
Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Recognising Matrix Groups

Max Neunhöffer

Lehrstuhl D für Mathematik
RWTH Aachen

Tucson 2006

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

All of this is joint work with Ákos Seress.

Lots of others contributed ideas, results, and code.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

All of this is joint work with Ákos Seress.

Lots of others contributed ideas, results, and code.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?

What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?

Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi

(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).

Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The Problem

Fq field with q elements

{M1, M2, . . . , Mk} ⊆ GLd(Fq)

G := 〈M1, M2, . . . , Mk 〉 finite

Questions
What is |G|?
What can be said about the isomorphism type?
Given g ∈ G, write g as product of the Mi
(or in terms of some “nice” generating set of G).
Do all this “efficiently”.

We call this “constructive recognition of G”.

Variant: {M̄1, . . . , M̄k} ⊆ PGLd(Fq), G :=
〈
M̄1, . . . , M̄k

〉

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Straight line programs
Example:

input:
r:= [a, b, c];
program:
r[4]:= r[1]^2*r[2]*r[1]^-2;
r[5]:= r[4]*r[3]^7;
return values:
[r[4], r[5]^5]

Executed with input (a, b, c) this returns:

(a2ba−2, a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7)

Straight line programs (SLPs)
only reference earlier results,
do not contain loops, branches or subroutines, and
can express long products memory efficiently.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Straight line programs
Example:

input:
r:= [a, b, c];
program:
r[4]:= r[1]^2*r[2]*r[1]^-2;
r[5]:= r[4]*r[3]^7;
return values:
[r[4], r[5]^5]

Executed with input (a, b, c) this returns:

(a2ba−2, a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7)

Straight line programs (SLPs)
only reference earlier results,
do not contain loops, branches or subroutines, and
can express long products memory efficiently.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Straight line programs
Example:

input:
r:= [a, b, c];
program:
r[4]:= r[1]^2*r[2]*r[1]^-2;
r[5]:= r[4]*r[3]^7;
return values:
[r[4], r[5]^5]

Executed with input (a, b, c) this returns:

(a2ba−2, a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7)

Straight line programs (SLPs)
only reference earlier results,
do not contain loops, branches or subroutines, and
can express long products memory efficiently.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Straight line programs
Example:

input:
r:= [a, b, c];
program:
r[4]:= r[1]^2*r[2]*r[1]^-2;
r[5]:= r[4]*r[3]^7;
return values:
[r[4], r[5]^5]

Executed with input (a, b, c) this returns:

(a2ba−2, a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7)

Straight line programs (SLPs)
only reference earlier results,

do not contain loops, branches or subroutines, and
can express long products memory efficiently.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Straight line programs
Example:

input:
r:= [a, b, c];
program:
r[4]:= r[1]^2*r[2]*r[1]^-2;
r[5]:= r[4]*r[3]^7;
return values:
[r[4], r[5]^5]

Executed with input (a, b, c) this returns:

(a2ba−2, a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7)

Straight line programs (SLPs)
only reference earlier results,
do not contain loops, branches or subroutines, and

can express long products memory efficiently.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Straight line programs
Example:

input:
r:= [a, b, c];
program:
r[4]:= r[1]^2*r[2]*r[1]^-2;
r[5]:= r[4]*r[3]^7;
return values:
[r[4], r[5]^5]

Executed with input (a, b, c) this returns:

(a2ba−2, a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7a2ba−2c7)

Straight line programs (SLPs)
only reference earlier results,
do not contain loops, branches or subroutines, and
can express long products memory efficiently.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Efficiency
What does “efficiently” mean?

The maximal number of operations necessary is bounded
by a (fixed) polynomial in the “input size”.

The input size is measured by

d : size of matrices,
k : number of matrices, and
log(q): size of a field element.

This is called “in polynomial time”.

Also the length of the resulting straight line programs
should be decent.

=⇒ we use a “nice” generating set

=⇒ this decision shortened SLPs from 500 000 steps
down to 500 in examples

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Efficiency
What does “efficiently” mean?

The maximal number of operations necessary is bounded
by a (fixed) polynomial in the “input size”.

The input size is measured by

d : size of matrices,
k : number of matrices, and
log(q): size of a field element.

This is called “in polynomial time”.

Also the length of the resulting straight line programs
should be decent.

=⇒ we use a “nice” generating set

=⇒ this decision shortened SLPs from 500 000 steps
down to 500 in examples

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Efficiency
What does “efficiently” mean?

The maximal number of operations necessary is bounded
by a (fixed) polynomial in the “input size”.

The input size is measured by

d : size of matrices,
k : number of matrices, and
log(q): size of a field element.

This is called “in polynomial time”.

Also the length of the resulting straight line programs
should be decent.

=⇒ we use a “nice” generating set

=⇒ this decision shortened SLPs from 500 000 steps
down to 500 in examples

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Efficiency
What does “efficiently” mean?

The maximal number of operations necessary is bounded
by a (fixed) polynomial in the “input size”.

The input size is measured by

d : size of matrices,
k : number of matrices, and
log(q): size of a field element.

This is called “in polynomial time”.

Also the length of the resulting straight line programs
should be decent.

=⇒ we use a “nice” generating set

=⇒ this decision shortened SLPs from 500 000 steps
down to 500 in examples

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Efficiency
What does “efficiently” mean?

The maximal number of operations necessary is bounded
by a (fixed) polynomial in the “input size”.

The input size is measured by

d : size of matrices,
k : number of matrices, and
log(q): size of a field element.

