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Abstract. In this paper we complete the Brauer trees for the sporadic sim-

ple Lyons group Ly in characteristics 37 and 67. The results are obtained

using tools from computational representation theory, in particular a new con-
densation technique, and with the assistance of the computer algebra systems

MeatAxe and GAP.

1. Introduction

1.1. In this paper we complete the Brauer trees for the sporadic simple Lyons
group Ly in characteristics 37 and 67. The results are stated in Section 2, and will
also be made accessible in the character table library of the computer algebra system
GAP and electronically in [1]. The shape of the Brauer trees as well as the labelling
of nodes up to algebraic conjugacy of irreducible ordinary characters had already
been found in [8, Section 6.19.], while here we complete the trees by determining
the labelling of the nodes on their real stems and their planar embedding; proofs
are given in Section 4. Together with the results in [8, Section 6.19.] for the other
primes dividing the group order, this completes all the Brauer trees for Ly.
Our main computational workhorse is fixed point condensation, which originally
was invented for permutation modules in [20], but has been applied to different types
of modules as well. To our knowledge, the permutation module we have condensed
is the largest one for which this has been accomplished so far. The theoretical
background of the idea of condensation is described in Section 3. Details of the
particular condensation technique used, and of some other computational tricks,
are given in Section 5. For the heavy part of our computations we have built
upon and modified the implementation described in [11]. In all parts of our work,
we have made substantial use of the computer algebra systems MeatAxe [18] and
GAP [6]. Due to our standard setting, see Section 1.2, to write down the set of
Brauer characters in the case p = 67 we have to know the 67-modular reduction
of
√

37 ∈ R+. The latter depends on the Conway polynomial C67,18, which at our
request was computed in [12]. As again some tricks and heavy computation are
involved in finding C67,18, we indicate in Section 2.2 what would be known without
having C67,18 at hand.
We remark that a method similar to the one described here has also been used
to solve similar, admittedly much smaller sized, problems for the sporadic simple
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Table 1. The Brauer tree for p = 37.
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Thompson group Th [4], for the sporadic simple Rudvalis group Ru and its double
cover 2.Ru [19], as well as for the sporadic simple O’Nan group ON and its triple
cover 3.ON [15]. The latter results completed all the Brauer character tables for
3.ON and 2.Ru in all characteristics dividing the respective group order.

1.2. The standard setting. We assume the reader is familiar with block theory
and decomposition theory of finite groups as well as with the Brauer-Dade theory
of blocks of cyclic defect, see e.g. [5, Sections IV. and VII.].
Throughout we use the standard choice of p-modular systems (L,R, F ) as described
in [9, Introduction]. Here, L is an algebraic number field, R is a discrete val-
uation ring in L, with maximal ideal m C R and residue class field F := R/m
of characteristic p. Let : R → F denote the natural epimorphism. Assume
ζp,n := exp(2πi/(pn − 1)) ∈ R ⊂ L ⊂ C for some n ∈ N. Then the minimum
polynomial of ζp,n ∈ F over Fp is the n-th Conway polynomial Cp,n ∈ Fp[X], where
again we assume the reader is familiar with the compatibility properties of the Cp,n,
when n varies.

2. Results

In this section, we state the Brauer trees for Ly for the cases p = 37 and p = 67.
In both cases, the principal p-block has defect 1 and is the only block of positive
defect. The nodes of the Brauer tree are labelled by 1, 2, . . ., where for each case
we indicate the corresponding irreducible ordinary characters of Ly according to
the numbering given in [3, p.174]. The labelling of the nodes of the Brauer trees
and their planar embedding depend on the definition of the conjugacy classes of Ly
in terms of the chosen pair of standard generators for Ly, see Section 4.3. For the
planar embedding we use the convention given in [8, Section 1.2.].

2.1. The case p = 37.

Table 1 1 2 3 4 5 6 7 8 9 10
[3] 1 2 3 4 7 8 11 12 24 25 33

Table 1 11 12 13 14 15 16 17 18 19
[3] 39 40 41 42 43 47 48 49 52

The exceptional node 9 has multiplicity 2. The sets of algebraically conjugate
ordinary characters are: {2, 3} and {5, 6} consisting of pairs of complex conjugate
characters; and {11, . . . , 15} and {16, 17} consisting of real characters. The Brauer
tree is given in Table 1.
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Table 2. The Brauer tree for p = 67; for y see Section 2.2.
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2.2. The case p = 67.

Table 2 1 2 3 4 5 6 7 8 9 10 11 12
[3] 1 2 3 5 6 11 20 21 22 24 25 26 27 28

Table 2 13 14 15 16 17 18 19 20 21 22 23
[3] 29 30 31 32 39 40 41 42 43 44 50

The exceptional node 12 has multiplicity 3. The sets of algebraically conjugate
ordinary characters are: {2, 3} and {4, 5} consisting of pairs of complex conjugate
characters; and {8, 9}, {10, 11}, {13, 14}, {15, 16}, and {17, . . . , 21} consisting of
real characters. We remark that there is a mistake in [8, p.271] concerning the
relative position of the characters {8, 9} and {13, 14} on the Brauer tree. The
Brauer tree is given in Table 2, where only the value of y ∈ {10, 11} depends on the
Conway polynomial C67,18, see Section 1. As X2−37 = (X−38)(X−29) ∈ F67[X],
we have

√
37 = 38 ∈ F67 or

√
37 = 29 ∈ F67 anyway. The former case leads to

y = 10, while the latter leads to y = 11. Using the Conway polynomial C67,18 =
2+13X+59X2 +6X3 +51X4 +29X5 +28X6 +55X7 +33X8 +18X9 +52X10 +63X11 +X12 +X18

computed in [12], we find
√

37 = 38 ∈ F67, hence y = 10, for our standard choice
of 67-modular system.

