathcal{D}(n,r)$ with $\underline{c'} \sim_L \underline{d'}$.

Remark 4.16. Note that as a byproduct we have proved the following result: If $\underline{c} \in M(n, r)$ and $\underline{d} \in \mathcal{D}(n,r)$ with $\underline{c} \sim_{\scriptscriptstyle L} \underline{d}$, and $\underline{d'} \in \mathcal{D}(n,r)$ with $\underline{c}^t \sim_{\scriptscriptstyle L} \underline{d'}$, then $\mathrm{LC}^{(\underline{d})} \cong \mathrm{LC}^{(\underline{d'})}$.

We now talk about A-sublattices of $KS_q(n, r)$.

Definition/Proposition 4.17 (A-sublattices of $KS_a(n, r)$ and their duals). By an A-lattice in $KS_q(n,r)$ we mean an A-free A-submodule that contains a K-basis of $KS_q(n,r)$. Let $L \subseteq KS_q(n, r)$ be an A-lattice. Then we set

$$L^{\vee} := \{ h \in K\mathcal{S}_q(n,r) \mid \tau(hx) \in A \text{ for all } x \in L \}$$

and call it the **dual lattice of** L. Since τ is non-degenerate, L^{\vee} is again an A-lattice in $KS_q(n,r)$, namely, if $(b_{\underline{a}})_{\underline{a}\in M(n,r)}$ is an A-basis of L, then the dual basis $(b_{\underline{a}}^{\vee})_{\underline{a}\in M(n,r)}$ is an A-basis of L^{\vee} . Clearly, if $L \subseteq N$ are two A-lattices in $KS_q(n, r)$, then $N^{\vee} \subseteq L^{\vee}$. \square

Note that we do not require an A-lattice to be an A-algebra!

Proposition 4.18 (The dual is an $S_q(n,r)$ -module). We have $S_q(n,r) \cdot S_q(n,r)^{\vee} \subseteq$ $\mathcal{S}_q(n,r)^{\vee}.$

Proof. Fix $h \in S_q(n,r)$ and $k \in S_q(n,r)^{\vee}$. We have to show that $hk \in S_q(n,r)^{\vee}$. However, for every $x \in S_q(n,r)$ holds $\tau(hkx) = \tau(kxh)$. Since $xh \in S_q(n,r)$ (because $\mathcal{S}_q(n,r)$ is an algebra), and $k \in \mathcal{S}_q(n,r)^{\vee}$ we get $\tau(kxh) \in A$.

For the rest of this section we let $\tau = \sum_{\chi \in Irr(KS_q(n,r))} \chi$, that is, we choose τ such that all Schur elements are equal to 1.

Proposition 4.19 (The Wedderburn-basis is self-dual). Let $\tau = \sum_{\chi \in Irr(KS_a(n,r))} \chi$. Then

$$\langle \mathcal{B} \rangle_A^{\vee} = \langle \mathcal{B} \rangle_A$$

for the Wedderburn basis \mathcal{B} from Theorem 4.11.

Proof. Since τ is the sum of the irreducible characters, all Schur elements c_{χ} are equal to one. It is then a direct consequence of Proposition 4.15.

Corollary 4.20 (The dual of $S_q(n, r)$). From Lemma 4.14 and Proposition 4.19 follows

$$\langle \mathcal{B} \rangle_A \subseteq \mathcal{S}_q(n,r)^{\vee}$$

Proof. Dualising reverses inclusion.

5. THE ASYMPTOTIC ALGEBRA AND THE DU-LUSZTIG HOMOMORPHISM

In this section we briefly recall the definition of the asymptotic algebra $\mathcal{J}(n,r)$ for the q-Schur algebra $\mathcal{S}_q(n,r)$ and of the Du-Lusztig homomorphism Φ from $\mathcal{S}_q(n,r)$ to $\mathcal{J}(n,r)$. We then show that this algebra is isomorphic to the algebra $\langle \mathcal{B} \rangle_A$ spanned by our Wedderburn basis $\mathcal B$ and that the Du-Lusztig homomorphism can be interpreted as the inclusion of $\mathcal{S}_q(n,r)$ into $\langle \mathcal{B} \rangle_A$.

