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Introduction The Project

All this is joint work with:

Stephen Linton,
Richard Parker,
Colva Roney-Dougal, and

a Post-Doc we are about to hire.

The project is already ongoing for > 2 years.
However: no publications and no publishable software (yet).

This talk: Overview over the main ideas

Everybody else who wants to take part is welcome to do so!
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Introduction What is Classical Small Cancellation Theory?

What is Classical Small Cancellation Theory?

Assumption
Let F = 〈A〉 be a finitely-generated free group and R ⊆ A∗ be a finite
set of relators that is inverse closed.

Small Cancellation Theory gives

a fixed set of conditions on R that imply
that G := F/ 〈〈R〉〉 is infinite,
that G is word-hyperbolic
(i.e. every freely-reduced word w ∈ 〈〈R〉〉 of length n is a product of
at most K · n conjugates of relators for some K > 0), and
that an explicitly given rewrite system solves the word problem in
linear time (Dehn’s Algorithm).
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Generalisations The Plot

Assumption
Let 0 be a groupoid, i.e. a small category in which every morphism is
invertible. Let

A :=
⋃

X ,Y∈Ob0

Mor0(X ,Y )

be our alphabet. Then A∗ is a monoid.

The multiplication in 0 defines a terminating and confluent RW-system.
Let F := A∗/ ∼ where ∼ is rewrite-equivalence. Then F is a group.

Problem
Let R ⊆ A∗ be a finite set of relators. Devise an algorithm SC that:

delivers and proves correct an algorithm WP that decides
whether or not a w ∈ F is a product of conjugates of relators, and
delivers a function f : N→ N and proves for it that every reduced
such w ∈ F of length n needs at most f (n) factors,
or fails.
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Generalisations Example: Quotients of the Modular Group

Construction
For 1 ≤ i ≤ n let Oi be pairwise disjoint finite sets and Hi groups. Set

Ob0 :=
n⋃

i=1

Oi , Mor0(A,B) :=
{
{(A,h,B) | h ∈ Hi} if A,B ∈ Oi

∅ if A ∈ Oi and B ∈ Oj with i 6= j

Reduction: (A,h,B) · (C, k ,D) := (A,hk ,D) if B = C.

Example (Finitely generated free groups)

O1 := {1,2, . . . , r + 1} and H1 := {1} gives the free group Fr

Example (The modular group)

O1 = {1}, H1 = C3 =
〈
s | s3

= 1
〉
and O2 = {2}, H2 = C2 =

〈
t | t2

= 1
〉

gives the modular group PSL2(Z) ∼= C3 ∗ C2.
Set S := (1, s,1) and R := (1, s2,1) and T := (2, t,2).

H⇒ Actually covers all free products of finitely generated groups
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Generalisations Cancellation, consolidation and diagrams

Recall: F = C3 ∗ C2 =
〈
S,R,T | SR = 1 = S3

= T 2
〉

RW-System: SR→ ε, RS→ ε, TT → ε, SS→ R, RR→ S.

What is cancellation?

(TSTSTSTS) · (RTSTSTSTR) = TSTSTRTSTSTR

SR cancels, TT cancels, SS consolidates to R.

T

S

T

S

T

T
S

T

S

T

S R

T

S

ST

R
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Generalisations Diagrams, proofs and topology

Principle
Faces are labelled by relators.

Diagrams are proofs that their boundary word is a product of
conjugates of the relators.
Need Theorem: For every word w that is equal to a product of
conjugates of the relators there is a diagram with boundary w .

T
S

S
T

TT

T
T T

S
R

S

S S

This is a generalisation of van Kampen diagrams.
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Generalisations Curvature . . .

Combinatorical curvature: A diagram is a planar graph. We endow
each vertex with +1 unit of curvature,
each edge with −1 unit of curvature and
each face with +1 unit of curvature.

−1−1

+1

+1 −1 +1

+1

−1 +1

−1 +1

+1

−1
+1

−1

+1

1− 4 · 1
2 + 4 · 1

4 = 0 1− 3 · 1
2 + 3 · 1

5 =
1
10

locally flat locally positively curved

Idea
Analyse curvature locally for all possible diagrams (“instantiation”).
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Generalisations Curvature redistribution

Idea (Curvature redistribution)
We redistribute the curvature locally in a conservative way.