3. Condensation

3.1. Let θ be a principal ideal domain or a field, and A be a θ-algebra, which is a
finitely generated θ-free θ-module. Let modθ-A be the category of finitely generated
and θ-free right A-modules, where for V,W ∈ modθ-A the homomorphism set is
the set of all α ∈ HomA(V,W ) such that im(α) ≤W is a θ-pure submodule.
Let e ∈ A be an idempotent, i.e. 0 6= e = e2. Then the additive exact functor
? ⊗A Ae ∼= HomA(eA, ?) from modθ-A to modθ-eAe is called the condensation
functor with respect to e, see [7, Section 6.2.]. The image V e ∈ modθ-eAe of
some V ∈ modθ-A under this functor is called the condensed module of V . Note
that under this functor an A-homomorphism defined on V is simply mapped to its
restriction to V e.

3.2. Let θ be a field and S ∈modθ-A simple, then either Se = {0} or Se ∈modθ-
eAe is also simple, since for 0 6= v, v′ ∈ Se we have v · eae = v′ for some a ∈ A. The
following Lemma shows that we can distinguish non-isomorphic simple modules in
modθ-A by their condensed modules, if the latter are different from {0}. Note that
we do not assume that Se 6= {0} holds for all S ∈modθ-A.

Lemma. Let θ be a field and let S, S′ ∈modθ-A be simple, such that Se 6= {0} 6=
S′e. Then S ∼= S′ in modθ-A if and only if Se ∼= S′e in modθ-eAe.
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Proof. We only need to show the ‘if’ part. Assume that Se ∼= S′e in modθ-
eAe and choose a decomposition of e as a sum of pairwise orthogonal primitive
idempotents in A. As HomA(eA, S) ∼= Se 6= {0}, there is a summand, eS say,
such that eSA is a projective indecomposable module with eSA/rad(eSA) ∼= S.
Applying the condensation functor with respect to the idempotent eS ∈ eAe, we
obtain SeS ∼= S′eS in modθ-eSAeS . Hence we have {0} 6= S′eS ∼= HomA(eSA,S′),
thus S′ ∼= S in modθ-A. ]

3.3. Let θ := R, where R is as in Section 1.2. Let AL := A⊗RL and AF := A⊗RF .
If ê ∈ A ⊂ AL is an idempotent, then e := ê ∈ AF also is. The exact additive
functors HomA(êA, ?) ⊗R L and HomAL(êAL, ? ⊗R L) from modR-A to modL-
êALê are equivalent, as well as the exact additive functors HomA(êA, ?)⊗R F and
HomAF (eAF , ?⊗R F ) from modR-A to modF -eAF e.
This means that, given V̂ ∈ modL-AL with R-form V ∈ modR-A, the p-modular
reduction V ê of the condensed module of V can be identified with the condensed
module V e of the p-modular reduction of V . In this sense we speak of the condensed
module in modF -eAF e of a representation of AL.

3.4. Fixed point condensation. We are going to apply a particular condensation
functor, so-called fixed point condensation. Keeping the notation from Section 3.3,
let A = R[G] be the group algebra of a finite group G and e = eK := ê ∈ F [G],
where ê = êK := |K|−1

∑
k∈K k ∈ R[K] ⊆ R[G], where in turn K is a subgroup of

G whose order |K| is not divisible by the characteristic p of F .
Let Ω be a finite set acted on byG, and F [Ω] be the corresponding F [G]-permutation
module. Then the condensed module F [Ω]e can be described as follows. Let
{Ωi; 1 ≤ i ≤ r} be the set of K-orbits on Ω, and Ω+

i :=
∑
ω∈Ωi

ω ∈ F [Ω] be
the orbit sums. Then {Ω+

i ; 1 ≤ i ≤ r} is an F -basis of F [Ω]e, and for g ∈ G the
action of ege ∈ eF [G]e on F [Ω]e is given as

Ω+
i · ege =

∑
1≤j≤r

aij(g) · |Ωj |−1 · Ω+
j , where aij(g) = |{ω ∈ Ωi;ωg ∈ Ωj}|,

and where we consider aij(g) and |Ωj | as elements of F . Hence to find the action of
ege, we have to find the K-orbits {Ωi}, their lengths |Ωi|, and the aij(g) ∈ Z. Note
that this does not depend on the particular choice of F , and that an analogous
description holds for F replaced by R or L and e replaced by ê.
We are going to apply a new variant of fixed point condensation of permutation
modules, the so-called direct condensation technique, whose basic idea has been
invented in [17]. It has subsequently been modified, extending its range of appli-
cability, in [11]. Here, we have built upon and modified the latter implementation,
see Sections 4.4 and 5.2.