Definition 5.1 (The asymptotic algebra $\mathcal{J}(n,r)$). Let $\mathcal{J}(n,r)$ be the free abelian group with basis $\{t_{\underline{a}} \mid \underline{a} \in M(n,r)\}$. We define a multiplication on $\mathcal{J}(n,r)$ by setting

$$t_{\underline{a}}t_{\underline{b}} = \sum_{\underline{c} \in M(n,r)} \gamma_{\underline{a},\underline{b},\underline{c}^t} \cdot t_{\underline{c}}.$$

We set $\mathcal{D}(n,r)_{\lambda} := \mathcal{D}(n,r) \cap M_{\lambda,\lambda}$. Following Du, we denote the extension of scalars of $\mathcal{J}(n,r)$ to A by $\mathcal{J}(n,r)_A$.

Lemma 5.2 (See [7, (2.2.1)]). *The* \mathbb{Z} *-algebra* $\mathcal{J}(n, r)$ *is associative with the identity element*

$$\sum_{\underline{l}\in\mathcal{D}(n,r)}t_{\underline{d}}.$$

Theorem 5.3 (The Du-Lusztig homomorphism Φ , see [7, (2.3]). The A-linear map Φ : $S_a(n,r) \to \mathcal{J}(n,r)_A$ defined by

$$\Phi(\theta_{\underline{a}}) := \sum_{\substack{\underline{b} \in M(n,r) \\ \underline{d} \in \mathcal{D}(n,r)_{\mu} \\ \mathbf{a}(\underline{d}) = \mathbf{a}(\underline{b})}} f_{\underline{a},\underline{d},\underline{b}} \cdot t_{\underline{b}} = \sum_{\substack{\underline{b} \in M(n,r) \\ \underline{d} \in \mathcal{D}(n,r) \\ \underline{d} \sim \iota \underline{b}}} f_{\underline{a},\underline{d},\underline{b}} \cdot t_{\underline{b}}, \quad \text{where } \mu = co(\underline{a})$$

is an algebra homomorphism and becomes an isomorphism $KS_q(n,r) \to \mathcal{J}(n,r)_K$ when tensored with the field of fractions K of A.

Proof. See [7, 2.3]. The latter equation holds, since $f_{\underline{a},\underline{b},\underline{d}} = 0$ unless $\underline{d} \leq_L \underline{b}$, and **Q9** implies $\underline{d} \sim_L \underline{b}$ in this case. Also we can safely sum over all of $\mathcal{D}(n,r)$ neglecting the index μ , since all elements $\underline{d} \in \mathcal{D}(n,r)$ fulfill $ro(\underline{d}) = co(\underline{d})$ by definition (see Definition 2.5 and the remark there) and $f_{\underline{a},\underline{d},\underline{b}} = 0$ unless $co(\underline{a}) = ro(\underline{d})$ anyway.

We can now present our main theorem, which links our Wedderburn basis \mathcal{B} to the asymptotic algebra:

Theorem 5.4 (Preimage of the *t*-basis under the Du-Lusztig homomorphism). Let τ be an arbitrary non-degenerate symmetrising trace form. All dual bases in the following are meant with respect to τ .

With the above notation we have

$$\Phi(c_d^{-1}\theta_c \ \theta_d^{\vee}) = t_c \qquad \text{for all } \underline{c} \in M(n,r).$$

Proof. The rightmost sum in Theorem 5.3 has the advantage that it provides a formula for the image of an arbitrary element $h \in KS_q(n, r)$ under the Du-Lusztig homomorphism, since it is obviously K-linear in θ_a :

$$\Phi(h) = \sum_{\substack{\underline{b} \in \mathcal{M}(n,r) \\ \underline{d'} \in \mathcal{D}(n,r) \\ d' \sim r, b}} \tau(h \cdot \theta_{\underline{d'}} \theta_{\underline{b}}^{\vee}) \cdot t_{\underline{b}}$$

