Max Neunhöffer

A few tools Computing with remainder Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RS/ Factorisation Computing roots Not proved!

Cryptography using Primes

Max Neunhöffer

University of St Andrews

20 June 2008

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Computing with remainders

For $a, n \in \mathbb{Z}$ we can divide a with remainder by n:

 $a = q \cdot n + r$, with $q, r \in \mathbb{Z}$,

such that $0 \le r < n$.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Computing with remainders

For $a, n \in \mathbb{Z}$ we can divide *a* with remainder by *n*:

 $a = q \cdot n + r$, with $q, r \in \mathbb{Z}$,

such that $0 \le r < n$.

 \implies *q* and *r* are uniquely determined.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Computing with remainders

For $a, n \in \mathbb{Z}$ we can divide *a* with remainder by *n*:

 $a = q \cdot n + r$, with $q, r \in \mathbb{Z}$,

such that $0 \le r < n$.

 \implies *q* and *r* are uniquely determined.

We write

$$a \equiv b \pmod{n}$$

if a and b have the same remainder on division by n.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Computing with remainders

For $a, n \in \mathbb{Z}$ we can divide *a* with remainder by *n*:

 $a = q \cdot n + r$, with $q, r \in \mathbb{Z}$,

such that $0 \le r < n$.

 \implies *q* and *r* are uniquely determined.

We write

$$a \equiv b \pmod{n}$$

if a and b have the same remainder on division by n. We say: "a is equal to b modulo n".

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Computing with remainders

For $a, n \in \mathbb{Z}$ we can divide *a* with remainder by *n*:

 $a = q \cdot n + r$, with $q, r \in \mathbb{Z}$,

such that $0 \le r < n$.

 \implies *q* and *r* are uniquely determined.

We write

$$a \equiv b \pmod{n}$$

if a and b have the same remainder on division by n. We say: "a is equal to b modulo n".

Same as: the difference a - b is divisible by n.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Computing with remainders

For $a, n \in \mathbb{Z}$ we can divide *a* with remainder by *n*:

 $a = q \cdot n + r$, with $q, r \in \mathbb{Z}$,

such that $0 \le r < n$.

 \implies *q* and *r* are uniquely determined.

We write

$$a \equiv b \pmod{n}$$

if a and b have the same remainder on division by n. We say: "a is equal to b modulo n".

Same as: the difference a - b is divisible by n.

Note in particular: $a \equiv r \pmod{n}$.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$a \cdot b \equiv \hat{a} \cdot \hat{b} \pmod{n}$$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$a \cdot b \equiv \hat{a} \cdot \hat{b} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}$$
.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$\mathbf{a} \cdot \mathbf{b} \equiv \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute 123¹²⁹ modulo 10 easily?

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$\mathbf{a} \cdot \mathbf{b} \equiv \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute 123¹²⁹ modulo 10 easily? 123¹²⁹

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$\mathbf{a} \cdot \mathbf{b} \equiv \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute $123^{129} \mod 10$ easily? $123^{129} \equiv 3^{129} \pmod{10}$ (mod 10)

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$\mathbf{a} \cdot \mathbf{b} \equiv \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute $123^{129} \mod 10$ easily? $123^{129} \equiv 3^{129} \equiv 3^{1+128} \pmod{10}$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$a \cdot b \equiv \hat{a} \cdot \hat{b} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute $123^{129} \mod 10$ easily? $123^{129} \equiv 3^{129} \equiv 3^{1+128} \equiv 3 \cdot 3^{(2^7)} \pmod{10}$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$\mathbf{a} \cdot \mathbf{b} \equiv \hat{\mathbf{a}} \cdot \hat{\mathbf{b}} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute $123^{129} \mod 10$ easily? $123^{129} \equiv 3^{129} \equiv 3^{1+128} \equiv 3 \cdot 3^{(2^7)} \pmod{10}$ $\equiv 3 \cdot (((((((3^2)^2)^2)^2)^2)^2) \pmod{10})$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$a \cdot b \equiv \hat{a} \cdot \hat{b} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute $123^{129} \mod 10$ easily? $123^{129} \equiv 3^{129} \equiv 3^{1+128} \equiv 3 \cdot 3^{(2^7)} \pmod{10}$ $\equiv 3 \cdot ((((((3^2)^2)^2)^2)^2)^2 \pmod{10})$ $\equiv 3 \cdot (((((9^2)^2)^2)^2)^2)^2 \pmod{10}$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$a \cdot b \equiv \hat{a} \cdot \hat{b} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute $123^{129} \mod 10$ easily? $123^{129} \equiv 3^{129} \equiv 3^{1+128} \equiv 3 \cdot 3^{(2^7)} \pmod{10}$ $\equiv 3 \cdot ((((((3^2)^2)^2)^2)^2)^2 \pmod{10})$ $\equiv 3 \cdot (((((9^2)^2)^2)^2)^2)^2 \pmod{10}$ $\equiv 3 \cdot (((((1^2)^2)^2)^2)^2 \pmod{10})$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuelid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Powering