3.5. Let V ∈modF -F [G] and ϕV be its Brauer character, viewed as an L-valued
class function on the p′-classes of G. Then ϕV can be extended to a class function
ϕ̃V on the whole of G as follows. For g ∈ G let gp, gp′ ∈ G denote its p-part and
p′-part, respectively, and let ϕ̃V (g) = ϕV (gp′). As F [K] is a semisimple algebra,
we have dimF (V e) = 〈(ϕV )K , 1K〉K = 〈ϕ̃V , 1GK〉G, where 〈·, ·〉G denotes the usual
scalar product for class functions on G.
Let W ∈ modL-L[G] and χW be its ordinary character. In view of the remarks
in Section 3.3, we have dimF (We) = dimL(Wẽ) = 〈(χW )K , 1K〉K = 〈χW , 1GK〉G.
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Writing ϕV is a Z-linear combination of ordinary characters restricted to the p′-
classes of G, the dimension dimF (V e) can be computed in terms of ordinary char-
acters. As the blocks under consideration here are described by Brauer trees, these
linear combinations can directly be read off from the trees.

3.6. The trace formula. To solve the algebraic conjugacy problems, we apply the
following idea. Let V ∈modF -F [G] and ϕV be its Brauer character. If tV and tV e
are the usual F -valued trace functions, we have

tV e(ege) = |K|−1 ·
∑
k∈K

tV (gk) = |K|−1 ·
∑
k∈K

ϕ̃V (gk).

If V e is explicitly given, the trace tV e(ege) can be evaluated explicitly as well. On
the other hand, tV e(ege) can be computed, if ϕV is known and if it is known to
which conjugacy classes of G the elements of the coset gK belong.

4. Proofs

4.1. A permutation representation. Let G = Ly for short. We are looking
for a permutation representation of G, such that its permutation character has
sufficiently many constituents belonging to the principal p-blocks, for both cases
p = 37 and p = 67. Let 53:L3(5) ∼= H < G be a maximal subgroup of index
1 113 229 656, see [3, p.174], let Ω be the set of right cosets of H in G, and χΩ

the character of C[Ω]. Note that both p = 37 and p = 67 do not divide the group
order |H|, hence both F37[Ω] and F67[Ω] are projective F37[G]- and F67[G]-modules,
respectively.
Let V be the absolutely irreducible 111-dimensional representation of G over F5.
It was constructed in [14] and is accessible electronically in [22] as representing
matrices for a pair G = {g1, g2} of standard generators, in the sense of [21]. In [22]
we also find words in G yielding a subgroup conjugate to H. These were obtained
by a random search among subgroups generated by an involution and an element
of class 3A, see [3, p.174]. We find the submodule structure of the restriction VH
of V to H, using the algorithms in [13] implemented in the MeatAxe. In particular,
it turns out that VH has a simple socle S of dimension 10. As H < G is a maximal
subgroup and G acts irreducibly on V , we conclude that H is the stabilizer in G of
S. Thus the action of G on the set SG of subspaces of V is equivalent to its action
on Ω, and we may identify Ω with SG.

4.2. A condensation subgroup. As we are going to condense the permutation
module F [Ω] of dimension ∼109, we need a condensation subgroup of order at least
∼105 to obtain a condensed module of a dimension small enough, such that its
structure can be analysed using the MeatAxe. Here a subgroup 2.A9

∼= K < G,
having order 362 880, springs to mind. In particular, K is contained in a maxi-
mal subgoup 2.A11

∼= L < G, for which we also find a generating set as words in
G in [22]. Such words are found e.g. using the method described in [2] for find-
ing involution centralizers. We then find standard generators for L, which are
preimages of standard generators of A11. The latter are A11-conjugate to the pair
{(1, 2, 3), (3, 4, 5, 6, 7, 8, 9, 10, 11)} in the natural permutation representation of A11.
From that generators {k1, k2} for K are found as words in G.
Using the ordinary character tables of H, K and G, accessible in GAP, and its
library functions dealing with conjugacy class fusions and scalar products between
characters, the fusions of the conjugacy classes of H and K into those of G are
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Table 3. Characters, multiplicities and condensed dimensions.

χ m d
1 1 1
2 . .
3 . .
4 1 4
5 . 1
6 . 1
7 . .
8 . .
9 1 1

10 . 5
11 2 14
12 1 20
13 . 9
14 2 18

χ m d
15 . 24
16 . 16
17 . 25
18 1 32
19 . 48
20 1 47
21 1 57
22 1 57
23 1 52
24 1 56
25 1 56
26 1 56
27 1 56

χ m d
28 1 56
29 2 88
30 2 88
31 1 82
32 1 82
33 2 81
34 1 87
35 . 78
36 2 109
37 . 102
38 1 98
39 1 120
40 1 120

χ m d
41 1 120
42 1 120
43 1 120
44 . 116
45 . 110
46 1 126
47 1 133
48 1 133
49 . 140
50 . 148
51 1 151
52 1 172
53 1 196

determined, as well as the multiplicities m of the irreducible ordinary characters
χ of G in χΩ. Taking the remarks in Section 3.5 into account, the dimensions d
of the condensed modules of the irreducible ordinary representations of G, with
respect to the condensation subgroup K, can also be computed as scalar products.
The results are given in Table 3. In particular, the condensed module F [Ω]e, where
e = eK , has dimension 3207, independent of the particular choice of F .

