
Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Cryptography using Primes

Max Neunhöffer

University of St Andrews

20 June 2008



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing with remainders

For a, n ∈ Z we can divide a with remainder by n:

a = q · n + r , with q, r ∈ Z,

such that 0 ≤ r < n.

=⇒ q and r are uniquely determined.

We write
a ≡ b (mod n)

if a and b have the same remainder on division by n.
We say: “a is equal to b modulo n”.

Same as: the difference a− b is divisible by n.

Note in particular: a ≡ r (mod n).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing with remainders

For a, n ∈ Z we can divide a with remainder by n:

a = q · n + r , with q, r ∈ Z,

such that 0 ≤ r < n.
=⇒ q and r are uniquely determined.

We write
a ≡ b (mod n)

if a and b have the same remainder on division by n.
We say: “a is equal to b modulo n”.

Same as: the difference a− b is divisible by n.

Note in particular: a ≡ r (mod n).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing with remainders

For a, n ∈ Z we can divide a with remainder by n:

a = q · n + r , with q, r ∈ Z,

such that 0 ≤ r < n.
=⇒ q and r are uniquely determined.

We write
a ≡ b (mod n)

if a and b have the same remainder on division by n.

We say: “a is equal to b modulo n”.

Same as: the difference a− b is divisible by n.

Note in particular: a ≡ r (mod n).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing with remainders

For a, n ∈ Z we can divide a with remainder by n:

a = q · n + r , with q, r ∈ Z,

such that 0 ≤ r < n.
=⇒ q and r are uniquely determined.

We write
a ≡ b (mod n)

if a and b have the same remainder on division by n.
We say: “a is equal to b modulo n”.

Same as: the difference a− b is divisible by n.

Note in particular: a ≡ r (mod n).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing with remainders

For a, n ∈ Z we can divide a with remainder by n:

a = q · n + r , with q, r ∈ Z,

such that 0 ≤ r < n.
=⇒ q and r are uniquely determined.

We write
a ≡ b (mod n)

if a and b have the same remainder on division by n.
We say: “a is equal to b modulo n”.

Same as: the difference a− b is divisible by n.

Note in particular: a ≡ r (mod n).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing with remainders

For a, n ∈ Z we can divide a with remainder by n:

a = q · n + r , with q, r ∈ Z,

such that 0 ≤ r < n.
=⇒ q and r are uniquely determined.

We write
a ≡ b (mod n)

if a and b have the same remainder on division by n.
We say: “a is equal to b modulo n”.

Same as: the difference a− b is divisible by n.

Note in particular: a ≡ r (mod n).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129

≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129

≡ 31+128 ≡ 3 · 3(27)

(mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128

≡ 3 · 3(27)

(mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2

≡ 3

(mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Powering
Note (Computation tricks)

If a ≡ â (mod n) and b ≡ b̂ (mod n), then

a + b ≡ â + b̂ (mod n)

and
a · b ≡ â · b̂ (mod n)

and thus
ak ≡ âk (mod n).

Can we compute 123129 modulo 10 easily?

123129 ≡ 3129 ≡ 31+128 ≡ 3 · 3(27) (mod 10)

≡ 3 · ((((((32)2)2)2)2)2)2 (mod 10)

≡ 3 · (((((92)2)2)2)2)2 (mod 10)

≡ 3 · ((((12)2)2)2)2 ≡ 3 (mod 10)



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Fermat and Euclid
Theorem (Little Theorem of Fermat)
Let n = p · q be the product of two primes p and q. Then

a(p−1)(q−1) ≡ 1 (mod n)

for all integers a that are not divisible by p or q.

From this we get immediately:
For k ≡ 1 (mod (p − 1)(q − 1)) we have

ak ≡ a (mod n),

as ak ≡ ax ·(p−1)(q−1)+1 ≡ (a(p−1)(q−1))x · a ≡ a (mod n).

Theorem (Euclidean Algorithm)
If d , m ∈ Z do not have a common prime divisor, then it is
(efficiently) possible to determine an e ∈ Z, such that
de ≡ 1 (mod m).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Fermat and Euclid
Theorem (Little Theorem of Fermat)
Let n = p · q be the product of two primes p and q. Then

a(p−1)(q−1) ≡ 1 (mod n)

for all integers a that are not divisible by p or q.

From this we get immediately:
For k ≡ 1 (mod (p − 1)(q − 1)) we have

ak ≡ a (mod n),

as ak ≡ ax ·(p−1)(q−1)+1 ≡ (a(p−1)(q−1))x · a ≡ a (mod n).

Theorem (Euclidean Algorithm)
If d , m ∈ Z do not have a common prime divisor, then it is
(efficiently) possible to determine an e ∈ Z, such that
de ≡ 1 (mod m).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Fermat and Euclid
Theorem (Little Theorem of Fermat)
Let n = p · q be the product of two primes p and q. Then

a(p−1)(q−1) ≡ 1 (mod n)

for all integers a that are not divisible by p or q.

From this we get immediately:
For k ≡ 1 (mod (p − 1)(q − 1)) we have

ak ≡ a (mod n),

as ak ≡ ax ·(p−1)(q−1)+1 ≡ (a(p−1)(q−1))x · a ≡ a (mod n).