This is called “in polynomial time”.

Also the length of the resulting straight line programs
should be decent.

=⇒ we use a “nice” generating set

=⇒ this decision shortened SLPs from 500 000 steps
down to 500 in examples

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Efficiency
What does “efficiently” mean?

The maximal number of operations necessary is bounded
by a (fixed) polynomial in the “input size”.

The input size is measured by

d : size of matrices,
k : number of matrices, and
log(q): size of a field element.

This is called “in polynomial time”.

Also the length of the resulting straight line programs
should be decent.

=⇒ we use a “nice” generating set

=⇒ this decision shortened SLPs from 500 000 steps
down to 500 in examples

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Nasty special case

Is there hope?

q large, d = k = 1, M1 = [ζ] with ζ a primitive root of Fq

Then our task is the Discrete Logarithm Problem

to which there is currently

NO SOLUTION KNOWN in polynomial time in log(q)

=⇒ We work “modulo” this problem.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Nasty special case

Is there hope?

q large, d = k = 1, M1 = [ζ] with ζ a primitive root of Fq

Then our task is the Discrete Logarithm Problem

to which there is currently

NO SOLUTION KNOWN in polynomial time in log(q)

=⇒ We work “modulo” this problem.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Nasty special case

Is there hope?

q large, d = k = 1, M1 = [ζ] with ζ a primitive root of Fq

Then our task is the Discrete Logarithm Problem

to which there is currently

NO SOLUTION KNOWN in polynomial time in log(q)

=⇒ We work “modulo” this problem.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Nasty special case

Is there hope?

q large, d = k = 1, M1 = [ζ] with ζ a primitive root of Fq

Then our task is the Discrete Logarithm Problem

to which there is currently

NO SOLUTION KNOWN in polynomial time in log(q)

=⇒ We work “modulo” this problem.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Nasty special case

Is there hope?

q large, d = k = 1, M1 = [ζ] with ζ a primitive root of Fq

Then our task is the Discrete Logarithm Problem

to which there is currently

NO SOLUTION KNOWN in polynomial time in log(q)

=⇒ We work “modulo” this problem.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?

1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.
1999, Charles Leedham-Green:
“Recognising Matrix Groups”
2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”
Eamonn O’Brien: Implementation in Magma
Lots of other people . . .

Our Goals:

A new implementation in GAP
Go for completely analysed polynomial-time
algorithms
Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?
1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.

1999, Charles Leedham-Green:
“Recognising Matrix Groups”
2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”
Eamonn O’Brien: Implementation in Magma
Lots of other people . . .

Our Goals:

A new implementation in GAP
Go for completely analysed polynomial-time
algorithms
Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?
1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.
1999, Charles Leedham-Green:
“Recognising Matrix Groups”

2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”
Eamonn O’Brien: Implementation in Magma
Lots of other people . . .

Our Goals:

A new implementation in GAP
Go for completely analysed polynomial-time
algorithms
Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?
1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.
1999, Charles Leedham-Green:
“Recognising Matrix Groups”
2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”

Eamonn O’Brien: Implementation in Magma
Lots of other people . . .

Our Goals:

A new implementation in GAP
Go for completely analysed polynomial-time
algorithms
Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?
1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.
1999, Charles Leedham-Green:
“Recognising Matrix Groups”
2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”
Eamonn O’Brien: Implementation in Magma

Lots of other people . . .

Our Goals:

A new implementation in GAP
Go for completely analysed polynomial-time
algorithms
Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?
1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.
1999, Charles Leedham-Green:
“Recognising Matrix Groups”
2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”
Eamonn O’Brien: Implementation in Magma
Lots of other people . . .

Our Goals:

A new implementation in GAP
Go for completely analysed polynomial-time
algorithms
Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?
1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.
1999, Charles Leedham-Green:
“Recognising Matrix Groups”
2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”
Eamonn O’Brien: Implementation in Magma
Lots of other people . . .

Our Goals:

A new implementation in GAP

Go for completely analysed polynomial-time
algorithms
Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?
1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.
1999, Charles Leedham-Green:
“Recognising Matrix Groups”
2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”
Eamonn O’Brien: Implementation in Magma
Lots of other people . . .

Our Goals:

A new implementation in GAP
Go for completely analysed polynomial-time
algorithms

Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

History
The Matrix Group Recognition Project:

1988, Oberwolfach, Joachim Neubüser:
How to decide, whether G = GLd(q)?
1992, Peter Neumann, Cheryl Praeger:
Algorithm to decide whether SLd(q) ≤ G.
1999, Charles Leedham-Green:
“Recognising Matrix Groups”
2001, William Kantor, Ákos Seress:
“Computing with Matrix Groups”
Eamonn O’Brien: Implementation in Magma
Lots of other people . . .

