Computing the 2-modular characters of Fi₂₃

Max Neunhöffer

Lehrstuhl D für Mathematik RWTH Aachen

Columbus 2005

Max Neunhöffer Computing the 2-modular characters of Fi₂₃

Modular representations Condensation in theory and practice The Generation Problem

Modular representations

G finite group, *F* field, p := char(F) | |G|, *V* an *F*-vector space

- A modular representation of G on V is a group homomorphism ρ : G → GL(V).
- *G* acts on *V* via ρ (*V* is an *FG*-module).
- *ρ* is called irreducible if there is no proper *G*-invariant subspace 0 ≠ U ⊊ V.

Aim: Classification of the irreducible modular representations of the sporadic simple groups.

Example (Fi23 mod 2)

 $G = Fi_{23}$ and p = 2, |G| = 4.089.470.473.293.004.800(joint work with G. Hiß and F. Noeske).

Modular representations Condensation in theoryand practice The Generation Problem

Finding a composition series

Let $0 \neq U \subsetneq V$ be *G*-invariant.

• We get two new representations:

$$\rho_U : G \to \operatorname{GL}(U), \quad \rho_{V/U} : G \to \operatorname{GL}(V/U).$$

- Iteration gives as "atoms" ρ_{S_i} : G → GL(S_i) on the composition factors S_i of V.
- Package MEATAXE [Parker, Thackray 1978,...] computes a composition series automatically (chop).

Example (*Fi*₂₃ mod 2)

Permutation module $1_{2,F_{22}}^{F_{23}}$ of dimension 31.671 contains composition factors 1*a*, 782*a*, 1.494*a*, 3.588*a*, 19.940*a*. about 4 days of CPU time in 8 GB main memory.

Modular representations Condensation in theory and practice The Generation Problem

Construction of modular representations

How can we construct new representations from given ones?

Theorem (Burnside-Brauer)

G simple, *V* non-trivial irreducible FG-module. For every irreducible FG-module *W* there is an $m \in \mathbb{N}$ such that

W is a composition factor of $V^{\otimes m}$.

OK, then we are done!? NO!

Example ($Fi_{23} \mod 2$)

dim_F 19.940 $a \otimes$ 19.940a = 367.603.600 One GF(2)-matrix \approx 18.403.938 GB \approx 17,5 PB.

Modular representations Condensation in theory and practice The Generation Problem

Condensation in theory...[Green 1980]

Let $e = e^2 \in FG$ an idempotent. Consider $V = Ve \oplus V(1 - e)$.

Definition (Schur functor)

$$\begin{array}{rcl} \mathcal{F}: \mathsf{mod} - \mathit{FG} & \to & \mathsf{mod} - \mathit{eFGe} \\ V & \mapsto & \mathit{Ve} \\ \phi \in \mathsf{Hom}_{\mathit{FG}}(V, W) & \mapsto & \phi|_{\mathit{Ve}} \in \mathsf{Hom}_{\mathit{eFGe}}(\mathit{Ve}, \mathit{We}) \end{array}$$

- \mathcal{F} is exact.
- If V is an irreducible FG-Modul, then Ve is irreducible or Ve = 0.

I.e. $\ensuremath{\mathcal{F}}$ maps a composition series onto a composition series.

 If Ve ≠ 0 for all irreducible FG-modules V, then eFGe and FG are Morita equivalent.

Modular representations Condensation in theory and practice The Generation Problem

... and practice [Thackray 1981]

Let $K \leq G$ such that p does not divide |K|. We choose

$$e := \frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} k \in F\mathcal{K} \leq F\mathcal{G}.$$

Task: Given $g \in G$, determine action of *ege* on $(V \otimes W)e$.

Without explicit computation of $V \otimes W!$

Theorem (Lux, Wiegelmann 1997)

This can be done!

Introduction and Condensation

The 2-modular characters of *Fi*₂₃ Problem, Perfidy, Tricks, and Tackling them Verification, Overview and Outlook Modular representations Condensation in theoryand practice The Generation Problem

... and practice (2)

Example (Fi23 mod 2)

- $K \leq G$, $|K| = 3^9 = 19.683$.
- eFGe and FG are Morita equivalent.
- $\dim_F(19.940a \otimes 19.940a)e = 25.542$.

