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The problem

Problem
Let 1 < N / G = 〈g1, . . . , gk 〉 be a finite group and N be a
normal subgroup.

Produce a non-trivial element of N as a word in the gi

with “high probability”.

Assume no more knowledge about G or N.
I shall tell you soon why we want to do this.
We are looking for a randomised algorithm.
Assume we can generate uniformly distributed
random elements in G.
“High probability” means for the moment
“higher than 1/[G : N]”.
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Reduction in the imprimitive case

One case in the Matrix Group Recognition Project is:

Situation
Let G ≤ GLn(Fq) acting linearly on V := F1×n

q , such that
V is absolutely irreducible. Assume there is N with
Z (G) < N / G such that

V |N = W1 ⊕W2 ⊕ · · · ⊕Wk ,

all Wi are invariant under N, and G permutes the Wi
transitively. Then there is a homomorphism ϕ : G→ Sk .

We can compute the homomorphism once N is found.

Since we can compute normal closures, our initial
problem is exactly, what we need to do.
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Finding even order normal subgroups

Theorem
Let 1 < N E G with 2 | |N|.

Let 1 6= x ∈ G \ Z (G) with x2 = 1.
Then, for C := CG(x), we have:

1 < C ∩ N E C and
2 | |C ∩ N|.

Proof: We have xNx = N and |N| is even. The orbits of
〈x〉 on N have lengths 1 and 2, so there must be an even
number of orbits of length 1. �

In particular, C ∩ N contains an involution.
That is, we can replace (N, G) with (C ∩ N, C) and use
the statement again, provided we find another non-central
involution.
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Finding N / G
We want to find an N with 1 < N E G and 2 | |N|, or
conclude that there is none.

Algorithm 1: INVOLUTIONDESCENT

Initialise H := G. Then

1 Find a non-central involution x ∈ H. If none found,
goto 4.

2 Compute its involution centraliser C := CH(x).
3 Replace H with C and goto 1.
4 Let D be the group generated by all central

involutions we found.
5 For all 1 6= x ∈ D: Test if

〈
xG〉
6= G.

6 If no normal closure is properly contained, conclude
that G does not contain such an |N| as assumed.

We find involutions by powering up random elements.
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How do we test if we have a proper normal subgroup?
What if D is large?
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conclude that there is none.

Algorithm 1: INVOLUTIONDESCENT
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1 Find a non-central involution x ∈ H. If none found,
goto 4.

2 Compute its involution centraliser C := CH(x).
3 Replace H with C and goto 1.
4 Let D be the group generated by all central

involutions we found.
5 For all 1 6= x ∈ D: Test if

〈
xG〉
6= G.

6 If no normal closure is properly contained, conclude
that G does not contain such an |N| as assumed.
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Blind descent (Babai, Beals)
Let 1 6= x , y ∈ G and G non-abelian.

Assume at least one of x , y is contained in a non-trivial
proper normal subgroup.
We do not know which!
Aim: Produce 1 6= z ∈ G that is contained in a non-trivial
proper normal subgroup.

Algorithm 3: BLINDDESCENT

1 Consider c := [x , y ] := x−1y−1xy ,
if c 6= 1, we take z := c.

2 If c = 1, the elements x and y commute.
If x ∈ Z (G), take z := x .

3 Compute generators {yi} for Y :=
〈
yG〉

.
If some ci := [x , yi ] 6= 1, then take z := ci as in 1.
Otherwise x ∈ CG(Y ) but x /∈ Z (G), thus Y 6= G, we
take z := y .
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Combining Algorithms 1 and 3

Algorithm 4: FINDELMOFEVENNORMALSUBGROUP

Let G = 〈g1, . . . , gk 〉 ≤ GL(d , q).
1 Use Algorithm INVOLUTIONDESCENT to produce

candidate elements.
(If there are too many central involutions, select
some randomly.)

2 Use BLINDDESCENT to combine them.

3 If any of the candidates is in a proper normal
subgroup, then the result will be.

One non-trivial group element is returned.
The algorithm is Monte Carlo and could return a
wrong result.
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Examples
This approach works well in many important cases:

G N time

A20 o A30 A×30
5 120

SL(3, 3) o A10 < GL(30, 3) SL(3, 3)×10 724
Sp(6, 3)⊗ 2.O(7, 3) < GL(48, 3) Sp(6, 3)⊗ 1 645

(computing projectively) or 1⊗ 2.O(7, 3)

6.Suz < GL(12, 25) central 2 227
S100 A100 165
A100 — 148

PSL(10, 5) — 1248
PGL(10, 5) PSL(10, 5) 1260

(here we have averaged over 10 runs, times in ms)

The success rate was 100% in all cases (using 200 runs).



Finding normal
subgroups of even

order

Max Neunhöffer

The problem

Matrix groups

Finding normal
subgroups
A helper theorem

The algorithm

Involution centralisers

Done?

Blind descent

Applications
Performance in examples

Imprimitive groups

What can go
wrong?

Examples
This approach works well in many important cases:

G N time

A20 o A30 A×30
5 120

SL(3, 3) o A10 < GL(30, 3) SL(3, 3)×10 724
Sp(6, 3)⊗ 2.O(7, 3) < GL(48, 3) Sp(6, 3)⊗ 1 645

(computing projectively) or 1⊗ 2.O(7, 3)

6.Suz < GL(12, 25) central 2 227
S100 A100 165
A100 — 148

PSL(10, 5) — 1248
PGL(10, 5) PSL(10, 5) 1260

(here we have averaged over 10 runs, times in ms)

The success rate was 100% in all cases (using 200 runs).



Finding normal
subgroups of even

order

Max Neunhöffer

The problem

Matrix groups

Finding normal
subgroups
A helper theorem

The algorithm

Involution centralisers

Done?

Blind descent

Applications
Performance in examples

Imprimitive groups

What can go
wrong?

Reductions for imprimitive matrix groups

Situation
Let G ≤ GLn(Fq) acting linearly on V := F1×n

q , such that
V is absolutely irreducible. Assume there is N with
Z (G) < N / G such that

V |N = W1 ⊕W2 ⊕ · · · ⊕Wk ,

all Wi are invariant under N, and G permutes the Wi
transitively. Then there is a homomorphism ϕ : G→ Sk .

We use Algorithm FINDELMOFEVENNORMALSUBGROUP,
for the result x , do:

compute the normal closure M :=
〈
xG〉

,
use the MeatAxe to check whether V |M is reducible,
if x ∈ N, we find a reduction.
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What can go wrong?

Actually, lots of things!

We could have trouble to find elements of even order.

An order computation could take unpleasantly long.

There could be no non-central involutions.

There could be extremely many central involutions.

We could get an involution centraliser wrong.

We might not find all non-central involutions.

G might not have an even order normal subgroup.
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