(recall $\tau(\theta_{\underline{a}}\theta_{\underline{d'}}\theta_{\underline{b}}^{\vee}) = f_{\underline{a},\underline{d'},\underline{b}}$). But now we can immediately set $h := c_{\underline{d}}^{-1}\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee}$ for some $\underline{c} \in M(n,r)$ and $\underline{d} \in \mathcal{D}(n,r)$ with $\underline{c} \sim_{L} \underline{d}$. The value $\tau(c_{\underline{d}}^{-1}\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee} \cdot \theta_{\underline{d'}}\theta_{\underline{b}}^{\vee})$ is zero (see Lemma 4.2) unless $\underline{b} \leq_{R} \underline{c} \sim_{L} \underline{d} \leq_{R} \underline{d'} \sim_{L} \underline{b}$ and this implies $\underline{b} \sim_{R} c$ and $\underline{d'} \sim_{R} \underline{d}$ using Q4 and Q10. But this means $\underline{d'} = \underline{d}$ by Q13 and the definition of \sim_{R} and thus $\underline{b} = \underline{c}$ because of Lemma 3.6. Thus, in the sum there is only one non-zero summand, which is $\tau(c_{\underline{d}}^{-1}\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee} \cdot \theta_{\underline{d}}\,\theta_{\underline{c}}^{\vee})t_{\underline{c}}$. Now everything is in a single left cell such that we can use Theorem 4.5 to get

$$\tau(c_{\underline{d}}^{-1}\theta_{\underline{c}}\,\theta_{\underline{d}}^{\vee}\cdot\theta_{\underline{d}}\,\theta_{\underline{c}}^{\vee})\cdot t_{\underline{c}} = \tau(\theta_{\underline{c}}\,\theta_{\underline{c}}^{\vee})\cdot t_{\underline{c}} = t_{\underline{c}}$$

as claimed.

We can summarise our results in the following way:

Theorem 5.5 (New interpretation of the Du-Lusztig homomorphism). Let τ be an arbitrary non-degenerate symmetrising trace form on $KS_q(n, r)$. We define the set \mathcal{B} as in Theorem 4.11 and we set

$$\mathcal{J}_{\tau} = \langle \mathcal{B} \rangle_A$$

The following diagram commutes and all unmarked arrows are identities or natural inclusions:

$$\begin{array}{c|c} \mathcal{S}_q(n,r) & \longrightarrow \mathcal{J}_{\tau} & \longrightarrow K \mathcal{S}_q(n,r) \\ & & & \\ & & & \\ & & & \\ & & & \\ \mathcal{S}_q(n,r) & \stackrel{\Phi}{\longrightarrow} \mathcal{J}(n,r)_A & \longrightarrow \mathcal{J}(n,r)_K \end{array}$$

Thus, the asymptotic algebra $\mathcal{J}(n,r)_A$ is nothing but the A-span of our Wedderburn basis and the Du-Lusztig homomorphism Φ can simply be interpreted as the inclusion of $S_q(n,r)$ into $\langle \mathcal{B} \rangle_A$. Furthermore, our results directly and explicitly show that $\langle \mathcal{B} \rangle_A$ is isomorphic as an A-algebra to a direct sum of full matrix rings over A.

6. A CRITERION FOR JAMES' CONJECTURE

In this section we show how our results provide an equivalent formulation of a conjecture about the representation theory of specialisations of the q-Schur algebra. We first recall the conjecture.

The construction of the Iwahori-Hecke algebra of type A and of the q-Schur algebra as in Section 2 together with their Kazhdan-Lusztig bases can be carried out over an arbitrary integral domain R with quotient field k and with an arbitrary invertible parameter $q \in R$ having a square root in that domain. We denote the resulting algebra by $S_q(n, r)_R$ and its extension of scalars to k by $S_q(n, r)_k$.

The case of the Laurent polynomial ring $A = \mathbb{Z}[v, v^{-1}]$ and $q = v^2$ is called the "generic" case, since for every other choice (R, q) there is a ring homomorphism $\varphi : \mathbb{Z}[v, v^{-1}] \to R$ mapping v^2 to $q \in R$, which induces a ring homomorphism $\mathcal{S}_{v^2}(n, r)_A \to \mathcal{S}_q(n, r)_R \subseteq \mathcal{S}_q(n, r)_k$. This is called a "specialisation".