Our Goals:

A new implementation in GAP
Go for completely analysed polynomial-time
algorithms
Improve algorithms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

What one can do with matrices

With a matrix group G = 〈M1, . . . , Mk 〉 ≤ GLd(q) we can
multiply, invert, compare, power up matrices

execute straight line programs on matrices
determine the order of a matrix M,
i.e. min{n ∈ N | Mn = 1}
determine the projective order of a matrix M,
i.e. min{n ∈ N | Mn ∈ F · 1d} (scalar matrices)
find invariant subspaces 0 < W < F1×d with
Wg ⊆ W for all g ∈ G or prove irreducibility:
“MEATAXE”
create (pseudo-) random elements
act with matrices on vectors or on subspaces
−→ gives homomorphisms to permutation groups

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

What one can do with matrices

With a matrix group G = 〈M1, . . . , Mk 〉 ≤ GLd(q) we can
multiply, invert, compare, power up matrices
execute straight line programs on matrices

determine the order of a matrix M,
i.e. min{n ∈ N | Mn = 1}
determine the projective order of a matrix M,
i.e. min{n ∈ N | Mn ∈ F · 1d} (scalar matrices)
find invariant subspaces 0 < W < F1×d with
Wg ⊆ W for all g ∈ G or prove irreducibility:
“MEATAXE”
create (pseudo-) random elements
act with matrices on vectors or on subspaces
−→ gives homomorphisms to permutation groups

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

What one can do with matrices

With a matrix group G = 〈M1, . . . , Mk 〉 ≤ GLd(q) we can
multiply, invert, compare, power up matrices
execute straight line programs on matrices
determine the order of a matrix M,
i.e. min{n ∈ N | Mn = 1}

determine the projective order of a matrix M,
i.e. min{n ∈ N | Mn ∈ F · 1d} (scalar matrices)
find invariant subspaces 0 < W < F1×d with
Wg ⊆ W for all g ∈ G or prove irreducibility:
“MEATAXE”
create (pseudo-) random elements
act with matrices on vectors or on subspaces
−→ gives homomorphisms to permutation groups

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

What one can do with matrices

With a matrix group G = 〈M1, . . . , Mk 〉 ≤ GLd(q) we can
multiply, invert, compare, power up matrices
execute straight line programs on matrices
determine the order of a matrix M,
i.e. min{n ∈ N | Mn = 1}
determine the projective order of a matrix M,
i.e. min{n ∈ N | Mn ∈ F · 1d} (scalar matrices)

find invariant subspaces 0 < W < F1×d with
Wg ⊆ W for all g ∈ G or prove irreducibility:
“MEATAXE”
create (pseudo-) random elements
act with matrices on vectors or on subspaces
−→ gives homomorphisms to permutation groups

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

What one can do with matrices

With a matrix group G = 〈M1, . . . , Mk 〉 ≤ GLd(q) we can
multiply, invert, compare, power up matrices
execute straight line programs on matrices
determine the order of a matrix M,
i.e. min{n ∈ N | Mn = 1}
determine the projective order of a matrix M,
i.e. min{n ∈ N | Mn ∈ F · 1d} (scalar matrices)
find invariant subspaces 0 < W < F1×d with
Wg ⊆ W for all g ∈ G or prove irreducibility:
“MEATAXE”

create (pseudo-) random elements
act with matrices on vectors or on subspaces
−→ gives homomorphisms to permutation groups

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

What one can do with matrices

With a matrix group G = 〈M1, . . . , Mk 〉 ≤ GLd(q) we can
multiply, invert, compare, power up matrices
execute straight line programs on matrices
determine the order of a matrix M,
i.e. min{n ∈ N | Mn = 1}
determine the projective order of a matrix M,
i.e. min{n ∈ N | Mn ∈ F · 1d} (scalar matrices)
find invariant subspaces 0 < W < F1×d with
Wg ⊆ W for all g ∈ G or prove irreducibility:
“MEATAXE”
create (pseudo-) random elements

act with matrices on vectors or on subspaces
−→ gives homomorphisms to permutation groups

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

What one can do with matrices

With a matrix group G = 〈M1, . . . , Mk 〉 ≤ GLd(q) we can
multiply, invert, compare, power up matrices
execute straight line programs on matrices
determine the order of a matrix M,
i.e. min{n ∈ N | Mn = 1}
determine the projective order of a matrix M,
i.e. min{n ∈ N | Mn ∈ F · 1d} (scalar matrices)
find invariant subspaces 0 < W < F1×d with
Wg ⊆ W for all g ∈ G or prove irreducibility:
“MEATAXE”
create (pseudo-) random elements
act with matrices on vectors or on subspaces
−→ gives homomorphisms to permutation groups

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Homomorphisms

Try reduction: For G = 〈M1, . . . , Mk 〉 ≤ GLd(q)

find a homomorphism ϕ : G → H which is

explicitly computable

onto some group H = 〈ϕ(M1), . . . , ϕ(Mk)〉 which is
“easier to handle”

Assume we can constructively recognise H.

Set N := ker(ϕ). Then:

create a (pseudo-) random element g in G
map g to H via ϕ

express ϕ(g) as an SLP S in ϕ(M1), . . . , ϕ(Mk)

execute S on M1, . . . , Mk , get g′ ∈ G s.t. ϕ(g) = ϕ(g′)
=⇒ g−1 · g′ ∈ N
−→ this creates a (pseudo-) random element in N

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Homomorphisms

Try reduction: For G = 〈M1, . . . , Mk 〉 ≤ GLd(q)

find a homomorphism ϕ : G → H which is

explicitly computable
onto some group H = 〈ϕ(M1), . . . , ϕ(Mk)〉 which is
“easier to handle”

Assume we can constructively recognise H.

Set N := ker(ϕ). Then:

create a (pseudo-) random element g in G
map g to H via ϕ

express ϕ(g) as an SLP S in ϕ(M1), . . . , ϕ(Mk)

execute S on M1, . . . , Mk , get g′ ∈ G s.t. ϕ(g) = ϕ(g′)
=⇒ g−1 · g′ ∈ N
−→ this creates a (pseudo-) random element in N

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Homomorphisms

Try reduction: For G = 〈M1, . . . , Mk 〉 ≤ GLd(q)

find a homomorphism ϕ : G → H which is

explicitly computable
onto some group H = 〈ϕ(M1), . . . , ϕ(Mk)〉 which is
“easier to handle”

Assume we can constructively recognise H.

