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Introduction The Project

All this is joint work with:

@ Stephen Linton,
@ Richard Parker,
@ Colva Roney-Dougal, and

a Post-Doc we are about to hire.

The project is already ongoing for > 2 years.
However: no publications and no publishable software (yet).

This talk: Overview over the main ideas

Everybody else who wants to take part is welcome to do so!
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Introduction What is Classical Small Cancellation Theory?

What is Classical Small Cancellation Theory?

Let F = (A) be a finitely-generated free group and R € A* be a finite
set of relators that is inverse closed.
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@ a fixed set of conditions on R that imply
e that G := F/ ((R)) is infinite,
e that G is word-hyperbolic
(i.e. every freely-reduced word w e ((R)) of length nis a product of
at most K - n conjugates of relators for some K > 0), and
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Introduction What is Classical Small Cancellation Theory?

What is Classical Small Cancellation Theory?

Let F = (A) be a finitely-generated free group and R € A* be a finite
set of relators that is inverse closed.

Small Cancellation Theory gives

@ a fixed set of conditions on R that imply
e that G := F/ ((R)) is infinite,
e that G is word-hyperbolic
(i.e. every freely-reduced word w e ((R)) of length nis a product of
at most K - n conjugates of relators for some K > 0), and

o that an explicitly given rewrite system solves the word problem in
linear time (Dehn’s Algorithm).
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Let I" be a groupoid, i.e. a small category in which every morphism is
invertible. Let
A= |J Mor(X.Y)
X,YeObr

be our alphabet. Then A* is a monoid.
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Let I" be a groupoid, i.e. a small category in which every morphism is
invertible. Let
A= |J Mor(X.Y)
X,YeObr

be our alphabet. Then A* is a monoid.
The multiplication in T defines a terminating and confluent RW-system.
Let F := A*/ ~ where ~ is rewrite-equivalence. Then F is a group.

Let R C A* be a finite set of relators. Devise an algorithm $C that:

@ delivers and proves correct an algorithm ‘WP that decides
whether or not a w € F is a product of conjugates of relators, and

@ delivers a function f : N — N and proves for it that every reduced
such w € F of length n needs at most f(n) factors,

@ or fails.

v
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Construction

For 1 < i < nlet 9, be pairwise disjoint finite sets and H; groups. Set

n
Oby := U 0;, Morp(A, B) :=

i=1

{ {(A,h,B) | he H} it A, Be 0
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9 ifAc0O;andBe O withi# |

Example (Finitely generated free groups)
O:={1,2,...,r+ 1} and H; := {1} gives the free group F,

(Y VRNl alo]i =Y (ST RO ST AN e [ Ml Generalisations of Small Cancellation Theory 31.7.-5.8.2011 5/10



Construction

For 1 < i < nlet 9, be pairwise disjoint finite sets and H; groups. Set

(A h,B) | he H} if A Be o

n
Obr :=[_J 0i, Morr(A, B) := { ¥ ifAco;and Be O withi#j

i=1

Reduction: (A, h, B) - (C, k, D) := (A, hk, D) if B = C.

Example (Finitely generated free groups)

O:={1,2,...,r+ 1} and H; := {1} gives the free group F,

Example (The modular group)

O1={1}, Hi=C3=(s|s®=1)and O, = {2}, Ho = Co =t | 2 = 1)
gives the modular group PSLo(Z) = C3 * Co.
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Reduction: (A, h, B) - (C, k, D) := (A, hk, D) if B = C.

Example (Finitely generated free groups)

O:={1,2,...,r+ 1} and H; := {1} gives the free group F,

Example (The modular group)

O 2{1}, H, =C3=(s|s3:1>and(92={2}, H2=Cg=<t| t2=1>
gives the modular group PSLo(Z) = C3 * Co.
SetS:=(1,s,1)and R:= (1,82, 1) and T := (2, t, 2).
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Construction

For 1 < i < nlet 9, be pairwise disjoint finite sets and H; groups. Set

(A h,B) | he H} if A Be o

n
Obr :=[_J 0i, Morr(A, B) := { ¥ ifAco;and Be O withi#j

i=1

Reduction: (A, h, B) - (C, k, D) := (A, hk, D) if B = C.

Example (Finitely generated free groups)

O:={1,2,...,r+ 1} and H; := {1} gives the free group F,

Example (The modular group)

O 2{1}, H, =C3=(s|s3:1>and(92={2}, H2=Cg=<t| t2=1>
gives the modular group PSLo(Z) = C3 * Co.
SetS:=(1,s,1)and R:= (1,82, 1) and T := (2, t, 2).

— Actually covers all free products of finitely generated groups
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Generalisations Cancellation, consolidation and diagrams

Recall: F=C3*Cz=(S,H,T| SR=1=8= T2)
RW-System: SR — ¢, RS > ¢, TT - ¢,SS— R, RR— S.

What is cancellation?
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(TSTSTSTS) - (RTSTSTSTR) = TSTSTRTSTSTR

SR cancels, TT cancels, SS consolidates to R.

S
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@ Faces are labelled by relators.
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@ Faces are labelled by relators.