It is known, that $S_q(n, r)_k$ is semisimple unless q is an e-th root of unity. If q is a root of unity, then there is a decomposition matrix, which records the multiplicities of the simple modules in the so-called "standard modules". For the case that k has characteristic zero, recent work by Lascoux, Leclerc and Thibon, and Varagnolo and Vasserot yields a complete determination of these decomposition matrices (see [15], [8] and the references there). However, the case of positive characteristic is still open.

James' conjecture is a statement about this modular case. Roughly speaking, it asserts that if k is a field of characteristic ℓ and the multiplicative order e of the parameter $q \in k$ is greater than r, then the decomposition matrix of $S_q(n, r)_k$ does not depend on the particular value of ℓ but only on e.

We now want to make this statement more precise. Both the simple modules and the standard modules have a labelling by the set $\Lambda(n, r)$. Let $V_{k,q}^{\lambda}$ denote the standard module and $M_{k,q}^{\mu}$ the simple module of $S_q(n, r)_k$ corresponding to λ and μ respectively. Then the decomposition matrix for $S_q(n, r)_k$ consists of the numbers

$$d_{\lambda,\mu}^{\kappa,q} :=$$
multiplicity of $M_{k,q}^{\mu}$ in $V_{k,q}^{\lambda}$.

Conjecture 6.1 (James, see [11, §4] and [8, §3]). *If* $\ell > r$ *and* e *is the multiplicative order* of $q \in k$, then $d_{\lambda,\mu}^{k,q} = d_{\lambda,\mu}^{\mathbb{Q}(\zeta_e),\zeta_e}$ for all $\lambda, \mu \in \Lambda(n, r)$, where ζ_e is a complex primitive e-th root of unity.

Meinolf Geck has shown in [9, Theorem 1.2] that this statement is equivalent to the fact that, for $\ell > r$, the rank of the Du-Lusztig homomorphism $\Phi : S_q(n,r)_k \to \mathcal{J}(n,r)_k$ with respect to the two bases $(\theta_{\underline{a}})_{\underline{a} \in M(n,r)}$ and $(t_{\underline{a}})_{\underline{a} \in M(n,r)}$ is equal to the rank of the corresponding Du-Lusztig homomorphism $S_{\zeta_{2e}^2}(n,r)_{\mathbb{Q}(\zeta_{2e})} \to \mathcal{J}(n,r)_{\mathbb{Q}(\zeta_{2e})}$ with respect to the corresponding bases, where e is the multiplicative order of $q \in k$ and ζ_{2e} is a primitive 2e-th root of unity in \mathbb{C} . In particular, the rank does not depend on the characteristic ℓ of k.

In view of our Theorem 5.5 this immediately implies:

Theorem 6.2 (An equivalent formulation of James' conjecture). Let $\{\theta_{\underline{a}} \mid \underline{a} \in M(n, r)\}$ be the Du-Kazhdan-Lusztig-basis of $S_q(n, r)$ and let τ be a non degenerate symmetrising trace form for $KS_q(n, r)$. Let $\{\theta_{\underline{a}}^{\vee} \mid \underline{a} \in M(n, r)\}$ be the dual basis of $\{\theta_{\underline{a}} \mid \underline{a} \in M(n, r)\}$ with respect to τ . Let \mathcal{B} be the basis defined in Theorem 4.11. Let s := |M(n, r)| and $M = (m_{a,b})_{a,b \in M(n,r)} \in A^{s \times s}$ be the matrix, for which

$$\theta_{\underline{a}} = \sum_{\underline{c} \in M(n,r)} m_{\underline{a},\underline{c}} \cdot c_{\underline{d}}^{-1} \theta_{\underline{c}} \ \theta_{\underline{d}}^{\vee}$$

with $c_{\underline{d}}^{-1}\theta_{\underline{c}} \, \theta_{\underline{d}}^{\vee} \in \mathcal{B}$ holds for all $\underline{a} \in M(n, r)$.