One GF(2) matrix \approx 77,8 MB.

About 1 week of CPU time to compute the operation of one element *ege* on $(19.940a \otimes 19.940a)e$.

But now we are done, aren't we? Unfortunately not.

Modular representations Condensation in theoryand practice The Generation Problem

The Generation Problem

Remember: We investigate Ve by giving matrices for generators of *eFGe*.

Question (The Generation Problem)

How can eFGe be generated by "a few" elements?

If $\mathcal{E} \subseteq FG$ with $\langle \mathcal{E} \rangle = FG$. Then $\langle e\mathcal{E}e \rangle = eFGe$ does not follow!

- Let C := ⟨eEe⟩ ≤ eFGe.
 Instead of Ve we consider the C-module Ve|C.
- Contrary to Ve we can not directly conclude things from Ve_C to V.

Modular representations Condensation in theoryand practice The Generation Problem

Generation

Let $K \trianglelefteq N \le G$.

Theorem (F. Noeske, 2005)

If T is a set of double coset representatives of $N \setminus G/N$ and N a set of generators of N, then we have

 $\textit{eFGe} = \left<\textit{eNe},\textit{eTe}\right>.$

Example ($Fi_{23} \mod 2$)

- *N* the 7th maximal subgroup, [*G* : *N*] = 1.252.451.200
- $|\mathcal{T}| = 36$ and $|\mathcal{N}| = 3$, i.e. 38 generators for *eFGe*.
- Computation of \mathcal{T} : see second half of this talk.

Brauer Characters Systems of Equations The Result

Brauer Characters

Let $G_{p'}$ be the set of *p*-regular elements of *G*.

• To each modular representation on V we can assign a class function β_V on $G_{p'}$ (Brauer character).

Aim

Determine the irreducible Brauer characters $\varphi_1, \ldots, \varphi_\ell$.

- β_V is a Z_{≥0}-linear combination of the φ₁,..., φ_ℓ. This decomposition corresponds to the decomposition of V into its composition factors.
- $\beta_{V\otimes W}(g) = \beta_V(g) \cdot \beta_W(g)$ for all $g \in G_{p'}$.
- We know explicitly Brauer characters $\vartheta_1, \ldots, \vartheta_\ell$ such that

$$\langle \vartheta_1, \ldots, \vartheta_\ell \rangle_{\mathbb{Z}} = \langle \varphi_1, \ldots, \varphi_\ell \rangle_{\mathbb{Z}}.$$

Brauer Characters Systems of Equations The Result

Equations in Brauer characters

Question: How to determine $\varphi_1, \ldots, \varphi_\ell$ from the $\vartheta_1, \ldots, \vartheta_\ell$?

• We have

$$\vartheta_i = \sum_{j=1}^{\ell} a_{ij} \varphi_j, \qquad a_{ij} \in \mathbb{Z}_{\geq 0}.$$

• Because of $\langle \vartheta_1, \dots, \vartheta_\ell \rangle_{\mathbb{Z}} = \langle \varphi_1, \dots, \varphi_\ell \rangle_{\mathbb{Z}}$ it follows that

$$\beta_{V \otimes W} = \sum_{i=1}^{\ell} t_i \vartheta_i, \quad t_i \in \mathbb{Z} \quad (GAP)$$
$$= \sum_{j=1}^{\ell} s_j \varphi_j, \quad s_j \in \mathbb{Z}_{\geq 0} \quad (\text{condens.&MEATAXE})$$

Brauer Characters Systems of Equations The Result

The Result

Solution of

System of Equations

$$\sum_{i=1}^{\ell} a_{ij} t_i = s_j, \qquad j = 1, \ldots, \ell$$

with GAP gives the 2-modular characters.

Example (Degrees in the principal block of <i>Fi</i> 23 mod 2)						
1,	782,	1.494,	3.588,	19.940,		
57.408,	94.588,	94.588,	79.442,	583.440,		
1.951.872,	724.776,	979.132,	1.997.872,	1.997.872,		
7.821.240,	8.280.208,	5.812.860,	17.276.520,	34.744.192.		