4.3. A class distribution. We are going to apply the formula given in Section
3.6 to the element g3 := (g1g2)3g2 ∈ G, which has order 67. We have to find the
distribution of the elements in the coset g3K into the conjugacy classes of G.
The conjugacy classes of cyclic subgroups of G are defined by group theoretic data,
i.e. by element orders, centralizer orders, and normalizer orders, as can be checked
in [3, p.174]. Words in G giving representatives for the conjugacy classes of cyclic
subgroups are accessible in [22]. For our purposes, we have to distinguish alge-
braically conjugate classes. To do this we use traces and ranks of certain elements
of Z[G] on V as well as on the absolutely irreducible 651-dimensional representation
W over F3, which was constructed in [10] and is accessible in [22], and on one of the
algebraically conjugate 2480-dimensional absolutely irreducible representations X,
X̃ over F5, which are 5-modular reductions of ordinary representations. The latter
have been constructed on occasion of this paper, using the MeatAxe, as constituents
of the exterior square of V ; they are also accessible in [22]. To distinguish X and
X̃, we define the conjugacy class 22A of G to be the class containing the particular
element of order 22 given in [22] as a word in G. Using this, X is the 5-modular
reduction of the representation affording the ordinary character χ2.
Details are given in Table 4, where t and r denote trace and rank, respectively, and
where we also give the values of the corresponding extended Brauer characters, see
Section 3.5, using the notation of [3]. We find the numbers of elements belonging to
the different conjugacy classes as shown in Table 5; for details of the computations
see Section 5.1.

4.4. Applying condensation. We condense the elements g1, g2 and g3, where
G = {g1, g2} is as in Section 4.1, and g3 = (g1g2)3g2 ∈ G is as in Section 4.3;
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Table 4. Definition of the conjugacy classes of Ly.
ϕ̃V ϕ̃W ϕ̃X V, over F5 W, over F3 X, over F5

1A 111 651 2480

2A −1 11 −16

3A −24 651 104 t(g) = 1
3B 3 651 −4 t(g) = 3

4A 3 −5 0
5A 111 26 −20 t(g) = 1 t(g) = 2

5B 111 1 5 t(g) = 1 t(g) = 1

6A 8 11 8 t(g) = 3 r((g − 1)2) = 426
6B −1 11 −4 t(g) = 4 r((g − 1)2) = 430

6C −1 11 2 t(g) = 4 r((g − 1)2) = 429
7A −1 0 2

8A −3 −1 0 t(g) = 2

8B 1 −1 0 t(g) = 1
9A 0 651 −1

10A −1 6 4 t(g) = 4 t(g) = 0
10B −1 1 −1 t(g) = 4 t(g) = 1

11A 1 2 b11 t(g) = 1

11B 1 2 ∗∗ t(g) = 3
12A 0 −5 0 t(g) = 0

12B −3 −5 0 t(g) = 2
14A −1 4 −2

15A −24 26 4 t(g) = 1 t(g) = 2

15B 3 26 1 t(g) = 3 t(g) = 2
15C −24 1 −1 t(g) = 1 t(g) = 1

18A 2 11 −1
20A 3 0 0

21A ∗ 0 −1 t(g) = 1

21B −b21 0 −1 t(g) = 0
22A −1 0 −b11 t(g) = 4

22B −1 0 ∗∗ t(g) = 2
24A 0 −1 0 t(g) = 0, t(g2) = 0

24B 1 + r6 −1 0 t(g) = 0, t(g2) = 2

24C ∗ −1 0 t(g) = 2, t(g2) = 2
25A 111 1 0

28A 3 2 0
30A 8 6 −2 t(g) = 3

30B −1 6 1 t(g) = 4

31A e31∗4&8&16 0 0 t(g) = 1, t(g2) = 4
31B ∗2 0 0 t(g) = 4, t(g2) = 3

31C ∗4 0 0 t(g) = 3, t(g2) = 2
31D ∗8 0 0 t(g) = 2, t(g2) = 2

31E ∗16 0 0 t(g) = 2, t(g2) = 1

33A −2 2 b11 t(g) = 1
33B −2 2 ∗∗ t(g) = 3

37A 0 4 + b37 1 t(g) = 0 t(g) = 1
37B 0 ∗ 1 t(g) = 0 t(g) = 0
40A −3 4 + r10 0 t(g) = 2 t(g) = 2

40B −3 ∗ 0 t(g) = 2 t(g) = 0
42A −3− b21 4 1 t(g) = 2

42B ∗ 4 1 t(g) = 3
67A −1− c67 3− c67 1 t(g) = 1

67B ∗2 ∗2 1 t(g) = 3
67C ∗4 ∗4 1 t(g) = 4
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Table 5. The class distribution of g3K

class #
1A 0
2A 0
3A 0
3B 0
4A 16
5A 0
5B 89
6A 4
6B 172
6C 1105
7A 2172
8A 765
8B 3776
9A 6661

class #
10A 95
10B 7092
11A 5406
11B 5496
12A 1205
12B 5067
14A 2106
15A 172
15B 3976
15C 4891
18A 20394
20A 9035
21A 8767

class #
21B 8663
22A 16387
22B 16657
24A 15173
24B 15054
24C 15194
25A 14522
28A 13023
30A 3975
30B 4088
31A 11561
31B 11660
31C 11731

class #
31D 11721
31E 11659
33A 10935
33B 11115
37A 9927
37B 9775
40A 9183
40B 9008
42A 8707
42B 8589
67A 5413
67B 5269
67C 5429