Let ℓ be a prime and $\varphi_{\ell} : \mathbb{Z}[v, v^{-1}] \to \mathbb{F}_{\ell}$ a ring homomorphism, such that the multiplicative order of $\varphi_{\ell}(v)$ is equal to 2e. Denote by $\varphi_{\ell}(M)$ the matrix in $\mathbb{F}_{\ell}^{s \times s}$ that one gets by applying the ring homomorphism φ_{ℓ} to every entry of M.

Let ζ_{2e} be a primitive 2e-th root of unity in \mathbb{C} and $\varphi_e : \mathbb{Z}[v, v^{-1}] \to \mathbb{Q}(\zeta_{2e})$ be the ring homomorphism mapping v to ζ_{2e} . Then there is a ring homomorphism $\varphi_{\ell}^e : \mathbb{Z}[\zeta_{2e}] \to \mathbb{F}_{\ell}$ with $\varphi_{\ell} = \varphi_{\ell}^e \circ \varphi_e$. Denote by $\varphi_e(M)$ the matrix in $\mathbb{Q}(\zeta_{2e})^{s \times s}$ that one gets by applying the ring homomorphism φ_e to every entry of M.

Then James' conjecture is equivalent to the fact that for $\ell > r$ the ranks of $\varphi(M)$ (over \mathbb{F}_{ℓ}) and of $\varphi_e(M)$ (over $\mathbb{Q}(\zeta_{2e})$) are equal.

Let τ be a non-degenerate symmetrising trace form on $KS_q(n,r)$. We denote by $\{\theta_{\underline{a}} \mid \underline{a} \in M(n,r)\}$ the Du-Kazhdan-Lusztig-basis of $S_q(n,r)$ and by $\{\theta_{\underline{a}}^{\vee} \mid \underline{a} \in M(n,r)\}$ its dual basis relative to τ . As above, we denote by \mathcal{B} the Wedderburn basis obtained in Theorem 4.11. Moreover, we denote by $M = (m_{\underline{a},\underline{b}})_{\underline{a},\underline{b}\in M(n,r)}$ the change of basis matrix from $\{\theta_{\underline{a}} \mid \underline{a} \in M(n,r)\}$ to \mathcal{B} as above and by $P_{\tau} = (p_{\underline{a},\underline{b}})_{\underline{a},\underline{b}\in M(n,r)}$ the change of basis matrix from $\{\theta_{\underline{a}} \mid \underline{a} \in M(n,r)\}$ to $\{\theta_{a}^{\vee} \mid \underline{a} \in M(n,r)\}$ to $\{\theta_{a}^{\vee} \mid \underline{a} \in M(n,r)\}$, that is:

$$\theta_{\underline{a}} = \sum_{\underline{b} \in M(n,r)} p_{\underline{a},\underline{b}} \cdot \theta_{\underline{b}}^{\vee}$$

for all $\underline{a} \in M(n, r)$. Formula (4.1) implies that

$$P_{\tau} = (\tau(\theta_{\underline{a}} \theta_{\underline{b}}))_{\underline{a}, \underline{b} \in M(n, r)} \quad \text{and} \quad P_{\tau}^{-1} = (\tau(\theta_{\underline{a}}^{\vee} \theta_{\underline{b}}^{\vee}))_{\underline{a}, \underline{b} \in M(n, r)}$$

Lemma 6.3. *With the above notation, the matrix*

$$D = M^T P_{\tau}^{-1} M$$

is monomial and its entries are the Schur elements $c_{\underline{d}}$ associated to $\underline{d} \in \mathcal{D}(n,r)$ as in Definition 4.10.

Proof. The matrix M^T is the change of basis matrix from \mathcal{B}^{\vee} to $\{\theta_{\underline{a}}^{\vee} \mid \underline{a} \in M(n,r)\}$ and thus the matrix D is the change of basis matrix from \mathcal{B}^{\vee} to \mathcal{B} , that is:

$$\theta_{\underline{c}}\theta_{\underline{d}}^{\vee} = \sum_{\underline{c'} \in M(n,r)} d_{\underline{c},\underline{c'}} c_{\underline{d'}}^{-1} \theta_{\underline{c'}} \theta_{\underline{d'}}^{\vee}$$

for all $\theta_{\underline{c}}\theta_{d}^{\vee} \in \mathcal{B}^{\vee}$. Using Proposition 4.15, the result follows.