Theorem (Euclidean Algorithm)
If d , m ∈ Z do not have a common prime divisor, then it is
(efficiently) possible to determine an e ∈ Z, such that
de ≡ 1 (mod m).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Fermat and Euclid
Theorem (Little Theorem of Fermat)
Let n = p · q be the product of two primes p and q. Then

a(p−1)(q−1) ≡ 1 (mod n)

for all integers a that are not divisible by p or q.

From this we get immediately:
For k ≡ 1 (mod (p − 1)(q − 1)) we have

ak ≡ a (mod n),

as ak ≡ ax ·(p−1)(q−1)+1 ≡ (a(p−1)(q−1))x · a ≡ a (mod n).

Theorem (Euclidean Algorithm)
If d , m ∈ Z do not have a common prime divisor, then it is
(efficiently) possible to determine an e ∈ Z, such that
de ≡ 1 (mod m).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

Bob chooses two primes p and q
and computes n = p · q and m = (p − 1)(q − 1).
He then chooses d such that m and d do not have a
common prime divisor
and computes an e, such that de ≡ 1 (mod m).
He then publishes n and e
and keeps secret p, q, m and d .



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

Bob chooses two primes p and q
and computes n = p · q and m = (p − 1)(q − 1).

He then chooses d such that m and d do not have a
common prime divisor
and computes an e, such that de ≡ 1 (mod m).
He then publishes n and e
and keeps secret p, q, m and d .



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

Bob chooses two primes p and q
and computes n = p · q and m = (p − 1)(q − 1).
He then chooses d such that m and d do not have a
common prime divisor

and computes an e, such that de ≡ 1 (mod m).
He then publishes n and e
and keeps secret p, q, m and d .



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

Bob chooses two primes p and q
and computes n = p · q and m = (p − 1)(q − 1).
He then chooses d such that m and d do not have a
common prime divisor
and computes an e, such that de ≡ 1 (mod m).

He then publishes n and e
and keeps secret p, q, m and d .



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

Bob chooses two primes p and q
and computes n = p · q and m = (p − 1)(q − 1).
He then chooses d such that m and d do not have a
common prime divisor
and computes an e, such that de ≡ 1 (mod m).
He then publishes n and e

and keeps secret p, q, m and d .



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Preparations

The RSA (Rivest-Shamir-Adleman) cryptosystem:

If Alice wants to send a secret message to Bob:

Bob chooses two primes p and q
and computes n = p · q and m = (p − 1)(q − 1).
He then chooses d such that m and d do not have a
common prime divisor
and computes an e, such that de ≡ 1 (mod m).
He then publishes n and e
and keeps secret p, q, m and d .



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.
Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:
Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.
Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:
Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.

Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:
Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.
Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:
Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.
Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:
Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.
Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:

Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.
Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:
Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Encrypting and Decrypting
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Alice can now encrypt a message:

Encode the message as numbers a with 1 < a < n.
Compute encrypted message c by

c ≡ ae (mod n) with 1 ≤ c < n

Send c to Bob.

Bob can then decrypt the message:
Receiving c, he computes b by

b ≡ cd (mod n) with 1 ≤ b < n

He gets back b ≡ cd ≡ (ae)d ≡ ade ≡ a (mod n)
since de ≡ 1 (mod (p − 1)(q − 1)).



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Factorisation

Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

If one knows p and q, one can compute m and d .

If one knows m = (p − 1)(q − 1), then also p and q.

Proof: p + q = n + 1− (pq − p − q + 1) and
(X − p)(X − q) = X 2 − (p + q)X + pq

Knowing n in principle determines p and q!

However, actually computing p and q from n is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Factorisation

Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

If one knows p and q, one can compute m and d .

If one knows m = (p − 1)(q − 1), then also p and q.

Proof: p + q = n + 1− (pq − p − q + 1) and
(X − p)(X − q) = X 2 − (p + q)X + pq

Knowing n in principle determines p and q!

However, actually computing p and q from n is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Factorisation

Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

If one knows p and q, one can compute m and d .

If one knows m = (p − 1)(q − 1), then also p and q.

Proof: p + q = n + 1− (pq − p − q + 1) and

(X − p)(X − q) = X 2 − (p + q)X + pq

Knowing n in principle determines p and q!

However, actually computing p and q from n is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Factorisation

Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

If one knows p and q, one can compute m and d .

If one knows m = (p − 1)(q − 1), then also p and q.

Proof: p + q = n + 1− (pq − p − q + 1) and
(X − p)(X − q) = X 2 − (p + q)X + pq

Knowing n in principle determines p and q!

However, actually computing p and q from n is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Factorisation

Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

If one knows p and q, one can compute m and d .

If one knows m = (p − 1)(q − 1), then also p and q.

Proof: p + q = n + 1− (pq − p − q + 1) and
(X − p)(X − q) = X 2 − (p + q)X + pq

Knowing n in principle determines p and q!

However, actually computing p and q from n is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Factorisation

Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

If one knows p and q, one can compute m and d .

