Cryptography using Primes

Max Neunhöffer

A few tools

Computing with remainders Powering

RSA

Preparations
Encrypting and Decrypting

Security of RSA

Computing roots
Not proved!

Cryptography using Primes

Max Neunhöffer

University of St Andrews

20 June 2008

RSA

Preparations
Encrypting and Decryptin

Security of RSA

Factorisation
Computing roo

Computing with remainders

For $a, n \in \mathbb{Z}$ we can divide a with remainder by n:

$$a = q \cdot n + r$$
, with $q, r \in \mathbb{Z}$,

such that $0 \le r < n$.

 \implies *q* and *r* are uniquely determined.

We write

$$a \equiv b \pmod{n}$$

if a and b have the same remainder on division by n. We say: "a is equal to b modulo n".

Same as: the difference a - b is divisible by n.

Note in particular: $a \equiv r \pmod{n}$.

RSA

Powering

Note (Computation tricks)

If $a \equiv \hat{a} \pmod{n}$ and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$a \cdot b \equiv \hat{a} \cdot \hat{b} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}$$
.

Can we compute 123¹²⁹ modulo 10 easily?

$$123^{129} \equiv 3^{129} \equiv 3^{1+128} \equiv 3 \cdot 3^{(2^7)} \pmod{10}$$

$$\equiv 3 \cdot ((((((3^2)^2)^2)^2)^2)^2) \pmod{10}$$

$$\equiv 3 \cdot (((((9^2)^2)^2)^2)^2) \pmod{10}$$

$$\equiv 3 \cdot ((((1^2)^2)^2)^2)^2 \equiv 3 \pmod{10}$$

A few tools

Computing with remainder Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypti

Security of RSA

Computing roo Not proved!

Fermat and Euclid

Theorem (Little Theorem of Fermat)

Let $n = p \cdot q$ be the product of two primes p and q. Then

$$a^{(p-1)(q-1)} \equiv 1 \pmod{n}$$

for all integers a that are not divisible by p or q.

From this we get immediately:

For $k \equiv 1 \pmod{(p-1)(q-1)}$ we have

$$a^k \equiv a \pmod{n}$$
,

as
$$a^k \equiv a^{x \cdot (p-1)(q-1)+1} \equiv (a^{(p-1)(q-1)})^x \cdot a \equiv a \pmod{n}$$
.

Theorem (Euclidean Algorithm)

If $d, m \in \mathbb{Z}$ do not have a common prime divisor, then it is (efficiently) possible to determine an $e \in \mathbb{Z}$, such that $de \equiv 1 \pmod{m}$.

A few tools

Computing with remainder Powering

RSA

Preparations
Encrypting and Decrypting

Security of RSA Factorisation Computing roots

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

- Bob chooses two primes p and q
- and computes $n = p \cdot q$ and m = (p-1)(q-1).
- He then chooses d such that m and d do not have a common prime divisor
- and computes an e, such that $de \equiv 1 \pmod{m}$.
- He then publishes n and e
- and keeps secret p, q, m and d.

Max Neunhöffer

A few tools

Computing with remainder

Fermat and Eu

RSA

Preparations
Encrypting and Decrypting

Security of RSA
Factorisation
Computing roots

Encrypting and Decrypting

Public: n and e Secret: p, q, m = (p-1)(q-1) and d

Alice can now encrypt a message:

- Encode the message as numbers a with 1 < a < n.
- Compute encrypted message c by

$$c \equiv a^e \pmod{n}$$
 with $1 \le c < n$

Send c to Bob.

Bob can then decrypt the message:

Receiving c, he computes b by

$$b \equiv c^d \pmod{n}$$
 with $1 \le b < n$

• He gets back $b \equiv c^d \equiv (a^e)^d \equiv a^{de} \equiv a \pmod{n}$ since $de \equiv 1 \pmod{(p-1)(q-1)}$.

Factorisation

Factorisation

Public: n and e Secret: p, q, m = (p-1)(q-1) and d

If one knows p and q, one can compute m and d.

If one knows m = (p-1)(q-1), then also p and q.

Proof:
$$p + q = n + 1 - (pq - p - q + 1)$$
 and $(X - p)(X - q) = X^2 - (p + q)X + pq$

Knowing *n* in principle determines *p* and *q*!

However, actually computing p and q from n is HARD.

A few tools

Computing with remainders

RSA

Preparations
Encrypting and Decrypting

Security of RSA Factorisation Computing roots

Computing roots and discrete logarithm

Public: n and e Secret: p, q, m = (p-1)(q-1) and d

Cracking the encryption is basically solving the equation

$$x^e \equiv c \pmod{n}$$

that is, computing *e*-th roots.

However, computing *e*-th roots is HARD.

- Assume 1 < z < n such that every a is a power of z modulo n (not always possible!).
- Compute $w \equiv z^e \pmod{n}$ with 1 < w < n.
- Solve $c \equiv w^x$ ("discrete logarithm").
- Then $a \equiv z^x \pmod{n}$ since

$$a \equiv c^d \equiv w^{dx} \equiv (z^e)^{dx} \equiv (z^{ed})^x \equiv z^x \pmod{n}$$

However, solving discrete logarithms like $c = z^x$ is HARD.

Cryptography using Primes

Max Neunhöffer

A few tools

RSA

Not proved!

Not proved!

There is

no efficient method known

for

integer factorisation

or

computing e-th roors

or

discrete logarithms!

However: It is also not proved, that there is none!.