Purpose: To smear it out locally.

Lemma (Euler’s formula)
In a planar graph, we have: V − E + F = +1
(number of vertices, edges and faces, not counting the outer one).
Thus: The total sum of our combinatorial curvature is always +1.

If the local curvature (after redistribution) is negative in the interior,
there must be some positively curved region near the boundary,
we can disjoin positively curved cases of boundary regions,
there are no spheres, and
we can derive an upper bound for the number of faces in terms of
the boundary length.
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Generalisations Further generalisations

More ideas for generalisations:

Forbidden subdiagrams:
Provided we find a sphere,
then we can rewrite the bigger half to the smaller one.

So we never need a proof containing the bigger half and
consider only minimal proofs.

Change generating set to improve “small cancellation”.

Change presentation to improve “small cancellation”.

Other algebraic structures than groups (monoids, semigroups)

Good news
We already have prototypes, algorithms and data structures.

Stay tuned . . .

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 31.7.–5.8.2011 10 / 10



Generalisations Further generalisations

More ideas for generalisations:

Forbidden subdiagrams:
Provided we find a sphere,
then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and
consider only minimal proofs.

Change generating set to improve “small cancellation”.

Change presentation to improve “small cancellation”.

Other algebraic structures than groups (monoids, semigroups)

Good news
We already have prototypes, algorithms and data structures.

Stay tuned . . .

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 31.7.–5.8.2011 10 / 10



Generalisations Further generalisations

More ideas for generalisations:

Forbidden subdiagrams:
Provided we find a sphere,
then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and
consider only minimal proofs.

Change generating set to improve “small cancellation”.

Change presentation to improve “small cancellation”.

Other algebraic structures than groups (monoids, semigroups)

Good news
We already have prototypes, algorithms and data structures.

Stay tuned . . .

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 31.7.–5.8.2011 10 / 10



Generalisations Further generalisations

More ideas for generalisations:

Forbidden subdiagrams:
Provided we find a sphere,
then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and
consider only minimal proofs.

Change generating set to improve “small cancellation”.

Change presentation to improve “small cancellation”.

Other algebraic structures than groups (monoids, semigroups)

Good news
We already have prototypes, algorithms and data structures.

Stay tuned . . .

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 31.7.–5.8.2011 10 / 10



Generalisations Further generalisations

More ideas for generalisations:

Forbidden subdiagrams:
Provided we find a sphere,
then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and
consider only minimal proofs.

Change generating set to improve “small cancellation”.

Change presentation to improve “small cancellation”.

Other algebraic structures than groups (monoids, semigroups)

Good news
We already have prototypes, algorithms and data structures.

Stay tuned . . .

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 31.7.–5.8.2011 10 / 10



Generalisations Further generalisations

More ideas for generalisations:

Forbidden subdiagrams:
Provided we find a sphere,
then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and
consider only minimal proofs.

Change generating set to improve “small cancellation”.

Change presentation to improve “small cancellation”.

Other algebraic structures than groups (monoids, semigroups)

Good news
We already have prototypes, algorithms and data structures.

Stay tuned . . .

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 31.7.–5.8.2011 10 / 10



Generalisations Further generalisations

More ideas for generalisations:

Forbidden subdiagrams:
Provided we find a sphere,
then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and
consider only minimal proofs.

Change generating set to improve “small cancellation”.

Change presentation to improve “small cancellation”.

Other algebraic structures than groups (monoids, semigroups)

Good news
We already have prototypes, algorithms and data structures.

Stay tuned . . .

Max Neunhöffer (University of St Andrews) Generalisations of Small Cancellation Theory 31.7.–5.8.2011 10 / 10


	Introduction
	The Project
	What is Classical Small Cancellation Theory?

	Generalisations
	The Plot
	Example: Quotients of the Modular Group
	Cancellation, consolidation and diagrams
	Diagrams, proofs and topology
	Curvature …
	Curvature redistribution
	Further generalisations