Set N := ker(ϕ). Then:

create a (pseudo-) random element g in G
map g to H via ϕ

express ϕ(g) as an SLP S in ϕ(M1), . . . , ϕ(Mk)

execute S on M1, . . . , Mk , get g′ ∈ G s.t. ϕ(g) = ϕ(g′)
=⇒ g−1 · g′ ∈ N
−→ this creates a (pseudo-) random element in N

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Homomorphisms

Try reduction: For G = 〈M1, . . . , Mk 〉 ≤ GLd(q)

find a homomorphism ϕ : G → H which is

explicitly computable
onto some group H = 〈ϕ(M1), . . . , ϕ(Mk)〉 which is
“easier to handle”

Assume we can constructively recognise H.

Set N := ker(ϕ). Then:

create a (pseudo-) random element g in G

map g to H via ϕ

express ϕ(g) as an SLP S in ϕ(M1), . . . , ϕ(Mk)

execute S on M1, . . . , Mk , get g′ ∈ G s.t. ϕ(g) = ϕ(g′)
=⇒ g−1 · g′ ∈ N
−→ this creates a (pseudo-) random element in N

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Homomorphisms

Try reduction: For G = 〈M1, . . . , Mk 〉 ≤ GLd(q)

find a homomorphism ϕ : G → H which is

explicitly computable
onto some group H = 〈ϕ(M1), . . . , ϕ(Mk)〉 which is
“easier to handle”

Assume we can constructively recognise H.

Set N := ker(ϕ). Then:

create a (pseudo-) random element g in G
map g to H via ϕ

express ϕ(g) as an SLP S in ϕ(M1), . . . , ϕ(Mk)

execute S on M1, . . . , Mk , get g′ ∈ G s.t. ϕ(g) = ϕ(g′)
=⇒ g−1 · g′ ∈ N
−→ this creates a (pseudo-) random element in N

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Homomorphisms

Try reduction: For G = 〈M1, . . . , Mk 〉 ≤ GLd(q)

find a homomorphism ϕ : G → H which is

explicitly computable
onto some group H = 〈ϕ(M1), . . . , ϕ(Mk)〉 which is
“easier to handle”

Assume we can constructively recognise H.

Set N := ker(ϕ). Then:

create a (pseudo-) random element g in G
map g to H via ϕ

express ϕ(g) as an SLP S in ϕ(M1), . . . , ϕ(Mk)

execute S on M1, . . . , Mk , get g′ ∈ G s.t. ϕ(g) = ϕ(g′)
=⇒ g−1 · g′ ∈ N
−→ this creates a (pseudo-) random element in N

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Homomorphisms

Try reduction: For G = 〈M1, . . . , Mk 〉 ≤ GLd(q)

find a homomorphism ϕ : G → H which is

explicitly computable
onto some group H = 〈ϕ(M1), . . . , ϕ(Mk)〉 which is
“easier to handle”

Assume we can constructively recognise H.

Set N := ker(ϕ). Then:

create a (pseudo-) random element g in G
map g to H via ϕ

express ϕ(g) as an SLP S in ϕ(M1), . . . , ϕ(Mk)

execute S on M1, . . . , Mk , get g′ ∈ G s.t. ϕ(g) = ϕ(g′)

=⇒ g−1 · g′ ∈ N
−→ this creates a (pseudo-) random element in N

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Homomorphisms

Try reduction: For G = 〈M1, . . . , Mk 〉 ≤ GLd(q)

find a homomorphism ϕ : G → H which is

explicitly computable
onto some group H = 〈ϕ(M1), . . . , ϕ(Mk)〉 which is
“easier to handle”

Assume we can constructively recognise H.

Set N := ker(ϕ). Then:

create a (pseudo-) random element g in G
map g to H via ϕ

express ϕ(g) as an SLP S in ϕ(M1), . . . , ϕ(Mk)

execute S on M1, . . . , Mk , get g′ ∈ G s.t. ϕ(g) = ϕ(g′)
=⇒ g−1 · g′ ∈ N
−→ this creates a (pseudo-) random element in N

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Composition trees

Produce generators of N := ker(ϕ) and recognise.

Assume that we have recognised H and N constructively.

What does this help for G?

|G| = |H| · |N|
G has a subgroup N and a factor group H
We have recognised G constructively!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Composition trees

Produce generators of N := ker(ϕ) and recognise.
Assume that we have recognised H and N constructively.

What does this help for G?

|G| = |H| · |N|
G has a subgroup N and a factor group H
We have recognised G constructively!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Composition trees

Produce generators of N := ker(ϕ) and recognise.
Assume that we have recognised H and N constructively.

What does this help for G?

|G| = |H| · |N|
G has a subgroup N and a factor group H
We have recognised G constructively!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Composition trees

Produce generators of N := ker(ϕ) and recognise.
Assume that we have recognised H and N constructively.

What does this help for G?

|G| = |H| · |N|

G has a subgroup N and a factor group H
We have recognised G constructively!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Composition trees

Produce generators of N := ker(ϕ) and recognise.
Assume that we have recognised H and N constructively.

What does this help for G?

|G| = |H| · |N|
G has a subgroup N and a factor group H

We have recognised G constructively!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Composition trees

Produce generators of N := ker(ϕ) and recognise.
Assume that we have recognised H and N constructively.

