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Abstract

We explore a natural class of semigroups that have word problem decidable by
finite state automata. Among the main results are invariance of this property
under change of generators, invariance under basic algebraic constructions and
algebraic properties of these semigroups.
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1. Motivation

Finite state automata are a simple concept that is well-established in the
theory of computation. They are very restricted in that they only possess a
finite memory. These restrictions cause many problems in the theory of finite
state automata to be decidable and quite a few are tractable complexity-wise.

The word problem is a computational problem that is connected to finitely
generated structures, especially finitely generated semigroups, monoids or groups.
In this paper we want to explore the properties of semigroups that have word
problem decidable by certain types of finite state automata.

There has been some research in this area by various authors, for example
Kambites shows in [1] and [2] that semigroups with small cancellation have
rational word problem, Holt et al. in [3] investigate properties of semigroups
with one-counter word problem.

Let us fix basic notation. Let A be a finite set. A string over A is a finite
sequence of elements of A, and we denote the special case of the empty sequence
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by ””A or simply ”” if there is no ambiguity. We denote by A∗ the set of all
strings over A and by A+ the set of all nonempty strings over A. Obviously
A+ ⊆ A∗. We denote by |s| the length of a string s and by |s|a the number of
occurrences of the letter a from A in s. In the following it will be important
to distinguish between strings and elements of semigroups, monoids or groups,
we write literal strings enclosed in quotation marks. Thus ”abc” is a string of
length three in A∗ for a, b, c in A in contrast to abc being the product of a, b
and c in some structure containing A. The most important operation on strings
is concatenation. Given two strings v and w, we denote the concatenation of v
and w by v.w, which is just the juxtaposition of the two strings. Given a string
v, we denote by vi for any natural number i the i−fold concatenation of copies
of v. The special case v0 is defined to be ””.

A string s is a prefix of a string t if there is a string u in A∗ such that t = s.u,
and analogously s is a suffix of t if there is a string u such that t = u.s.

A semigroup S is a set together with a binary associative operation, which
we usually denote by s · t. We allow ourselves to leave out the dot in most cases.
A monoid M is a semigroup which contains an identity element e for which
ea = ae = a for all a in M holds. A group G is a monoid with the additional
condition that for each g in G there is an element h such that gh = hg = e. We
can make every semigroup into a monoid by adjoining an identity element. For
a semigroup S we denote the semigroup with an adjoined identity element by
S1. Another important element in the theory of semigroups is a zero element,
or zero for short. A zero z has the property that za = az = z for all a in S. We
can adjoin a zero to every semigroup and we denote this semigroup by S0.

The set A+ together with the concatenation operation is isomorphic to the
free semigroup on A, which is uniquely defined by the following universal prop-
erty: For a given semigroup S and any map p from A to S, the map p can be
extended to a unique semigroup homomorphism from A+ to S. Analogously
the set A∗ together with concatenation is isomorphic to the free monoid on A,
which in turn is defined analogously.

In the following it is important to distinguish between strings over an alpha-
bet representing elements of some semigroup, monoid or group and elements of
the respective structure.

A semigroup S is finitely generated if there is a finite subset A of S such that
the inclusion map from A to S extends to a surjective semigroup homomorphism

: A+ → S. In this situation we write S = Sg 〈A〉 to say that S is a semigroup
that is finitely generated by the subset A of S. At this point it should be noted
that although A is a subset of S, the set A+ is a set of strings and is not a
subset of S. If we want to pass over to the semigroup S we write v to denote
the image of the string v in S.

Since monoids and groups are also semigroups the above defintion for semi-
group generation works for groups and monoids too. In addition, we can also
generate a monoid as a monoid by making the identity element implicit and we
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write M = Mon 〈A〉 to say that the monoid M is generated as a monoid by
the subset A of M . A group can be generated as a group by making inverses
implicit.

We might for some examples use presentations to give semigroups or monoids
and use Sg 〈A | R〉 for the semigroup generated by A with relations R and
Mon 〈A | R〉 for the monoid generated by A with relations R. For a reference
on presentations the reader is referred to standard literature, for example [4].