Problem and Size Realisation of the action on $N \setminus G$ Saving memory and time Finding of 36 suborbits

Problem

 $G := Fi_{23} = \langle a, b \rangle$ with |G| = 4.089.470.473.293.004.800,

 $N = \langle n_1, n_2, n_3 \rangle \le G$ with |N| = 3.265.173.504, where the n_i are given as words in *a* and *b*.

Known:
$$G = Ng_1 N \cup Ng_2 N \cup \cdots \cup Ng_{36} N$$
,
where $NgN = \{n \cdot g \cdot n' \mid n, n' \in N\}$.

Problem: Find $\{g_1, \ldots, g_{36}\}$ as words in *a* and *b*.

Application: Let $K \triangleleft N$ and F := GF(2) and $2 \not| |K|$.

Then we have for $e^2 = e := \frac{1}{|\mathcal{K}|} \sum_{k \in \mathcal{K}} k \in FG$:

 $eFGe = \langle eg_1e, \dots, eg_{36}e, en_1e, en_2e, en_3e \rangle_{F-Alg.}$

(F. Noeske, 2005)

Problem and Size Realisation of the action on $N \setminus G$ Saving memory and time Finding of 36 suborbits

Double cosets and suborbits

$$G = Ng_1N \cup Ng_2N \cup \cdots \cup Ng_{36}N$$

G acts on the set $N \backslash G := \{Ng \mid g \in G\}$

 $N \setminus G = Ng_1 \cdot N \cup \cdots \cup Ng_{36} \cdot N$

Thus: double cosets \leftrightarrow suborbits

Problems:

- $|N \setminus G| = 1.252.451.200 \approx 1.25 \cdot 10^9$
- Permutations for *a*, *b*, *n*₁, *n*₂, *n*₃ would need about 5 GB
- Not easy to determine
- G is given as a permutation group on 31.671 points
- To determine elements *g_i* would take too long

Problem and Size **Realisation of the action on N\G** Saving memory and time Finding of 36 suborbits

Realisation of the action on $N \setminus G$

Linear representation of G on $V := F^{1 \times 1494}$ (F = GF(2)):

group homomorphism $\rho: G \rightarrow GL_{1494}(F)$

Find vector $v_1 \in V$ such that $v_1 \cdot \rho(N) = \{v_1\}$.

 \implies The orbit $v_1 \cdot \rho(G)$ is isomorphic to $N \setminus G$ as *G*-set.

Thus we can:

- Store and compare points of $N \setminus G$ as vectors in V
- Act with group elements (words in *a*, *b*) on them

Still too large:

- Each vector needs about 200 bytes (\approx 1494/8)
- Altogether about 250 GB (main memory!)
- It takes uncomfortably long to enumerate all vectors!

Problem and Size Realisation of the action on $N \setminus G$ Saving memory and time Finding of 36 suborbits

A Trick

Let U < N with |U| = 6561.

Idea: do things "by U-orbits":

- N-orbits are unions of U-orbits
- enumerate U-orbits

To this end:

- choose in each U-orbit B a subset min(B) ⊆ B ("U-minimal" vectors), such that
- we have an algorithm, that computes, given an U-orbit B and a v ∈ B, a u(v) ∈ U such that v · ρ(u(v)) ∈ min(B).
- store B by storing min(B)
- \implies Save about a factor of 250 of memory and time!

Problem and Size Realisation of the action on $N \setminus G$ Saving memory and time Finding of 36 suborbits

Still tedious

Progression of an *N*-orbit enumeration by *U*-orbits:

Max Neunhöffer Computing the 2-modular characters of Fi₂₃

Problem and Size Realisation of the action on $N \setminus G$ Saving memory and time Finding of 36 suborbits

Halves of orbits

We enumerate only one half of each N-orbit!

Suppose we know $H \subseteq v \cdot \rho(N)$ with $|H| > |v \cdot \rho(N)|/2$.

Question: Does $w \in V$ lie in the orbit $v \cdot \rho(N)$?

Answer:

Apply random elements $\{m_1, \ldots, m_{40}\}$ of *N* to *w* and test whether $\{w \cdot \rho(m_i) \mid 1 \le i \le 40\} \cap H \ne \emptyset$.