Proposition 6.4 (A criterion for James' conjecture). Let τ be a non-degenerate symmetrising trace form on $KS_q(n, r)$. Let $\varphi_e : A \to \mathbb{Z}[\zeta_{2e}], v \mapsto \zeta_{2e}$ be a specialisation to characteristic 0 where v^2 is mapped to a primitive e-th root of unity in a cyclotomic field and $\varphi_\ell : A \to \mathbb{F}_\ell$ is a second specialisation to characteristic ℓ such that there is a ring homomorphism $\varphi_\ell^e : \mathbb{Z}[\zeta_{2e}] \to \mathbb{F}_\ell$ with $\varphi_\ell = \varphi_\ell^e \circ \varphi_e$. We suppose that $\ell > r$ and the following hypotheses on τ :

- The Schur elements $c_{\underline{d}}$ for $\underline{d} \in \mathcal{D}(n, r)$ lie in A.
- The coefficients of the matrix P_{τ}^{-1} lie in A.
- Let a be the number of Schur elements $c_{\underline{d}}$ for $\underline{d} \in \mathcal{D}(n, r)$ that do not vanish under φ_e and b the number of Schur elements that do not vanish under φ_ℓ . The numbers a and b are both equal to the rank over $\mathbb{Q}(\zeta_{2e})$ of the matrix $\varphi_e(M)$ for M from above.

Note that we denote with the notation $\varphi_e(M)$ the matrix one gets from M by applying the ring homomorphism φ_e on every entry.

If τ can be found fulfilling all these hypotheses, then James' conjecture holds for all $\ell > r$ for which φ_{ℓ} as above exist.

Proof. We denote by M the change of basis matrix from $\{\theta_{\underline{a}} \mid \underline{a} \in M(n,r)\}$ to \mathcal{B} as above. Then Lemma 6.3 asserts that

$$D = M^T P_{\tau}^{-1} M.$$

Thanks to Theorem 4.11, the coefficients of the matrix M lie in A. By hypothesis, the matrix P_{τ}^{-1} has coefficients in A. By Lemma 6.3 and the first hypothesis the entries of D are also in A.

Since the matrices D, M, M^T , and P_{τ}^{-1} have coefficients in A, the matrices $\varphi_e(D)$, $\varphi_e(M), \varphi_\ell(D), \varphi_\ell(M), \varphi_\ell(M^T)$ and $\varphi_\ell(P_{\tau}^{-1})$ are well-defined. We then have the following equality

$$\varphi_{\ell}(D) = \varphi_{\ell}(M^T) \cdot \varphi_{\ell}(P_{\tau}^{-1}) \cdot \varphi_{\ell}(M),$$

implying that $\operatorname{rk}_{\mathbb{F}_{\ell}}(\varphi_{\ell}(D)) \leq \operatorname{rk}_{\mathbb{F}_{\ell}}(\varphi_{\ell}(M))$. Moreover we have $\varphi_{\ell}(M) = \varphi_{\ell}^{e}(\varphi_{e}(M))$. Since φ_{ℓ}^{e} is a ring homomorphism, we deduce that

$$\operatorname{rk}_{\mathbb{F}_{\ell}}(\varphi_{\ell}(M)) \leq \operatorname{rk}_{\mathbb{Q}(\zeta_{2e})}(\varphi_{e}(M)).$$

Since D is a monomial matrix containing only the Schur elements as non-zero entries, the numbers a and b from the hypotheses are the ranks of $\varphi_e(D)$ and $\varphi_\ell(D)$ respectively. However, if as in the last hypothesis the ranks of $\varphi_e(M)$ and $\varphi_\ell(D)$ are equal, then it follows that $\operatorname{rk}_{\mathbb{F}_\ell}(\varphi_\ell(M)) \leq \operatorname{rk}_{\mathbb{F}_\ell}(\varphi_\ell(D))$. We then deduce that

$$\operatorname{rk}_{\mathbb{F}_{\ell}}(\varphi_{\ell}(M)) = \operatorname{rk}_{\mathbb{F}_{\ell}}(\varphi_{\ell}(D)),$$

and the result now follows from Theorem 6.2.