For a finitely generated semigroup S and a generating set A for S we define
the semigroup word problem to be the following set

SgWP(S,A) :=
{

(v, w) ∈ A+ ×A+ | v = w
}
⊆ A+ ×A+.

For a finitely generated monoid M and some generating set A for M we define
the monoid word problem to be the following set

MonWP(M,A) := {(v, w) ∈ A∗ ×A∗ | v = w} ⊆ A∗ ×A∗.

This is in close relation to the usual definition of the word problem for a finitely
generated group G with respect to a finite semigroup generating set A

GrpWP(G,A) :=
{
v ∈ (A ∪A−1)∗ | v = e

}
⊆ (A ∪A−1)∗,

because if G is a finitely generated group then SgWP(G,A) consists of pairs
(v, w) such that v · w−1 = e.

Note that we defined three word problems for any given finitely generated
group G, and two word problems for any given finitely generated monoid M .

A fundamental computational question that arises in this context is whether
the word problems of finitely generated semigroups, monoids and groups are
decidable subsets of A∗×A∗ or (A∪A−1)∗ respectively. That is, do there exist
algorithms that take as input elements from A∗×A∗ or (A∪A−1)∗ respectively
and that terminate with the output true or false depending on whether the
input is contained in the respective word problem or not. A finite state automa-
ton can be seen as a very simple algorithm, in particular one that does requires
constant memory.

In the following we want to explore the properties of semigroups, monoids
and groups with word problem decidable by a finite state automaton. The
results for groups are already well-known, results concerning semigroups and
monoids are original work of the authors.

The paper is structured as follows: Section 2 will introduce the basic theory
we want to use in proving our results. In particular, we define what we mean
by a semigroup with regular or rational word problem. After that, Section 3
presents basic and motivational results and in Section 4 we prove the first main
result, invariance of rational word problem under change of generating sets, and
Section 5 establishes the related result that a finitely generated monoid has
rational word problem generated as a semigroup if and only if it has rational
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word problem generated as a monoid. Section 6 establishes a few structural
properties of semigroups with rational word problem, and Sections 7 and 8 then
deal with constructions involving semigroups with rational word problem and
closure properties. Section 9 will give a few pointers towards followup research
and papers.

2. Automata

In this section we recall the definitions of finite state automata that take
strings as input, and two tape finite state automata which take pairs of strings
as input. In addition to the basic definitions we give some results from the
theory of finite state automata for later reference.

Definition 2.1 (finite state automaton). A finite state automaton A is a tuple

A = 〈Q,A, q0, F,∆〉

consisting of a finite set Q of states, an alphabet A, an initial state q0 in Q, a
set F ⊆ Q of final states and a transition relation ∆ ⊆ Q× (A ∪ {ε})×Q.

We also denote elements (q, a, r) from ∆ by

q
a−→ r.

A computation of A from q1 to qn+1 with label ”a1a2 · · · an” is a finite se-
quence of transitions

γ : q1
a1−→ q2

a2−→ q3
a3−→ · · · an−1−−−→ qn

an−−→ qn+1.

The computation γ is said to be accepting if q1 is the initial state and qn+1

is an element of F . Note that the label of a computation is an element of
(A ∪ {ε})∗.

Consider the map

p : (A ∪ {ε})→ A∗ : a 7→

{
”a” for a ∈ A
”” for a = ε

,

which extends to a surjective monoid homomorphism π : (A ∪ {ε})∗ → A∗.
We say that A accepts a string s in A∗ if there is an accepting computation

labelled by a string t in (A ∪ {ε})∗ such that π(t) = s. The set of all strings in
A∗ that are accepted by A is called the language of A, denoted L (A).

Conversely, subsets L of A∗ with L = L (A) for some finite state automaton
A are called regular.