If yes: w lies in $v \cdot \rho(N)$ with certainty

If no: w probably does not lie in $v \cdot \rho(N)$

 \implies Enough to find different *N*-orbits in $v_1 \cdot \rho(G)$.

Problem and Size Realisation of the action on $N \setminus G$ Saving memory and time Finding of 36 suborbits

The first 35 are now doable

N-suborbit lengths in $v_1 \cdot \rho(G)$:

1	10.077.696	20.155.392	3.888
22.674.816	90.699.264	5.038.848	78.732
34.012.224	10.077.696	3.359.232	19.683
272.097.792	68.024.448	5.038.848	186.624
90.699.264	136.048.896	7.558.272	62.208
90.699.264	30.233.088	3.779.136	124.416
272.097.792	30.233.088	3.779.136	15.552
10.077.696	944.784	1.679.616	15.552
944.784	30.233.088	1.679.616	768

Apply orbit enumeration to $v_1 \cdot \rho(G)$, do it by *N*-orbits.

We find all *N*-orbits, except for the one with 768 vectors.

Not yet proved, that these 35 orbits are pairwaise disjoint!

Problem and Size Realisation of the action on $N \setminus G$ Saving memory and time Finding of 36 suborbits

Criminal search

We are looking for one of 768 vectors v with the following properties:

- $v \in v_1 \cdot \rho(G)$
- *S* := *Stab*_{*N*}(*v*) < *N* has index 768 in *N*

Approach:

- guess *S* < *N* with [*N* : *S*] = 768 (not unique!)
- compute candidates $C := \{ v \in V \mid v \cdot \rho(S) = \{v\} \}$
- check for all v ∈ C whether v · ρ(a) lies in one of the 35 (half) known N-orbits (remember: G = ⟨a, b⟩)
- if yes, it follows that v ∈ v₁ · ρ(G) (proven!).
 If v itself is not in one of the 35 orbits, then we are ready.
- \implies produces in fact vector v_{36}

Problem and Size Realisation of the action on $N \setminus G$ Saving memory and time Finding of 36 suborbits

The Last Representative

We still need a word g_{36} in *a* and *b*, that maps v_1 to v_{36} !

Do the following:

- enumerate vectors in v₁ · ρ(G) with a "breadth first" search by applying *a* and *b* until the memory is full
- search backwards starting with v₃₆ for a "known" vector using a "depth first" search (apply a⁻¹ and b⁻¹)
- put forward and backward search together
- \implies finds word within a few minutes
- possible improvement: "by U-orbits" (here not necessary)

Verification Current application Other applications

Verification

- For candidates for g_1, \ldots, g_{36} :
- Enumerate all *N*-suborbits $v_1 \cdot \rho(g_i) \cdot \rho(N)$ completely.
- Needs about 3 h on a machine with 4 GB main memory.
- \implies Proven:

All *N*-orbits lie in $v_1 \cdot \rho(G)$ and are pairwise disjoint.

Remark: There is still a lot of potential for improvements here:

- One only has to compare orbits of equal length.
- To test whether two orbits are disjoint, only one has to be enumerated.
- So only one orbit has to fit into main memory at a time.

Verification Current application Other applications

Overview and 2-modular character table of Fi23

We have

- constructed a permutation representation of Fi₂₃ on 1.252.451.200 points,
- enumerated all 36 N-suborbits and determined their lengths,
- found N-N-double coset representatives g₁,..., g₃₆ as words in a, b,
- fulfilled the requirements for the condensation computations and
- computed the 2-modular character table of Fi₂₃ (joint work with Gerhard Hiß and Felix Noeske).

Verification Current application Other applications

Outlook

These enumeration methods can be applied if

- there is an appropriate (small) linear representation,
- there is an appropriate vector v_1 (or something similar),
- one (or a few) appropriate helper subgroups can be found,
- one needs large orbits or double coset representatives.

The condensation methods can be applied if

- there is an appropriate condensation subgroup K,
- things are "small enough" with resp. to memory and time,
- the generation problem can be solved by using Noeske's Theorem and determining double coset representatives.

All this is implemented in GAP and will be published as a package soon.