Remark 6.5. To prove James' conjecture it is enough to find a symmetrising trace form τ on $KS_q(n, r)$ such that the hypotheses of Proposition 6.4 are satisfied. We notice that the assumption on P_{τ} in the statement of Proposition 6.4 is "generic" in the sense that this

property only depending on the "generic" q-Schur algebra, but not on specialisations over finite fields.

Remark 6.6. We can replace the second assumption of Proposition 6.4 by the fact that the matrix $P_{\tau}^{-1}M$ (or $M^T P_{\tau}^{-1}$) has its coefficients in A.

Remark 6.7. For the usual trace form τ on Iwahori-Hecke algebras of type A, we note that the assumptions of Proposition 6.4 hold. Then using [14], we can prove in a way similar to the one of the proof of Proposition 6.4 that the rank of the Lusztig homomorphim (specialized in a finite field \mathbb{F}_{ℓ} by $\varphi_{\ell} : A \to \mathbb{F}_{\ell}$ mapping v^2 to an element $q \in \mathbb{F}_{\ell}$ with multiplicative order e as above) does not depend on ℓ . However as noted by Geck in [9] an analogue result as Theorem 6.2 in Iwahori-Hecke algebras does not imply the Iwahori-Hecke algebras James' conjecture.

REFERENCES

- Charles W. Curtis and Irving Reiner. *Methods of representation theory. Vol. I.* Wiley Classics Library. John Wiley & Sons Inc., New York, 1990. With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication.
- [2] Richard Dipper and Gordon James. Representations of Hecke algebras of general linear groups. Proc. London Math. Soc. (3), 52(1):20–52, 1986.
- [3] Richard Dipper and Gordon James. The q-Schur algebra. Proc. London Math. Soc. (3), 59(1):23–50, 1989.
- [4] Richard Dipper and Gordon James. q-tensor space and q-Weyl modules. Trans. Amer. Math. Soc., 327(1):251–282, 1991.
- [5] Jie Du. Kazhdan-Lusztig bases and isomorphism theorems for q-Schur algebras. In Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989), volume 139 of Contemp. Math., pages 121–140. Amer. Math. Soc., Providence, RI, 1992.
- [6] Jie Du. Canonical bases for irreducible representations of quantum GL_n. II. J. London Math. Soc. (2), 51(3):461–470, 1995.
- [7] Jie Du. q-Schur algebras, asymptotic forms, and quantum SL_n . J. Algebra, 177(2):385–408, 1995.
- [8] Meinolf Geck. Representations of Hecke algebras at roots of unity. Astérisque, (252):Exp. No. 836, 3, 33– 55, 1998. Séminaire Bourbaki. Vol. 1997/98.
- [9] Meinolf Geck. Kazhdan-Lusztig cells, q-Schur algebras and James' conjecture. J. London Math. Soc. (2), 63(2):336–352, 2001.
- [10] Meinolf Geck and Götz Pfeiffer. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, volume 21 of London Mathematic Society, New Series. Oxford University Press, Oxford, 2000.
- [11] Gordon James. The decomposition matrices of $GL_n(q)$ for $n \leq 10$. Proc. London Math. Soc. (3), 60(2):225–265, 1990.
- [12] David Kazhdan and George Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53(2):165–184, 1979.
- [13] G. Lusztig. Hecke algebras with unequal parameters, volume 18 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2003.
- [14] Max Neunhöffer. Kazhdan-Lusztig basis, Wedderburn decomposition, and Lusztig's homomorphism for Iwahori-Hecke algebras. J. Algebra, 303(1):430–446, 2006.
- [15] Michela Varagnolo and Eric Vasserot. On the decomposition matrices of the quantized Schur algebra. Duke Math. J., 100(2):267–297, 1999.

RUHR-UNIVERSITÄT BOCHUM, FAKULTÄT FÜR MATHEMATIK, RAUM NA 2/33, D-44780 BOCHUM *E-mail address*: Olivier.Brunat@rub.de

School of Mathematics and Statistics, Mathematical Institute, North Haugh, St Andrews, Fife KY16 9SS, Scotland, UK

E-mail address: neunhoef@mcs.st-and.ac.uk