A slight generalisation of the concept of a finite state automaton is the notion
of a synchronous two tape finite state automaton. For this we take an alphabet
A and add a padding character � forming A� := A∪{�}. As alphabet for a two
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tape synchronous finite state automaton we take A� × A�. To be able to feed
pairs (s, t) from A∗ ×A∗ of strings of differing length to such an automaton we
pad the shorter of the two strings by using the padding symbol, more formally

(s, t)� := ”(s′1, t
′
1)(s′2, t

′
2) · · · (s′n, t′n)”,

where n = max{|s|, |t|} and

z′i =

{
zi i ≤ |z|
� otherwise

for 1 ≤ i ≤ n and z ∈ {s, t}.
We call a subset R of A∗ × A∗ regular if there is a synchronous two tape

finite state automaton that accepts a padded pair (s, t)� if and only if (s, t) is
in R.

Note that (A × B)∗ is isomorphic to the submonoid of pairs of strings of
equal lengths in A∗ ×B∗ and we will use this isomorphism implicitly.

Generalising further, an asynchronous two tape finite state automaton has
the ability to read its two tapes at different speeds.

Definition 2.2 (asynchronous finite state automaton). An asynchronous finite
state automaton A is a tuple

A := 〈Q,A,B, q0, F,∆〉

consisting of a finite set Q of states, two alphabets A and B, an initial state q0
in Q, a set F ⊆ Q of final states and a transition relation ∆ ⊆ Q× (A ∪ {ε})×
(B ∪ {ε})×Q

Analogous to the case of a finite state automaton, we denote elements
(p, a, b, q) of the transition relation by

p
(a,b)−−−→ q,

and a computation γ of A from q1 to qn+1 with label ”(a1, b1) · · · (an, bn)” is a
finite sequence of transitions, denoted

γ : q1
(a1,b1)−−−−→ q2

(a2,b2)−−−−→ q3 · · · qn
(an,bn)−−−−−→ qn+1.

We shorten this to γ : q1 →∗ qn+1 to say that there is a computation of finite
length from q1 to qn+1. A computation γ is said to be accepting if q1 = q0 and
qn+1 is in F .

In the case of an asynchronous automaton the label of a computation is an
element of ((A ∪ {ε})× (B ∪ {ε}))∗.

To get a pair of strings from the label of a computation we apply maps πA
and πB analogous to the case of finite state automata to both components of
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the pair of strings that arises from the label of the computation. We also say
that a pair (v, w) of strings induces a computation γ : q1 →∗ qn if γ has label
(s, t) such that (πA(s), πB(t)) = (v, w).

An asynchronous automaton A is said to accept a pair (s, t) of strings in
A∗ × B∗ if there is an accepting computation of A with label (v, w) such that
(πA(v), πB(w)) = (s, t).

The set of all pairs (s, t) that are accepted by a finite state automaton A is
called the language of A and is denoted L (A).

Subsets R of A∗ × B∗ for which there is an asynchronous finite state au-
tomaton A with L(A) = R are called rational relations or simply rational.

For any of the above automaton models, we call a state q in A accessible if
there is a computation in A from the initial state q0 to q and co-accessible if
there is computation from q to a final state. An automaton is unambigious if
for any string s and any pair p and q of states there is at most one computation
from p to q induced by s. Furthermore an automaton A is deterministic, if it
is unambigous and for any given input there is at least one computation that is
induced by that input.

The above automaton models have a natural interpretation as finite, di-
rected, labelled graphs where the set of vertices is the set of states and there is
a labelled edge between two states if and only if there is a transition between
them.

We now recall the well known Pumping Lemmas which enable us to prove
that a set is not regular or rational respectively. For proofs of the two lemmas
we refer the reader to [5] for the finite state automaton case and to [6] for the
asynchronous finite state automaton case. In fact, the proof of the asynchronous
case uses the synchronous one.

Proposition 2.3 (Pumping Lemma for finite state automata). Let A be a finite
state automaton. Then there is a natural number n0 such that for every string
s accepted by A with |s| > n0 there is a decomposition s = x.u.y into strings x,
u and y such that

• |u| ≥ 1

• |x.u| ≤ n0

• For all i ∈ N the string x.ui.y is also accepted by A.

