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Computing with remainders

For a, n ∈ Z we can divide a with remainder by n:

a = q · n + r , with q, r ∈ Z,

such that 0 ≤ r < n.

=⇒ q and r are uniquely determined.

We write
a ≡ b (mod n)

if a and b have the same remainder on division by n.
We say: “a is equal to b modulo n”.

Same as: the difference a− b is divisible by n.

Note in particular: a ≡ r (mod n).
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Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)
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Fermat and Euclid
Theorem (Little Theorem of Fermat)
Let n = p · q be the product of two primes p and q. Then

a(p−1)(q−1) ≡ 1 (mod n)

for all integers a that are not divisible by p or q.

From this we get immediately:
For k ≡ 1 (mod (p − 1)(q − 1)) we have

ak ≡ a (mod n),

as ak ≡ ax ·(p−1)(q−1)+1 ≡ (a(p−1)(q−1))x · a ≡ a (mod n).

Theorem (Euclidean Algorithm)
If d , m ∈ Z do not have a common prime divisor, then it is
(efficiently) possible to determine an e ∈ Z, such that
de ≡ 1 (mod m).
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Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

Bob chooses two primes p and q
and computes n = p · q and m = (p − 1)(q − 1).
He then chooses d such that m and d do not have a
common prime divisor
and computes an e, such that de ≡ 1 (mod m).
He then publishes n and e
and keeps secret p, q, m and d .
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Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.
Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:
Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).
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Factorisation

Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

If one knows p and q, one can compute m and d .

If one knows m = (p − 1)(q − 1), then also p and q.

Proof: p + q = n + 1− (pq − p − q + 1) and
(X − p)(X − q) = X 2 − (p + q)X + pq

Knowing n in principle determines p and q!

However, actually computing p and q from n is HARD.
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Computing roots and discrete logarithm
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Cracking the encryption is basically solving the equation

xe ≡ c (mod n)

that is, computing e-th roots.

However, computing e-th roots is HARD.

Assume 1 < z < n such that every a is a power of z
modulo n (not always possible!).
Compute w ≡ ze (mod n) with 1 < w < n.
Solve c ≡ wx (“discrete logarithm”).
Then a ≡ zx (mod n) since

a ≡ cd ≡ wdx ≡ (ze)dx ≡ (zed)x ≡ zx (mod n)

However, solving discrete logarithms like c = zx is HARD.
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Not proved!

There is

no efficient method known

for

integer factorisation

or

computing e-th roors

or

discrete logarithms!

However: It is also not proved, that there is none!.
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