What does this help for G?

|G| = |H| · |N|
G has a subgroup N and a factor group H
We have recognised G constructively!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Get the recursion going . . .

Choose as “nice generators” M ′
1, . . . , M ′

k ′ for G:
preimages under ϕ of the nice generators of H plus
the nice generators of N

Given g ∈ G, find an SLP S expressing g in the M ′
i :

map g via ϕ to ϕ(g) ∈ H
express ϕ(g) as SLP S′ in the nice gens of H
execute S′ on the preimages, get g′

express g′−1 · g ∈ N as SLP S′′ in N
put together S from S′ and S′′ plus one multiplication

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Get the recursion going . . .

Choose as “nice generators” M ′
1, . . . , M ′

k ′ for G:
preimages under ϕ of the nice generators of H plus
the nice generators of N

Given g ∈ G, find an SLP S expressing g in the M ′
i :

map g via ϕ to ϕ(g) ∈ H

express ϕ(g) as SLP S′ in the nice gens of H
execute S′ on the preimages, get g′

express g′−1 · g ∈ N as SLP S′′ in N
put together S from S′ and S′′ plus one multiplication

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Get the recursion going . . .

Choose as “nice generators” M ′
1, . . . , M ′

k ′ for G:
preimages under ϕ of the nice generators of H plus
the nice generators of N

Given g ∈ G, find an SLP S expressing g in the M ′
i :

map g via ϕ to ϕ(g) ∈ H
express ϕ(g) as SLP S′ in the nice gens of H

execute S′ on the preimages, get g′

express g′−1 · g ∈ N as SLP S′′ in N
put together S from S′ and S′′ plus one multiplication

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Get the recursion going . . .

Choose as “nice generators” M ′
1, . . . , M ′

k ′ for G:
preimages under ϕ of the nice generators of H plus
the nice generators of N

Given g ∈ G, find an SLP S expressing g in the M ′
i :

map g via ϕ to ϕ(g) ∈ H
express ϕ(g) as SLP S′ in the nice gens of H
execute S′ on the preimages, get g′

express g′−1 · g ∈ N as SLP S′′ in N
put together S from S′ and S′′ plus one multiplication

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Get the recursion going . . .

Choose as “nice generators” M ′
1, . . . , M ′

k ′ for G:
preimages under ϕ of the nice generators of H plus
the nice generators of N

Given g ∈ G, find an SLP S expressing g in the M ′
i :

map g via ϕ to ϕ(g) ∈ H
express ϕ(g) as SLP S′ in the nice gens of H
execute S′ on the preimages, get g′

express g′−1 · g ∈ N as SLP S′′ in N

put together S from S′ and S′′ plus one multiplication

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Get the recursion going . . .

Choose as “nice generators” M ′
1, . . . , M ′

k ′ for G:
preimages under ϕ of the nice generators of H plus
the nice generators of N

Given g ∈ G, find an SLP S expressing g in the M ′
i :

map g via ϕ to ϕ(g) ∈ H
express ϕ(g) as SLP S′ in the nice gens of H
execute S′ on the preimages, get g′

express g′−1 · g ∈ N as SLP S′′ in N
put together S from S′ and S′′ plus one multiplication

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

A Composition Tree

G

N H

N HN H

N H

1 1 2 2

3 3

Upward arrows: monomorphisms
Downward arrows: epimorphisms

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Low index

Assume:
G has a maximal subgroup K of low index
G acts irreducibly
K leaves a subspace 0 < W < F1×d

q invariant

Try to find a homomorphism in the following way:

create random elements, hope they generate K
find an invariant subspace for these elements
calculate its orbit under the action of G
find a homomorphism onto a permutation group H

This works amazingly well!

Unfortunately, it is not yet analysed to be polynomial-time!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Low index

Assume:
G has a maximal subgroup K of low index
G acts irreducibly
K leaves a subspace 0 < W < F1×d

q invariant

Try to find a homomorphism in the following way:

create random elements, hope they generate K

find an invariant subspace for these elements
calculate its orbit under the action of G
find a homomorphism onto a permutation group H

This works amazingly well!

Unfortunately, it is not yet analysed to be polynomial-time!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Low index

Assume:
G has a maximal subgroup K of low index
G acts irreducibly
K leaves a subspace 0 < W < F1×d

q invariant

Try to find a homomorphism in the following way:

create random elements, hope they generate K
find an invariant subspace for these elements

calculate its orbit under the action of G
find a homomorphism onto a permutation group H

This works amazingly well!

Unfortunately, it is not yet analysed to be polynomial-time!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Low index

Assume:
G has a maximal subgroup K of low index
G acts irreducibly
K leaves a subspace 0 < W < F1×d

q invariant

Try to find a homomorphism in the following way:

create random elements, hope they generate K
find an invariant subspace for these elements
calculate its orbit under the action of G

find a homomorphism onto a permutation group H

This works amazingly well!

Unfortunately, it is not yet analysed to be polynomial-time!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Low index

Assume:
G has a maximal subgroup K of low index
G acts irreducibly
K leaves a subspace 0 < W < F1×d

q invariant

Try to find a homomorphism in the following way:

create random elements, hope they generate K
find an invariant subspace for these elements
calculate its orbit under the action of G
find a homomorphism onto a permutation group H

This works amazingly well!

Unfortunately, it is not yet analysed to be polynomial-time!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Low index

Assume:
G has a maximal subgroup K of low index
G acts irreducibly
K leaves a subspace 0 < W < F1×d

q invariant

Try to find a homomorphism in the following way:

create random elements, hope they generate K
find an invariant subspace for these elements
calculate its orbit under the action of G
find a homomorphism onto a permutation group H

This works amazingly well!