Note (Computation tricks)

If
$$a \equiv \hat{a} \pmod{n}$$
 and $b \equiv \hat{b} \pmod{n}$, then

$$a+b\equiv \hat{a}+\hat{b}\pmod{n}$$

and

$$a \cdot b \equiv \hat{a} \cdot \hat{b} \pmod{n}$$

and thus

$$a^k \equiv \hat{a}^k \pmod{n}.$$

Can we compute $123^{129} \mod 10$ easily? $123^{129} \equiv 3^{129} \equiv 3^{1+128} \equiv 3 \cdot 3^{(2^7)} \pmod{10}$ $\equiv 3 \cdot ((((((3^2)^2)^2)^2)^2)^2 \pmod{10})$ $\equiv 3 \cdot (((((9^2)^2)^2)^2)^2)^2 \pmod{10}$ $\equiv 3 \cdot (((((1^2)^2)^2)^2)^2) \equiv 3 \pmod{10}$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Fermat and Euclid

Theorem (Little Theorem of Fermat)

Let $n = p \cdot q$ be the product of two primes p and q. Then

$$a^{(p-1)(q-1)} \equiv 1 \pmod{n}$$

for all integers a that are not divisible by p or q.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Fermat and Euclid

Theorem (Little Theorem of Fermat)

Let $n = p \cdot q$ be the product of two primes p and q. Then

$$a^{(p-1)(q-1)} \equiv 1 \pmod{n}$$

for all integers a that are not divisible by p or q.

From this we get immediately: For $k \equiv 1 \pmod{(p-1)(q-1)}$ we have

$$a^k \equiv a \pmod{n},$$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Fermat and Euclid

Theorem (Little Theorem of Fermat)

Let $n = p \cdot q$ be the product of two primes p and q. Then

$$a^{(p-1)(q-1)} \equiv 1 \pmod{n}$$

for all integers a that are not divisible by p or q.

From this we get immediately: For $k \equiv 1 \pmod{(p-1)(q-1)}$ we have $a^k \equiv a \pmod{n}$, as $a^k \equiv a^{x \cdot (p-1)(q-1)+1} \equiv (a^{(p-1)(q-1)})^x \cdot a \equiv a \pmod{n}$.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Fermat and Euclid

Theorem (Little Theorem of Fermat)

Let $n = p \cdot q$ be the product of two primes p and q. Then

$$a^{(p-1)(q-1)} \equiv 1 \pmod{n}$$

for all integers a that are not divisible by p or q.

From this we get immediately: For $k \equiv 1 \pmod{(p-1)(q-1)}$ we have $a^k \equiv a \pmod{n}$,

as $a^{k} \equiv a^{x \cdot (p-1)(q-1)+1} \equiv (a^{(p-1)(q-1)})^{x} \cdot a \equiv a \pmod{n}$.

Theorem (Euclidean Algorithm)

If $d, m \in \mathbb{Z}$ do not have a common prime divisor, then it is (efficiently) possible to determine an $e \in \mathbb{Z}$, such that $de \equiv 1 \pmod{m}$.

Max Neunhöffer

A few tools Computing with remain Powering

Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

Max Neunhöffer

A few tools

Computing with remainde Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

- Bob chooses two primes *p* and *q*
- and computes $n = p \cdot q$ and m = (p 1)(q 1).

Max Neunhöffer

A few tools

Computing with remainder Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

- Bob chooses two primes p and q
- and computes $n = p \cdot q$ and m = (p 1)(q 1).
- He then chooses *d* such that *m* and *d* do not have a common prime divisor

Max Neunhöffer

A few tools

Computing with remainder Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

- Bob chooses two primes p and q
- and computes $n = p \cdot q$ and m = (p 1)(q 1).
- He then chooses *d* such that *m* and *d* do not have a common prime divisor
- and computes an e, such that $de \equiv 1 \pmod{m}$.

