Is there a Sudoku puzzle with 16 hints?

Max Neunhöffer

University of St Andrews

CIRCA meeting 28.1.2010

Sudokus

							1		7	9	3	6	8	4	5	1	2	7		
4									4	8	6	5	1	2	9	3	7			
	2								1	2	5	9	7	3	8	4	6	1		
				5		6		4	9	3	2	7	5	1	6	8	4			
		8				3			5	7	8	2	4	6	3	9	1			
		1		9					6	4	1	3	9	8	7	2	5	6		
3			4			2			3	1	9	4	6	5	2	7	8		1	
	5		1						8	5	7	1	2	9	4	6	3	8		7
			8		7				2	6	4	8	3	7	1	5	9			

Can we choose 16 to make a puzzle?

A possible attack

$$\binom{81}{16} = 33,594,090,947,249,085$$
 (quadrillions)

⇒ do not even think about trying all!

Idea: We do not have to try all choices.

We need constraints that the selection of 16 has to fulfill.

Unavoidable sets

7	9	3	6	8	4	5	1	2	7	9	3	6	8	4	5	1	2	7	9	3
4	8	6	5	1	2	9	3	7	4	8	6	5	1	2	9	3	7	4	8	6
1	2	5	9	7	3	8	4	6	1	2	5	9	7	3	8	4	6	1	2	5
9	3	2	7	5	1	6	8	4	9	3	2	7	5	1	6	8	4	9	3	2
5	7	8	2	4	6	3	9	1	5	7	8	2	4	6	3	9	1	5	7	8
6	4	1	3	9	8	7	2	5	6	4	1	3	9	8	7	2	5	6	4	1
3	1	9	4	6	5	2	7	8	3	1	9	4	6	5	2	7	8	3	1	9
8	5	7	1	2	9	4	6	3	8	5	7	1	2	9	4	6	3	8	5	7
2	6	4	8	3	7	1	5	9	2	6	4	8	3	7	1	5	9	2	6	4

Any set of 16 hints cannot avoid all of the yellow positions.

Because this Sudoku problem has more than one solution.

The Plan

- Find lots of unavoidable sets.
- Solve the constraint satisfaction problem to find all subsets of 16 positions intersecting all unavoidable sets.
- For each solution run a Sudoku solver and find another as the known solution.
- Repeat the same for all other 5, 472, 730, 538 (billions)
 essentially different filled Sudoku grids.

Problems:

- Have a program to find 513 unavoidable sets in < 0.1s.
- Find all 767 solutions for 16-subsets in 21min.
- Have a Sudoku solver which solves a Sudoku in \approx 28 μ s or \approx 45000 clock cycles.
- This needs an estimated amount of
 6.9 · 10¹² CPU seconds (218659 million years)!