Table 6. Partial information for p = 37, see Section 4.5.

t t t t t t t t ti t
t

t
t
t

t
t t t t1 4 a 19 a′ b a′′ 10 9 18

x

5−x

a′′′

3+x

8−x

7 8 b′ a′′′′

1 7 8 9 10 11 12 13 14 18 17 16 15 6

2

3

4

5

for details of the computations see Section 5.2. Note that by Section 3.4 this
essentially amounts to finding the aij(g) ∈ Z, hence we do not have to specify the
field F beforehand.

4.5. The case p = 37. The partial information on the Brauer tree known from
[8, p.268] is shown in Table 6, where {x, x′} = {2, 3}, and {a, a′, a′′, a′′′, a′′′′} =
{11, . . . , 15}, and {b, b′} = {16, 17}. Hence there are 480 possible cases left. We
also give labels to the edges of the Brauer tree, for future reference. The dimensions
d of the condensed modules of the irreducible modular representations of G can be
computed from this information; for those in the principal block they are given in
Table 7, where the numbering is as given in the Brauer tree in Table 6. We also give
the multiplicities m of the corresponding Brauer characters in the principal block
component of the permutation character χΩ. The dimensions of the condensed
modules of the representations not in the principal block and the multiplicities of
the corresponding ordinary irreducible characters are already given in Table 3.
We now specify F := F37. Using the MeatAxe, the condensed module F [Ω]e, acted
on by the F -algebra F [E ] generated by E := {eg1e, eg2e, eg3e}, turns out to have
the following constituents, where we denote the constituents by their dimension
and a trailing letter, and their multiplicities by exponents:

1a2, 1b1, 3a2, 7a3, 7b3, 13a2, 18a2, 27a2, 29a4, 32a1, 47a1,

52a3, 52b1, 55a2, 57a1, 57b1, 65a2, 68a2, 87a1, 88a2, 88b2, 98a1,
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Table 7. Brauer characters and condensed dimensions for p = 37.

ϕ m d
1 2 1
2 . .
3 . .
4 1 .
5 1 .
6 2 120

ϕ m d
7 2 3
8 2 117
9 2 55

10 2 65
11 2 68
12 3 52

ϕ m d
13 4 29
14 2 27
15 2 13
16 3 7
17 3 7
18 1 113

109a2, 113a1, 117a2, 120a2, 126a1, 151a1, 164a1, 168a1, 196a1.

Here the constituents 164a and 168a split over F372 and F373 , respectively, while
all the others are absolutely irreducible.
If ϕ is an irreducible Brauer character occurring in χΩ, which is afforded by the
simple F [G]-module Sϕ, then Sϕe either is equal to {0} or is a simple eF [G]e-
module, see Section 3.1. But as we have F [Ω]e given as an F [E ]-module only,
where F [E ] might be strictly smaller than eF [G]e, we can only try to determine the
constituents of (Sϕe)|F [E] and their multiplicities. This is done by comparing the
dimensions and multiplicities of the constituents of F [Ω]e found by the MeatAxe
with the data given in Tables 7 and 3. These considerations show that for all
Sϕe 6= {0} the restriction (Sϕe)|F [E] is simple as well, and that this indeed gives a
bijection from the set of irreducible Brauer characters ϕ occurring in χΩ, such that
Sϕe 6= {0}, and the constituents found by the MeatAxe. Furthermore this bijection
is uniquely determined, up to the fact that it maps {ϕ16, ϕ17} to {7a, 7b}.
Recall that F [Ω] is a projective F [G]-module. By decomposing χΩ into projective
indecomposable characters and using the multiplicities given in Table 7, we conclude
that in a given decomposition of F [Ω] into projective indecomposable summands
both the projective covers P16 of ϕ16 and P17 of ϕ17 occur with multiplicity 1. Fur-
thermore, all the other projective indecomposable summands do not have ϕ16 and
ϕ17 as constituents. The MeatAxe, together with the peakword technique described
in [13], shows that there is an F [E ]-submodule U1 ≤ (P16 ⊕ P17)e of dimension 34
having a simple head and a simple socle isomorphic to 7a and containing the con-
stituent 7b with multiplicity 1, and an F [E ]-submodule U2 ≤ (P16⊕P17)e of dimen-
sion 134 having a simple head and a simple socle isomorphic to 7b and containing
the constituent 7a with multiplicity 1. As P16e and P17e have dimension 34 and
134, respectively, we have U1⊕U2 = (P16⊕P17)e. By the Krull–Schmidt Theorem
we conclude U1

∼= (P16e)|F [E] and U2
∼= (P17e)|F [E]. Thus the above bijection maps

ϕ16 to 7a and ϕ17 to 7b.
We find the following traces tSϕe(eg3e) ∈ F of the action of eg3e:

ϕ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

tSϕe 1 . . . . 10 1 36 5 9 14 19 13 20 36 25 29 6

This gives the left hand side of the trace formula in Section 3.6 for the condensed
modules corresponding to the ϕi. Using the class distribution found in Section 4.3,
we compute the right hand side of the formula for the 480 cases left. It turns out
that there are precisely two cases consistent with the actual traces found by the
MeatAxe; these are the Brauer tree printed in Section 2.1, for which we have x = 2,
and the tree obtained by reflecting the latter one at its real stem, for which we have
x = 3. Hence it remains to determine the planar embedding of the Brauer tree.
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Table 8. Partial information for p = 67, see Section 4.7.

t t t t t t
t
t
t t ti t

t
t
t t t t t t t t t1 6 c a y b

x

5−x

d 7 12 a′

7−x

2+x

22 a′′ c′ b′ 23 a′′′ d′ a′′′′ y′

4.6. The planar embedding. We still let F := F37. As both pairs ϕ1,2 and
ϕ3,4 condense to the zero module, the condensation subgroup K is not suitable
to determine the planar embedding of the Brauer tree. Instead, we use another
condensation subgroup K̃ ∼= 2.(A6 ×A5).2 of order 86 400, which is also contained
in the maximal subgroup 2.A11

∼= L < G, and repeat the steps described in Sections
4.2, 4.3 and 4.4. The condensed module F [Ω]ẽ, where ẽ = eK̃ , has dimension 13 257.
Note that due to this large dimension it would not have been feasible to analyse
F [Ω]ẽ, instead of F [Ω]e, as completely as it was necessary to find the labelling of
the nodes of the Brauer tree in Section 4.5.
In particular, we find that Sϕ16 ẽ, Sϕ17 ẽ and Sϕ18 ẽ have dimension 16, 20 and 477,
respectively, and that Sχ7 ẽ and Sχ8 ẽ both have dimension 1, where χ7 and χ8 de-
note the 37-modular reductions of the ordinary characters χ7 and χ8, see Section
3.3. Furthermore, ẽg3ẽ acts by multiplication with 21 ∈ F and 26 ∈ F on Sχ7 ẽ and
Sχ8 ẽ, respectively. In a given decomposition of F [Ω] into projective indecomposable
summands P17 occurs with multiplicity 1, and all the other projective indecompos-
able summands do not have χ7 and χ8 as constituents. Hence the constituents
Sχ7 ẽ and Sχ8 ẽ of F [Ω]ẽ occur with multiplicity 1 and even are constituents of the
ẽF [G]ẽ-submodule P17ẽ ≤ F [Ω]ẽ. By the submodule structure of projective inde-
composable modules in blocks of cyclic defect, there is a unique minimal submodule
U ≤ P17ẽ having both Sχ7 ẽ and Sχ8 ẽ as constituents. Furthermore U has dimension
499, and is uniserial with ascending composition series Sϕ17 ẽ, Sϕ5 ẽ, Sϕ18 ẽ, Sϕ4 ẽ.
We consider F [Ω]ẽ as a module for the F -algebra F [Ẽ ] being generated by Ẽ :=
{ẽg1ẽ, ẽg3ẽ}, and let N := kerF [Ω]ẽ(ẽg3ẽ − 21ẽ). The MeatAxe finds that N has
dimension 1, that the F [Ẽ ]-module Ñ := N · F [Ẽ ] ≤ F [Ω]ẽ has dimension 499
and that it is uniserial with ascending composition series 20a, 1a, 477a, 1b, where
ẽg3ẽ acts by multiplication with 26 ∈ F and 21 ∈ F on 1a and 1b, respectively.
Furthermore, the MeatAxe finds kerF [Ω]ẽ/Ñ (ẽg3ẽ− 21ẽ) = {0}, hence ẽg3ẽ− 21ẽ ∈
F [Ẽ ] is a peakword on F [Ω]ẽ for the constituent 1b, see [13]. From that we conclude
that Ñ is contained in U , and hence Ñ = U is an ẽF [G]ẽ-submodule of P17ẽ. Thus
we have (Sχ7 ẽ)|F [Ẽ]

∼= 1b ∼= (Sϕ4 ẽ)|F [Ẽ], hence x = 2.

4.7. The case p = 67. The partial information on the Brauer tree known from [8,
p.271] is shown in Table 8, where {x, x′} = {2, 3}, and {b, b′} = {8, 9}, and {y, y′} =
{10, 11}, and {c, c′} = {13, 14}, and {d, d′} = {15, 16}, and {a, a′, a′′, a′′′, a′′′′} =
{17, . . . , 21}. Hence there are 3840 possible cases left. We find the Brauer tree
by analysing F [Ω]e, where we now specify F = F67, using similar techniques as
described in Sections 4.5 and 4.6, and again spare the details here.
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5. Comments on the computations

In this section we give some details of how the computations were done. We con-
centrate on the calculations for the condensation subgroup K, see Sections 4.3 and
4.4. The condensation subgroup K̃, see Section 4.6, has been treated similarly.