Max Neunhöffer

A few tools

Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

- Bob chooses two primes p and q
- and computes $n = p \cdot q$ and m = (p 1)(q 1).
- He then chooses *d* such that *m* and *d* do not have a common prime divisor
- and computes an e, such that $de \equiv 1 \pmod{m}$.
- He then publishes n and e

Max Neunhöffer

A few tools

Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

- Bob chooses two primes p and q
- and computes $n = p \cdot q$ and m = (p 1)(q 1).
- He then chooses *d* such that *m* and *d* do not have a common prime divisor
- and computes an e, such that $de \equiv 1 \pmod{m}$.
- He then publishes n and e
- and keeps secret *p*, *q*, *m* and *d*.

Max Neunhöffer

A few tools Computing with remainde Powering Fermat and Fuclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Encrypting and Decrypting

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Encrypting and Decrypting

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Alice can now encrypt a message:

Max Neunhöffer

A few tools Computing with remainder Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Encrypting and Decrypting

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Alice can now encrypt a message:

• Encode the message as numbers a with 1 < a < n.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Encrypting and Decrypting

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Alice can now encrypt a message:

Encode the message as numbers *a* with 1 < *a* < *n*.
Compute encrypted message *c* by

 $c \equiv a^e \pmod{n}$ with $1 \leq c < n$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Encrypting and Decrypting

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Alice can now encrypt a message:

Encode the message as numbers *a* with 1 < *a* < *n*.
Compute encrypted message *c* by

 $c \equiv a^e \pmod{n}$ with $1 \leq c < n$

Send c to Bob.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Encrypting and Decrypting

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Alice can now encrypt a message:

Encode the message as numbers *a* with 1 < *a* < *n*.
Compute encrypted message *c* by

 $c \equiv a^e \pmod{n}$ with $1 \leq c < n$

Send c to Bob.

Bob can then decrypt the message:

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Encrypting and Decrypting

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Alice can now encrypt a message:

Encode the message as numbers *a* with 1 < *a* < *n*.
Compute encrypted message *c* by

 $c \equiv a^e \pmod{n}$ with $1 \leq c < n$

Send c to Bob.

Bob can then decrypt the message:

• Receiving *c*, he computes *b* by

 $b \equiv c^d \pmod{n}$ with $1 \leq b < n$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Encrypting and Decrypting

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Alice can now encrypt a message:

Encode the message as numbers *a* with 1 < *a* < *n*.
Compute encrypted message *c* by

 $c \equiv a^e \pmod{n}$ with $1 \leq c < n$

Send c to Bob.

Bob can then decrypt the message:

• Receiving *c*, he computes *b* by

$$b \equiv c^d \pmod{n}$$
 with $1 \leq b < n$

• He gets back $b \equiv c^d \equiv (a^e)^d \equiv a^{de} \equiv a \pmod{n}$ since $de \equiv 1 \pmod{(p-1)(q-1)}$.

Max Neunhöffer

A few tools

Computing with remainder Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Factorisation

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

If one knows *p* and *q*, one can compute *m* and *d*.

Max Neunhöffer

A few tools

Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Factorisation

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

If one knows *p* and *q*, one can compute *m* and *d*.

If one knows m = (p-1)(q-1), then also p and q.

Max Neunhöffer

A few tools

Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Factorisation

Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

If one knows *p* and *q*, one can compute *m* and *d*.

If one knows m = (p-1)(q-1), then also p and q.

Proof:
$$p + q = n + 1 - (pq - p - q + 1)$$
 and

Max Neunhöffer

A few tools

Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Factorisation

Public: *n* and *e* Secret: p, q, m = (p-1)(q-1) and *d*

If one knows *p* and *q*, one can compute *m* and *d*.

If one knows m = (p-1)(q-1), then also p and q.

Proof:
$$p + q = n + 1 - (pq - p - q + 1)$$
 and
 $(X - p)(X - q) = X^2 - (p + q)X + pq$

Max Neunhöffer

A few tools

Computing with remainder Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Factorisation

Public: *n* and *e* Secret: p, q, m = (p-1)(q-1) and *d*

If one knows *p* and *q*, one can compute *m* and *d*.