Unfortunately, it is not yet analysed to be polynomial-time!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Low index

Assume:
G has a maximal subgroup K of low index
G acts irreducibly
K leaves a subspace 0 < W < F1×d

q invariant

Try to find a homomorphism in the following way:

create random elements, hope they generate K
find an invariant subspace for these elements
calculate its orbit under the action of G
find a homomorphism onto a permutation group H

This works amazingly well!

Unfortunately, it is not yet analysed to be polynomial-time!

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Aschbacher’s Theorem
Aschbacher classified the maximal subgroups of GLd(q).

Theorem (Aschbacher, 1984)
If G < GLd(q) then it falls under at least one of:
C1 G leaves invariant a subspace 0 < W < F1×d

q

C2 G preserves a decomposition F1×d
q

∼= V1 ⊕ · · · ⊕ Vj

C3 G comes from a bigger field (semilinear)
C4 G preserves a decomposition F1×d

q
∼= V1 ⊗ V2

C5 G is realizable over a subfield
C6 G ≤ NGL(r1+2k) where r1+2k is an extraspecial group
C7 G is tensor-induced
C8 G contains a “classical group” like SLd(q) or Spd(q)

C9 G is a quasi-simple group

All classes C1 to C7 are defined “geometrically” and
promise some kind of homomorphism or “simplification”.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Aschbacher’s Theorem
Aschbacher classified the maximal subgroups of GLd(q).

Theorem (Aschbacher, 1984)
If G < GLd(q) then it falls under at least one of:
C1 G leaves invariant a subspace 0 < W < F1×d

q

C2 G preserves a decomposition F1×d
q

∼= V1 ⊕ · · · ⊕ Vj

C3 G comes from a bigger field (semilinear)
C4 G preserves a decomposition F1×d

q
∼= V1 ⊗ V2

C5 G is realizable over a subfield
C6 G ≤ NGL(r1+2k) where r1+2k is an extraspecial group
C7 G is tensor-induced
C8 G contains a “classical group” like SLd(q) or Spd(q)

C9 G is a quasi-simple group

All classes C1 to C7 are defined “geometrically” and
promise some kind of homomorphism or “simplification”.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Aschbacher’s Theorem
Aschbacher classified the maximal subgroups of GLd(q).

Theorem (Aschbacher, 1984)
If G < GLd(q) then it falls under at least one of:
C1 G leaves invariant a subspace 0 < W < F1×d

q

C2 G preserves a decomposition F1×d
q

∼= V1 ⊕ · · · ⊕ Vj

C3 G comes from a bigger field (semilinear)
C4 G preserves a decomposition F1×d

q
∼= V1 ⊗ V2

C5 G is realizable over a subfield
C6 G ≤ NGL(r1+2k) where r1+2k is an extraspecial group
C7 G is tensor-induced
C8 G contains a “classical group” like SLd(q) or Spd(q)

C9 G is a quasi-simple group

All classes C1 to C7 are defined “geometrically” and
promise some kind of homomorphism or “simplification”.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Problem children
The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to
recognise the “defining characteristic” of the group
recognise the group for example by looking at
distribution of element orders of random elements
(“non-constructive recognition”)
use collected data about representations or
use collected data about subgroups
directly recognise the group constructively:

use base and strong generating sets
(matrix Schreier-Sims)
use tricks involving involution centralisers

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Problem children
The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to
recognise the “defining characteristic” of the group
recognise the group for example by looking at
distribution of element orders of random elements
(“non-constructive recognition”)
use collected data about representations or
use collected data about subgroups
directly recognise the group constructively:

use base and strong generating sets
(matrix Schreier-Sims)
use tricks involving involution centralisers

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Problem children
The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to
recognise the “defining characteristic” of the group
recognise the group for example by looking at
distribution of element orders of random elements
(“non-constructive recognition”)
use collected data about representations or
use collected data about subgroups
directly recognise the group constructively:

use base and strong generating sets
(matrix Schreier-Sims)
use tricks involving involution centralisers

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Problem children
The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to
recognise the “defining characteristic” of the group

recognise the group for example by looking at
distribution of element orders of random elements
(“non-constructive recognition”)
use collected data about representations or
use collected data about subgroups
directly recognise the group constructively:

use base and strong generating sets
(matrix Schreier-Sims)
use tricks involving involution centralisers

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Problem children
The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to
recognise the “defining characteristic” of the group
recognise the group for example by looking at
distribution of element orders of random elements
(“non-constructive recognition”)

use collected data about representations or
use collected data about subgroups
directly recognise the group constructively:

use base and strong generating sets
(matrix Schreier-Sims)
use tricks involving involution centralisers

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Problem children
The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to
recognise the “defining characteristic” of the group
recognise the group for example by looking at
distribution of element orders of random elements
(“non-constructive recognition”)
use collected data about representations or
use collected data about subgroups

directly recognise the group constructively:
use base and strong generating sets
(matrix Schreier-Sims)
use tricks involving involution centralisers

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Problem children
The leaves are a problem: Need representation theory.

Classify: Irred. modular representations of finite groups.

This is ongoing research, but there are many results.

We try to
recognise the “defining characteristic” of the group
recognise the group for example by looking at
distribution of element orders of random elements
(“non-constructive recognition”)
use collected data about representations or
use collected data about subgroups
directly recognise the group constructively:

use base and strong generating sets
(matrix Schreier-Sims)
use tricks involving involution centralisers

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recog

GAP already provides:
the infrastructure for SLPs, matrix handling, etc.

background algorithms for orbits, MEATAXE, etc.