5.1. Finding the class distribution. As described in Section 4.3, we have to
determine how the elements of the coset g3K distribute into the conjugacy classes
of G. To do this we have to compute representing matrices for the |K| = 362 880
elements in the coset g3K on the modules V , W and X, and then to compute some
traces or ranks. But to keep |K| many (2480× 2480)-matrices over F5 in memory,
∼ 7.5 × 1011 Bytes would be necessary. Hence we want to obtain a reasonable
number of matrices which have to be stored simultaneously.
Let K = {k1, . . . , kt} be a fixed generating set for K. In a precomputation we
use an orbit algorithm to enumerate the elements of K, starting with 1 ∈ K.
This yields a Schreier tree for K with respect to K, whose shape depends on the
particular strategy employed in the orbit algorithm. Given a Schreier tree, we define
a valuation v on its vertices as follows. If the vertex g is a leaf, we let v(g) = 1.
Otherwise, if g1, . . . , gs are the immediate successors of g in the Schreier tree, we
let v(g) = max{v(gi); 1 ≤ i ≤ s} if this maximum is assumed exactly once, and
v(g) = 1 + max{v(gi); 1 ≤ i ≤ s} if it is assumed more than once. In the recursive
run through the Schreier tree, which is used to find the class distribution, at each
vertex we are now able to work through the most expensive subtree last. Hence for
each matrix representation considered, besides representing matrices for K we have
to store no more than v(1) matrices at the same time. Hence our aim is to find a
Schreier tree such that v(1) is reasonably small.
To find a suitable Schreier tree, we enumerate a regular K-orbit in V , as its elements
are in bijection with the elements of K. The algorithm we use is a modification of
the PubCrawl algorithm presented in [16, Section 5.], see Table 9. Note that T is
a list which collects the orbit during the algorithm. New vectors are appended to
T within the loop that runs through T . Of course, the loop must also run through
these new vectors. The idea is to use a standard breadth-first orbit algorithm as an
outer loop to run through the whole orbit, but each time we find a new element of
the orbit, i.e. a new vertex of the Schreier tree, before going on with the standard
algorithm, we try to attach a ‘thread’, i.e. a lengthy path without branching points,
to the corresponding vertex in the Schreier tree.
We choose the generating set K as follows. We fix a 2-Sylow subgroup Ũ of K as
a helper subgroup, hence |Ũ | = 27, and let K be the union of the generating set
{k1, k2} of K, see Section 4.2, and a set of generators of Ũ . Thus we end up with
a Schreier tree such that v(1) = 3.
As |Ũ | is coprime to the characteristics of V , W and X, we choose bases exhibiting
the semisimplicity of V |Ũ , W |Ũ and X|Ũ . As the constituents of these modules
have dimension at most 8, this considerably reduces the amount of time needed
for a matrix multiplication with one of the generators of Ũ . Furthermore, using
the MeatAxe and the algorithms in [13], X|K turns out to be a direct sum of 14
indecomposable modules, the largest of which has dimension 560. Hence we adapt
the basis of X, such that it also exhibits a direct sum decomposition of X|K .
Building the Schreier tree, running through the elements of g3K, and computing
representing matrices, traces and ranks is easily done using the new fast finite field
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Table 9. Modified orbit algorithm.

T := [1];
for g in T do

for k in K do
h := g · k;
if h not in T then

Append h to T ;
i := 1;
while i ≤ t do

h′ := h · ki;
if h′ not in T then

Append h′ to T ;
h := h′;
i := 1;

else
i := i+ 1;

arithmetic of GAP, which is based on the ideas of the arithmetic of the MeatAxe.
Using a Pentium III 800 processor, this needed ∼60 hours of CPU time.

5.2. Applying condensation. As described in Section 4.4, we want to compute
the action of the elements {eg1e, eg2e, eg3e} on the condensed module F [Ω]e, where
the permutation module F [Ω] is given by the action of {g1, g2} on the set Ω = SG