If one knows m = (p − 1)(q − 1), then also p and q.

Proof: p + q = n + 1− (pq − p − q + 1) and
(X − p)(X − q) = X 2 − (p + q)X + pq

Knowing n in principle determines p and q!

However, actually computing p and q from n is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing roots and discrete logarithm
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Cracking the encryption is basically solving the equation

xe ≡ c (mod n)

that is, computing e-th roots.

However, computing e-th roots is HARD.

Assume 1 < z < n such that every a is a power of z
modulo n (not always possible!).
Compute w ≡ ze (mod n) with 1 < w < n.
Solve c ≡ wx (“discrete logarithm”).
Then a ≡ zx (mod n) since

a ≡ cd ≡ wdx ≡ (ze)dx ≡ (zed)x ≡ zx (mod n)

However, solving discrete logarithms like c = zx is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing roots and discrete logarithm
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Cracking the encryption is basically solving the equation

xe ≡ c (mod n)

that is, computing e-th roots.

However, computing e-th roots is HARD.

Assume 1 < z < n such that every a is a power of z
modulo n (not always possible!).
Compute w ≡ ze (mod n) with 1 < w < n.
Solve c ≡ wx (“discrete logarithm”).
Then a ≡ zx (mod n) since

a ≡ cd ≡ wdx ≡ (ze)dx ≡ (zed)x ≡ zx (mod n)

However, solving discrete logarithms like c = zx is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing roots and discrete logarithm
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Cracking the encryption is basically solving the equation

xe ≡ c (mod n)

that is, computing e-th roots.

However, computing e-th roots is HARD.

Assume 1 < z < n such that every a is a power of z
modulo n (not always possible!).

Compute w ≡ ze (mod n) with 1 < w < n.
Solve c ≡ wx (“discrete logarithm”).
Then a ≡ zx (mod n) since

a ≡ cd ≡ wdx ≡ (ze)dx ≡ (zed)x ≡ zx (mod n)

However, solving discrete logarithms like c = zx is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing roots and discrete logarithm
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Cracking the encryption is basically solving the equation

xe ≡ c (mod n)

that is, computing e-th roots.

However, computing e-th roots is HARD.

Assume 1 < z < n such that every a is a power of z
modulo n (not always possible!).
Compute w ≡ ze (mod n) with 1 < w < n.

Solve c ≡ wx (“discrete logarithm”).
Then a ≡ zx (mod n) since

a ≡ cd ≡ wdx ≡ (ze)dx ≡ (zed)x ≡ zx (mod n)

However, solving discrete logarithms like c = zx is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing roots and discrete logarithm
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Cracking the encryption is basically solving the equation

xe ≡ c (mod n)

that is, computing e-th roots.

However, computing e-th roots is HARD.

Assume 1 < z < n such that every a is a power of z
modulo n (not always possible!).
Compute w ≡ ze (mod n) with 1 < w < n.
Solve c ≡ wx (“discrete logarithm”).

Then a ≡ zx (mod n) since

a ≡ cd ≡ wdx ≡ (ze)dx ≡ (zed)x ≡ zx (mod n)

However, solving discrete logarithms like c = zx is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing roots and discrete logarithm
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Cracking the encryption is basically solving the equation

xe ≡ c (mod n)

that is, computing e-th roots.

However, computing e-th roots is HARD.

Assume 1 < z < n such that every a is a power of z
modulo n (not always possible!).
Compute w ≡ ze (mod n) with 1 < w < n.
Solve c ≡ wx (“discrete logarithm”).
Then a ≡ zx (mod n) since

a ≡ cd ≡ wdx ≡ (ze)dx ≡ (zed)x ≡ zx (mod n)

However, solving discrete logarithms like c = zx is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Computing roots and discrete logarithm
Public: n and e Secret: p, q, m = (p− 1)(q− 1) and d

Cracking the encryption is basically solving the equation

xe ≡ c (mod n)

that is, computing e-th roots.

However, computing e-th roots is HARD.

Assume 1 < z < n such that every a is a power of z
modulo n (not always possible!).
Compute w ≡ ze (mod n) with 1 < w < n.
Solve c ≡ wx (“discrete logarithm”).
Then a ≡ zx (mod n) since

a ≡ cd ≡ wdx ≡ (ze)dx ≡ (zed)x ≡ zx (mod n)

However, solving discrete logarithms like c = zx is HARD.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Not proved!

There is

no efficient method known

for

integer factorisation

or

computing e-th roors

or

discrete logarithms!

However: It is also not proved, that there is none!.



Cryptography
using Primes

Max Neunhöffer

A few tools
Computing with remainders

Powering

Fermat and Euclid

RSA
Preparations

Encrypting and Decrypting

Security of RSA
Factorisation

Computing roots

Not proved!

Not proved!

There is

no efficient method known

for

integer factorisation

or

computing e-th roors

or

discrete logarithms!

However: It is also not proved, that there is none!.


	A few tools
	Computing with remainders
	Powering
	Fermat and Euclid

	RSA
	Preparations
	Encrypting and Decrypting

	Security of RSA
	Factorisation
	Computing roots
	Not proved!


