Max Neunhöffer

Initial question

Involution Jumper What's that? Jumping classes Back to our question Problems

Applications

The Involution Jumper

Max Neunhöffer

University of St Andrews

GCC09, Perth, 9.1.2009

on the occasion of Cheryl Praeger's 60th birthday

Max Neunhöffer

Initial question

Involution Jumper What's that? Jumping classes Back to our question Problems

Applications

Starting point

Problem

Let $1 < N \triangleleft G = \langle g_1, \dots, g_k \rangle$ be a finite group with order oracle and N be a normal subgroup. Produce a non-trivial element of N as a word in the g_i with "high probability".

- We are looking for a randomised algorithm.
- Assume we can generate uniformly distributed random elements in *G*.
- "High probability" means for the moment "higher than 1/[G:N]".
- Assume no more knowledge about G or N.
- I shall tell you later why we want to do this.

Max Neunhöffer

Initial question

Involution Jumper What's that? Jumping classes Back to our question

Applications

What is the Involution Jumper?

Input: $G = \langle g_1, \ldots, g_k \rangle$ and an involution $x \in G$. repeat y := RANDOM(G) $c := x^{-1}y^{-1}xy$ and o := ORDER(c)if o is even then return $c^{o/2}$ else $z := v \cdot c^{(o-1)/2}$ and o' := ORDER(z)if o' is even then return $z^{o'/2}$ until patience lost return FAIL

Note: If xy = yx then $c = 1_G$ and o = 1 and z = y. But this happens rarely.

Max Neunhöffer

Initial question

Involution Jumper What's that?

Back to our question Problems

Applications

What does the Involution Jumper do?

Input: $G = \langle g_1, \dots, g_k \rangle$ and an involution $x \in G$.

• If it does not fail, it returns an involution $\tilde{x} \in G$.

• $x\tilde{x} = \tilde{x}x$

- Every involution of $C_G(x)$ occurs with probability > 0.
- Using product replacement to produce random elements, this is a practical method for
 - permutation groups,
 - matrix groups and
 - projective groups,

if nothing goes wrong.

- It needs an involution to start with.
- It needs the order oracle desperately.

Max Neunhöffer

Initial question

Involution Jumper What's that?

Jumping classes

Back to our question Problems

Applications

Jumping between classes

Notation: Let x^G denote the conjugacy class of x in G.

Lemma

Let $x, a \in G$ be involutions and $g \in G$. Then

$$Prob(IJ(x) \in a^G) = Prob(IJ(x^g) \in a^G).$$

or equivalently

Lemma

Let $x \in G$ be an involution. Then the distribution of $IJ(x)^G$ only depends on x^G and not on the choice of x in x^G .

Proof: f(x, y) := $\begin{cases}
[x, y]^k & \text{if ORDER}([x, y]) = 2k \\
(y[x, y]^k)^l & \text{if ORDER}([x, y]) = 2k + 1 > 1 \text{ and} \\
ORDER([y[x, y]^k]) = 2l \\
y^k & \text{if } xy = yx \text{ and ORDER}(y) = 2k
\end{cases}$

and we have $f(x^g, y^g) = f(x, y)^g$ whenever f is defined.

Max Neunhöffer

Initial question

Involution Jumper What's that? Jumping classes Back to our question Probleme

Applications

A Markov chain ${\cal M}$

The states are the conjugacy classes of involutions in G.

The transition is done as follows: At a class a^G :

- Pick an arbitrary involution $x \in a^G$.
- Compute $\tilde{x} := IJ(x)$ until $\tilde{x} \neq FAIL$.
- Next state is \tilde{x}^G .

By the lemma, the distribution of the class \tilde{x}^G does not depend on the choice of *x*.

Theorem

The above Markov chain \mathcal{M} is irreducible and aperiodic and thus has a stationary distribution in which every state has non-zero probability.

Max Neunhöffer

Initial question

Involution Jumper What's that? Jumping classes Back to our question Problems

Applications

Back to the original question

Problem

Let $1 < N \triangleleft G = \langle g_1, \dots, g_k \rangle$ be a finite group with order oracle and N be a normal subgroup. Produce a non-trivial element of N as a word in the g_i with "high probability".

- If we find an involution in *G* to start with
- and N contains at least one involution class,

the IJ will eventually jump onto an involution class in *N*. In practice, this works extremely well in many cases:

G	N	# hops*
$S_5 \wr S_{10}$	$S_5^{ imes 10}$	1.91
$\operatorname{GL}(3,3)\wr S_6 < \operatorname{GL}(18,3)$	GL(3,3)×6	1.17
$Sp(6,3) \otimes 2.O(7,3) < GL(48,3)$	$Sp(6,3)\otimes 1$	1.83

* average number of IJ hops needed to reach N.

Max Neunhöffer

Initial question

Involution Jumper What's that? Jumping classes Back to our question Problems

Applications

Possible problems

The whole method is in trouble, if at least one of the following happens:

- we do not easily find an involution in *G* (like for example in SL(2, 2^{*n*}) for big *n*),
- the involution classes of N have a small probability in the limit distribution (when does this happen?),
- the Markov chain does not converge quick enough to its limiting distribution (how quick does it converge?),
- the Involution Jumper returns FAIL too often (when does this happen?),
- N has odd order.

Fortunately: Centralisers of involutions seem to contain enough involutions.

Max Neunhöffer

Initial question

Involution Jumper What's that? Jumping classes Back to our question Problems

Applications

Reductions for imprimitive matrix groups Assume G < GL(n,q) and $Z := G \cap Z(GL(n,q))$ and $V := \mathbb{F}_q^n$ be the natural module, such that:

- V is absolutely irreducible, and
- there is an *N* with $Z < N \triangleleft G$ such that

$$V|_N \cong W_1 \oplus \cdots \oplus W_k$$

with absolutely irreducible N-modules W_i that are not all isomorphic.

(This situation comes up in the matrix group recognition project when we are looking for a reduction for a group in Aschbacher class $C_{2.}$)

We use the IJ, for each involution x produced:

- compute $M := N_G(x)$
- use the MeatAxe to check whether V_M is reducible
- if $x \in N$, we find a reduction.