If one knows m = (p-1)(q-1), then also p and q.

Proof:
$$p + q = n + 1 - (pq - p - q + 1)$$
 and
 $(X - p)(X - q) = X^2 - (p + q)X + pq$

Knowing *n* in principle determines *p* and *q*!

Max Neunhöffer

A few tools

Computing with remainder Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Factorisation

Public: *n* and *e* Secret: p, q, m = (p-1)(q-1) and *d*

If one knows *p* and *q*, one can compute *m* and *d*.

If one knows m = (p - 1)(q - 1), then also p and q.

Proof:
$$p + q = n + 1 - (pq - p - q + 1)$$
 and
 $(X - p)(X - q) = X^2 - (p + q)X + pq$

Knowing *n* in principle determines *p* and *q*!

However, actually computing *p* and *q* from *n* is HARD.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Fuclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved!

Computing roots and discrete logarithm Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Cracking the encryption is basically solving the equation

$$x^e \equiv c \pmod{n}$$

that is, computing *e*-th roots.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved! Computing roots and discrete logarithm Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Cracking the encryption is basically solving the equation

$$x^e \equiv c \pmod{n}$$

that is, computing *e*-th roots.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved! Computing roots and discrete logarithm Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Cracking the encryption is basically solving the equation

$$x^e \equiv c \pmod{n}$$

that is, computing *e*-th roots.

However, computing *e*-th roots is HARD.

 Assume 1 < z < n such that every a is a power of z modulo n (not always possible!).

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved! Computing roots and discrete logarithm Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Cracking the encryption is basically solving the equation

$$x^e \equiv c \pmod{n}$$

that is, computing *e*-th roots.

- Assume 1 < z < n such that every a is a power of z modulo n (not always possible!).
- Compute $w \equiv z^e \pmod{n}$ with 1 < w < n.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved! Computing roots and discrete logarithm Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Cracking the encryption is basically solving the equation

$$x^e \equiv c \pmod{n}$$

that is, computing *e*-th roots.

- Assume 1 < z < n such that every a is a power of z modulo n (not always possible!).
- Compute $w \equiv z^e \pmod{n}$ with 1 < w < n.
- Solve $c \equiv w^x$ ("discrete logarithm").

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved! Computing roots and discrete logarithm Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Cracking the encryption is basically solving the equation

$$x^e \equiv c \pmod{n}$$

that is, computing *e*-th roots.

- Assume 1 < z < n such that every a is a power of z modulo n (not always possible!).
- Compute $w \equiv z^e \pmod{n}$ with 1 < w < n.
- Solve $c \equiv w^x$ ("discrete logarithm").
- Then $a \equiv z^x \pmod{n}$ since

$$a \equiv c^d \equiv w^{dx} \equiv (z^e)^{dx} \equiv (z^{ed})^x \equiv z^x \pmod{n}$$

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA

Preparations Encrypting and Decrypting

Security of RSA Factorisation Computing roots Not proved! Computing roots and discrete logarithm Public: *n* and *e* Secret: *p*, *q*, m = (p-1)(q-1) and *d*

Cracking the encryption is basically solving the equation

$$x^e \equiv c \pmod{n}$$

that is, computing *e*-th roots.

However, computing *e*-th roots is HARD.

- Assume 1 < z < n such that every a is a power of z modulo n (not always possible!).
- Compute $w \equiv z^e \pmod{n}$ with 1 < w < n.
- Solve $c \equiv w^x$ ("discrete logarithm").
- Then $a \equiv z^x \pmod{n}$ since

$$a \equiv c^d \equiv w^{dx} \equiv (z^e)^{dx} \equiv (z^{ed})^x \equiv z^x \pmod{n}$$

However, solving discrete logarithms like $c = z^x$ is HARD.

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA Preparations

Security of RSA Factorisation Computing roots Not proved!

Not proved!

There is no efficient method known for integer factorisation or computing *e*-th roors or discrete logarithms!

Max Neunhöffer

A few tools Computing with remainders Powering Fermat and Euclid

RSA Preparations

Security of RS/ Factorisation Computing roots Not proved!

Not proved!

There is no efficient method known for integer factorisation or computing *e*-th roors or discrete logarithms!

However: It is also not proved, that there is none!.