The recog package provides:
a completely working framework for composition
trees with complete documentation
a framework to administrate methods to find
homomorphisms or leaves
handling of permutation groups, matrix groups and
projective groups in our framework
switching between different types of groups during
recognition

Authors: MN and Ákos Seress

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recog

GAP already provides:
the infrastructure for SLPs, matrix handling, etc.
background algorithms for orbits, MEATAXE, etc.

The recog package provides:
a completely working framework for composition
trees with complete documentation
a framework to administrate methods to find
homomorphisms or leaves
handling of permutation groups, matrix groups and
projective groups in our framework
switching between different types of groups during
recognition

Authors: MN and Ákos Seress

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recog

GAP already provides:
the infrastructure for SLPs, matrix handling, etc.
background algorithms for orbits, MEATAXE, etc.

The recog package provides:
a completely working framework for composition
trees with complete documentation

a framework to administrate methods to find
homomorphisms or leaves
handling of permutation groups, matrix groups and
projective groups in our framework
switching between different types of groups during
recognition

Authors: MN and Ákos Seress

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recog

GAP already provides:
the infrastructure for SLPs, matrix handling, etc.
background algorithms for orbits, MEATAXE, etc.

The recog package provides:
a completely working framework for composition
trees with complete documentation
a framework to administrate methods to find
homomorphisms or leaves

handling of permutation groups, matrix groups and
projective groups in our framework
switching between different types of groups during
recognition

Authors: MN and Ákos Seress

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recog

GAP already provides:
the infrastructure for SLPs, matrix handling, etc.
background algorithms for orbits, MEATAXE, etc.

The recog package provides:
a completely working framework for composition
trees with complete documentation
a framework to administrate methods to find
homomorphisms or leaves
handling of permutation groups, matrix groups and
projective groups in our framework

switching between different types of groups during
recognition

Authors: MN and Ákos Seress

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recog

GAP already provides:
the infrastructure for SLPs, matrix handling, etc.
background algorithms for orbits, MEATAXE, etc.

The recog package provides:
a completely working framework for composition
trees with complete documentation
a framework to administrate methods to find
homomorphisms or leaves
handling of permutation groups, matrix groups and
projective groups in our framework
switching between different types of groups during
recognition

Authors: MN and Ákos Seress

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recog

GAP already provides:
the infrastructure for SLPs, matrix handling, etc.
background algorithms for orbits, MEATAXE, etc.

The recog package provides:
a completely working framework for composition
trees with complete documentation
a framework to administrate methods to find
homomorphisms or leaves
handling of permutation groups, matrix groups and
projective groups in our framework
switching between different types of groups during
recognition

Authors: MN and Ákos Seress

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recogmethods

The recogmethods package provides:
asymptotically best algorithms for permutation groups

methods to find homomorphism for all C1 to C7
non-constructive recognition of classical groups (C8)
non-constructive recognition of the defining
characteristic of simple groups by the two largest
element orders (C9)
nearly ready non-constructive recognition of simple
groups by further element order statistics (C9)
a start of a database of hints for recognised leaves

Authors: (currently)
Peter Brooksbank, Maska Law, Steve Linton, MN,
Alice Niemeyer, Eamonn O’Brien, Ákos Seress.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recogmethods

The recogmethods package provides:
asymptotically best algorithms for permutation groups
methods to find homomorphism for all C1 to C7

non-constructive recognition of classical groups (C8)
non-constructive recognition of the defining
characteristic of simple groups by the two largest
element orders (C9)
nearly ready non-constructive recognition of simple
groups by further element order statistics (C9)
a start of a database of hints for recognised leaves

Authors: (currently)
Peter Brooksbank, Maska Law, Steve Linton, MN,
Alice Niemeyer, Eamonn O’Brien, Ákos Seress.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recogmethods

The recogmethods package provides:
asymptotically best algorithms for permutation groups
methods to find homomorphism for all C1 to C7
non-constructive recognition of classical groups (C8)

non-constructive recognition of the defining
characteristic of simple groups by the two largest
element orders (C9)
nearly ready non-constructive recognition of simple
groups by further element order statistics (C9)
a start of a database of hints for recognised leaves

Authors: (currently)
Peter Brooksbank, Maska Law, Steve Linton, MN,
Alice Niemeyer, Eamonn O’Brien, Ákos Seress.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recogmethods

The recogmethods package provides:
asymptotically best algorithms for permutation groups
methods to find homomorphism for all C1 to C7
non-constructive recognition of classical groups (C8)
non-constructive recognition of the defining
characteristic of simple groups by the two largest
element orders (C9)

nearly ready non-constructive recognition of simple
groups by further element order statistics (C9)
a start of a database of hints for recognised leaves

Authors: (currently)
Peter Brooksbank, Maska Law, Steve Linton, MN,
Alice Niemeyer, Eamonn O’Brien, Ákos Seress.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recogmethods

The recogmethods package provides:
asymptotically best algorithms for permutation groups
methods to find homomorphism for all C1 to C7
non-constructive recognition of classical groups (C8)
non-constructive recognition of the defining
characteristic of simple groups by the two largest
element orders (C9)
nearly ready non-constructive recognition of simple
groups by further element order statistics (C9)

a start of a database of hints for recognised leaves

Authors: (currently)
Peter Brooksbank, Maska Law, Steve Linton, MN,
Alice Niemeyer, Eamonn O’Brien, Ákos Seress.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recogmethods