of subspaces of V of dimension 10, see Section 4.1. As Ω is not yet known, it has to
be enumerated first, and subsequently we have to compute the integers aij(g), see
3.4, for all ω ∈ Ω and g ∈ {g1, g2, g3}. But to store a subspace of V of dimension 10
we need 370 Bytes, thus to store the whole orbit Ω of length [G : H] we would need
∼4× 1011 Bytes. Hence we can only afford to store ∼1/400, say, of the elements of
Ω, which fit into ∼109 Bytes. We use a modification of the ideas invented in [11].
We choose a helper subgroup U ≤ K ≤ G, such that its elements can be enumer-
ated, and objects representing their action on Ω can be kept in memory. The basic
idea now is to modify the standard breadth-first orbit algorithm for G, such that Ω
is enumerated piecewise, namely K-orbit by K-orbit, where these in turn are enu-
merated U -orbit by U -orbit, keeping track of how the U -orbits fall into K-orbits.
Hence for ω ∈ Ω we are reduced to finding out whether we have already encountered
its orbit ωU , and if this is the case, which of the orbits already encountered it is.
To do this, we choose a helper U -set Θ, such that there is a homomorphism
q : Ω|U → Θ of U -sets. Furthermore we assume that the elements of Θ can be
enumerated completely. Let {Θi; 1 ≤ i ≤ s} be the U -orbits on Θ. For each
1 ≤ i ≤ s we choose a minimal element ϑi ∈ Θi, e.g. by using an injective function
on Θ into a totally ordered set, which is quickly evaluated on the elements of Θ. An
element ω ∈ Ω is called q-minimal, if q(ω) is minimal. It is exactly the q-minimal
elements which are stored in a table during the enumeration of the whole of Ω; to
recover elements quickly, we of course use a hashing technique. If we are able to
find a homomorphism q such that most of the {Θi} as above are regular U -orbits,
then ∼1/|U | of the elements of Ω will be q-minimal. Hence in this case we will be
content with a subgroup U of order |U | ∼400.
Furthermore, let κ : Θ→ P(U), where P(U) denotes the power set of U , be defined
as follows. For ϑ ∈ Θi, we let κ(ϑ) = {u ∈ U ;ϑ · u = ϑi}, which therefore is a left
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coset of StabU (ϑi) in U . Since we assume that the elements of U and those of Θ
can be enumerated, we are able to compute all the sets κ(ϑ) explicitly. If we want
to check whether for some ω ∈ Ω the orbit ωU has been encountered before, we try
to look up ω · u, for an arbitrary u ∈ κ(q(ω)), in the table. If it is there we have
encountered ωU before, if it is not we store all of the elements {ω · u;u ∈ κ(q(ω))}
in the table.
Having fixed the subgroup U , we try to find a suitable U -set Θ. We look for U -
modules X1 and X2, each of dimension 11, such that there are epimorphisms of
U -modules qi : VU → Xi and ker(q1) ∩ ker(q2) < V is of codimension 22. Let Θi

be the set all subspaces of Xi of codimension 1, and Θ′2 be the set of all proper
subspaces of X2 of codimension at least 2. As Ω consists of subspaces of V of
dimension 10, there is a homomorphism of U -sets q : Ω → Θ := Θ1 ∪ Θ2 ∪ Θ′2,
defined by q(ω) = q1(ω), if q1(ω) ∈ Θ1, and q(ω) = q2(ω) otherwise.
A simple calculation shows the reason for this choice. As Xi has dimension 11 over
F5, there are (511−1)/(5−1) ∼1.2×107 and (511−1)(511−5)/((52−1)(52−5)) ∼
5 × 1012 subspaces of Xi of codimension 1 and 2, respectively, and even more of
higher codimension. Thus it is only possible to enumerate the subspaces of Xi

of codimension 1, and hence the above mentioned preprocessing is only done for
Θ1 ∪ Θ2. By going over to the dual space X∗i = HomF5(Xi,F5), we need 4 Bytes
to store one of these subspaces of Xi, which still means ∼9.8 × 107 Bytes for the
whole of Θ1 ∪ Θ2. This means that all subspaces of V mapped by q into Θ1 ∪ Θ2

are dealt with as explained above, but those mapped into Θ′2 simply have to be
stored, hence for these we do not save memory at all. The memory requirements
are estimated as follows.
There are

∏9
i=0(5111 − 5i)/(510 − 5i) subspaces of V of dimension 10, but amongst

them only
∏9
i=0(5111 − 5100+i)/(510 − 5i) intersect trivially with ker(q1). Hence

∼1/20 of these subspaces are not mapped into Θ1 by q1. If we assume Ω to consist
of a uniformly distributed random sample of subspaces of V of dimension 10, this
amounts to ∼1/20 · [G : H] ∼5.5 × 107 subspaces. To store this many subspaces,
at the cost of 370 Bytes each, we would need ∼2 × 1010 Bytes. This shows the
need for a second map q2. Then only ∼1/400 of the elements of Ω are expected
to be mapped by q into Θ′2, which means ∼2.7 × 106 elements or ∼109 Bytes,
which still means that we need as much memory for these elements of Ω as for its
q-minimal elements. We remark that indeed the memory requirements in the actual
computations fitted well into this picture.
Despite these serious constraints, we were lucky to find a suitable maximal subgroup
32:2A4

∼= U < A9
∼= K/Z(K) of order 216. It is uniquely defined up to conjugacy

in A9, see [3, p.37]. We let Z(K) × U ∼= U < K be the preimage of U with
respect to the natural epimorphism K → A9, hence |U | = 432. Again we choose a
basis for V exhibiting the semisimplicity of V |U . As the constituents of V |U have
dimension at most 16, this considerably reduces the amount of time needed for a
matrix multiplication with one of the elements of U . Using the MeatAxe, together
with the algorithms in [13], we find epimorphic images X1 and X2 of VU , where
X1
∼= 1−⊕2⊕8 and X2

∼= 3⊕8−. Here Z(K) acts non-trivially on the constituents
1− and 8−, and trivially on the others. Hence U acts faithfully on both X1 and
X2, and Z(K) acts non-trivially on subspaces of X1 and X2 of codimension 1. The
average orbit length of U on subspaces of codimension 1 turned out to be ∼405 for
X1, and ∼415 for X2.
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With these preparations, we adjusted the implementation described in [11], which
allows for massive parallelization, accordingly. We are grateful to the University
of St. Andrews for allowing us to use their PC cluster to run these computations.
Using 50 Pentium II 450 processors, the computations needed ∼13 hours of elapsed
time, hence ∼650 hours of CPU time.
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