@ Diagrams are proofs that their boundary word is a product of
conjugates of the relators.
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Principle
@ Faces are labelled by relators.
@ Diagrams are proofs that their boundary word is a product of
conjugates of the relators.

@ Need Theorem: For every word w that is equal to a product of
conjugates of the relators there is a diagram with boundary w.

This is a generalisation of van Kampen diagrams.
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Generalisations Curvature ...
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Generalisations Curvature ...

Combinatorical curvature: A diagram is a planar graph. We endow
@ each vertex with +1 unit of curvature,
@ each edge with —1 unit of curvature and
@ each face with +1 unit of curvature.
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Generalisations Curvature ...

Combinatorical curvature: A diagram is a planar graph. We endow

@ each vertex with +1 unit of curvature,
@ each edge with —1 unit of curvature and
@ each face with +1 unit of curvature.

+1 -1 +1
-1 +1 -1
+1 -1 +1
1 1 -3.1 11
1-4.14+4.1=0 1-3-1+3.1=23%
Generalisations of Small Cancellation Theory 31.7.-5.8.2011
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Generalisations Curvature ...

Combinatorical curvature: A diagram is a planar graph. We endow

@ each vertex with +1 unit of curvature,
@ each edge with —1 unit of curvature and
@ each face with +1 unit of curvature.

+1

+1

+1

+1

1 1
1-4.144.1=0

locally flat

1-3-1+43.1=2%
locally positively curved
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Generalisations Curvature ...

Combinatorical curvature: A diagram is a planar graph. We endow
@ each vertex with +1 unit of curvature,
@ each edge with —1 unit of curvature and
@ each face with +1 unit of curvature.

+1 -1 +1
-1 +1 -1
+1 -1 +1
1 1 1 1 1
locally flat locally positively curved

Analyse curvature locally for all possible diagrams (“instantiation”).
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Generalisations Curvature redistribution

Idea (Curvature redistribution)

We redistribute the curvature locally in a conservative way.
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We redistribute the curvature locally in a conservative way.
Purpose: To smear it out locally.
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Idea (Curvature redistribution)

We redistribute the curvature locally in a conservative way.
Purpose: To smear it out locally.

Lemma (Euler’s formula)

In a planar graph, we have: V — E + F = 41
(number of vertices, edges and faces, not counting the outer one).
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Lemma (Euler’s formula)

In a planar graph, we have: V — E + F = 41
(number of vertices, edges and faces, not counting the outer one).
Thus: The total sum of our combinatorial curvature is always +1.

If the local curvature (after redistribution) is negative in the interior,
@ there must be some positively curved region near the boundary,
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@ we can disjoin positively curved cases of boundary regions,
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Purpose: To smear it out locally.

Lemma (Euler’s formula)

In a planar graph, we have: V — E + F = 41
(number of vertices, edges and faces, not counting the outer one).
Thus: The total sum of our combinatorial curvature is always +1.

If the local curvature (after redistribution) is negative in the interior,
@ there must be some positively curved region near the boundary,
@ we can disjoin positively curved cases of boundary regions,

@ there are no spheres, and
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Generalisations Curvature redistribution

Idea (Curvature redistribution)

We redistribute the curvature locally in a conservative way.
Purpose: To smear it out locally.

Lemma (Euler’s formula)

In a planar graph, we have: V — E + F = 41
(number of vertices, edges and faces, not counting the outer one).
Thus: The total sum of our combinatorial curvature is always +1.

If the local curvature (after redistribution) is negative in the interior,
@ there must be some positively curved region near the boundary,
@ we can disjoin positively curved cases of boundary regions,

@ there are no spheres, and

@ we can derive an upper bound for the number of faces in terms of
the boundary length.
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Generalisations Further generalisations

More ideas for generalisations:

@ Forbidden subdiagrams:

e Provided we find a sphere,
e then we can rewrite the bigger half to the smaller one.

(VN0 atol (YU IVET SR RS WAV e[Sl Generalisations of Small Cancellation Theory 31.7.-5.8.2011

10/10



Generalisations Further generalisations

More ideas for generalisations:

@ Forbidden subdiagrams:

Provided we find a sphere,
then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and

(]
(]
]
e consider only minimal proofs.
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@ Change generating set to improve “small cancellation”.
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More ideas for generalisations:

@ Forbidden subdiagrams:

Provided we find a sphere,

then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and
consider only minimal proofs.

(]
(]
]
]
@ Change generating set to improve “small cancellation”.
@ Change presentation to improve “small cancellation”.

@ Other algebraic structures than groups (monoids, semigroups)

Good news
We already have prototypes, algorithms and data structures.
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Generalisations Further generalisations

More ideas for generalisations:

@ Forbidden subdiagrams:

Provided we find a sphere,

then we can rewrite the bigger half to the smaller one.
So we never need a proof containing the bigger half and
consider only minimal proofs.
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@ Change generating set to improve “small cancellation”.
@ Change presentation to improve “small cancellation”.

@ Other algebraic structures than groups (monoids, semigroups)

Good news

We already have prototypes, algorithms and data structures.
Stay tuned ...
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