The recogmethods package provides:
asymptotically best algorithms for permutation groups
methods to find homomorphism for all C1 to C7
non-constructive recognition of classical groups (C8)
non-constructive recognition of the defining
characteristic of simple groups by the two largest
element orders (C9)
nearly ready non-constructive recognition of simple
groups by further element order statistics (C9)
a start of a database of hints for recognised leaves

Authors: (currently)
Peter Brooksbank, Maska Law, Steve Linton, MN,
Alice Niemeyer, Eamonn O’Brien, Ákos Seress.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

The GAP package recogmethods

The recogmethods package provides:
asymptotically best algorithms for permutation groups
methods to find homomorphism for all C1 to C7
non-constructive recognition of classical groups (C8)
non-constructive recognition of the defining
characteristic of simple groups by the two largest
element orders (C9)
nearly ready non-constructive recognition of simple
groups by further element order statistics (C9)
a start of a database of hints for recognised leaves

Authors: (currently)
Peter Brooksbank, Maska Law, Steve Linton, MN,
Alice Niemeyer, Eamonn O’Brien, Ákos Seress.

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Still missing

analysis of the low index procedure

some cases in C4 and C7
constructive recognition after recognising a classical
group
(Charles Leedham-Green and Eamonn O’Brien)
more hints in the database of hints for recognised
leaves
verification procedures (presentations)
better methods, maybe “orthogonal” to the
Aschbacher classification
a whole lot of documentation
higher level algorithms after recognition (Sylow
subgroups, maximal subgroups, centralisers,
normalisers, etc.)

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Still missing

analysis of the low index procedure
some cases in C4 and C7

constructive recognition after recognising a classical
group
(Charles Leedham-Green and Eamonn O’Brien)
more hints in the database of hints for recognised
leaves
verification procedures (presentations)
better methods, maybe “orthogonal” to the
Aschbacher classification
a whole lot of documentation
higher level algorithms after recognition (Sylow
subgroups, maximal subgroups, centralisers,
normalisers, etc.)

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Still missing

analysis of the low index procedure
some cases in C4 and C7
constructive recognition after recognising a classical
group
(Charles Leedham-Green and Eamonn O’Brien)

more hints in the database of hints for recognised
leaves
verification procedures (presentations)
better methods, maybe “orthogonal” to the
Aschbacher classification
a whole lot of documentation
higher level algorithms after recognition (Sylow
subgroups, maximal subgroups, centralisers,
normalisers, etc.)

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Still missing

analysis of the low index procedure
some cases in C4 and C7
constructive recognition after recognising a classical
group
(Charles Leedham-Green and Eamonn O’Brien)
more hints in the database of hints for recognised
leaves

verification procedures (presentations)
better methods, maybe “orthogonal” to the
Aschbacher classification
a whole lot of documentation
higher level algorithms after recognition (Sylow
subgroups, maximal subgroups, centralisers,
normalisers, etc.)

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Still missing

analysis of the low index procedure
some cases in C4 and C7
constructive recognition after recognising a classical
group
(Charles Leedham-Green and Eamonn O’Brien)
more hints in the database of hints for recognised
leaves
verification procedures (presentations)

better methods, maybe “orthogonal” to the
Aschbacher classification
a whole lot of documentation
higher level algorithms after recognition (Sylow
subgroups, maximal subgroups, centralisers,
normalisers, etc.)

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Still missing

analysis of the low index procedure
some cases in C4 and C7
constructive recognition after recognising a classical
group
(Charles Leedham-Green and Eamonn O’Brien)
more hints in the database of hints for recognised
leaves
verification procedures (presentations)
better methods, maybe “orthogonal” to the
Aschbacher classification

a whole lot of documentation
higher level algorithms after recognition (Sylow
subgroups, maximal subgroups, centralisers,
normalisers, etc.)

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Still missing

analysis of the low index procedure
some cases in C4 and C7
constructive recognition after recognising a classical
group
(Charles Leedham-Green and Eamonn O’Brien)
more hints in the database of hints for recognised
leaves
verification procedures (presentations)
better methods, maybe “orthogonal” to the
Aschbacher classification
a whole lot of documentation

higher level algorithms after recognition (Sylow
subgroups, maximal subgroups, centralisers,
normalisers, etc.)

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Still missing

analysis of the low index procedure
some cases in C4 and C7
constructive recognition after recognising a classical
group
(Charles Leedham-Green and Eamonn O’Brien)
more hints in the database of hints for recognised
leaves
verification procedures (presentations)
better methods, maybe “orthogonal” to the
Aschbacher classification
a whole lot of documentation
higher level algorithms after recognition (Sylow
subgroups, maximal subgroups, centralisers,
normalisers, etc.)

Recognising
Matrix Groups

Max Neunhöffer

The Problem
Constructive recognition

Straight line programs

Efficiency

Discrete logarithm problem

History

Some Solutions
What one can do

The composition tree

An example: Low index

Aschbacher classes

Leaves

State of
implementation
GAP packages recog and
recogmethods

Help is appreciated

Help is appreciated

Everybody is welcome to contribute.

We need ideas, code, and analysis.

	The Problem
	Constructive recognition
	Straight line programs
	Efficiency
	Discrete logarithm problem
	History

	Some Solutions
	What one can do
	The composition tree
	An example: Low index
	Aschbacher classes
	Leaves

	State of implementation
	GAP packages recog and recogmethods
	Help is appreciated