Note that there are languages that are not regular but fulfill the Pumping
Lemma. In our context the Pumping Lemma is useful to show that a language
cannot be accepted by a finite state automaton.

Proposition 2.4 (Pumping Lemma for asynchronous finite state automata).
Let A be an asynchronous finite state automaton. Then there is a natural number
n0 such that for every pair (s1, s2) of strings accepted by A with |s1| + |s2| >
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n0 there is a decomposition (s1, s2) = (x1.u1.y1, x2.u2.y2) into pairs (x1, x2),
(u1, u2) and (y1, y2) such that

• |u1|+ |u2| ≥ 1

• |x1|+ |x2|+ |u1|+ |u2| ≤ n0

• For all i ∈ N the pair (x1.u
i
1.y1, x2.u

i
2.y2) is also accepted by A.

The following proposition states that the composition of rational relations
is again a rational relation.

Proposition 2.5. Let A,B and C be alphabets and let R ⊆ A∗ × B∗ and
S ⊆ B∗×C∗ be rational relations. Then R ◦S is also a rational relation, where

R◦S = {(r, s) ∈ A∗ × C∗ | there is x ∈ B∗ such that (r, x) ∈ R and (x, s) ∈ S }

Proof. See [6].

J.H. Johnson in his PhD thesis [7] examined rational equivalence relations
over strings, that is rational relations that are equivalence relations. He proved
the following theorem which we will use in a later section to show that infinite
semigroups with rational word problem cannot be periodic. The proof can be
found in the referenced paper.

Proposition 2.6. Let A be an alphabet and R ⊆ A∗ × A∗ be a rational equiv-
alence relation. Then there is a regular language D ⊆ A∗ that contains at least
one element of each equivalence class of R and is such that R ∩ (D ×D) is a
rational equivalence relation on D

Proof. The idea of the proof is to remove loops from an automaton that decides
R that are labelled by (s, ε) for some s ∈ (A ∪ {ε})∗ to make it accept long
representatives. The language of long representatives is regular and thus its
complement is language D. See [8].

The following two propositions will help simplify the proofs of a few theo-
rems. The proofs are straightforward and can be found in [6].

Proposition 2.7. Let A and B be two alphabets. If L1 is a regular language
over A and L2 is a regular language over B, then L1×L2 is a rational relation.

Proposition 2.8. Let A and B be alphabets and R ⊆ A∗×B∗ be a rational re-
lation. Then the languages {w ∈ B∗ | (v, w) ∈ R} and {v ∈ A∗ | (v, w) ∈ R}
are regular for all v ∈ A∗ and w ∈ B∗.
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3. Motivating Results and Examples

This section is dedicated to motivate the presented work by starting from
a well known result about groups: Anisimov showed in [9] that the class of
groups with regular word problem is the class of finite groups. We show that
finite semigroups and monoids have regular word-problem as well and give a
very simple example of a semigroup with regular word-problem that is infinite.
We also motivate the usage of rational word-problem for infinite semigroups
and monoids. In Section 5 we show that groups with rational word-problem are
finite and thus our theory does not yield more expressiveness for groups.

Theorem 3.1 (Anisimov). Let G be a group and let A be a finite monoid
generating set for G. Then GrpWP(G,A) ⊆ A∗ is regular if and only if G is
finite.

Proof. Suppose G is finite and consider the automaton

A = 〈G,A, 1, {1} ,∆〉 ,

where (g, a, h) is in ∆ if and only if ga = h. This automaton is the Cayley graph
of G with respect to the generating set A extended by predicates for the initial
state and final states.

A string s in A∗ is accepted by A if and only if there is a computation from
1 to 1 labelled by s. This also means that s = 1 by the definition of A.

Conversely, assume that there is a finite state automaton A = 〈Q,A, q0, F,∆〉
that has as its language all strings s with s = 1. Without loss of generality
we can assume A to be deterministic, because if it was not we can construct
an equivalent deterministic automaton by applying the powerset construction,
which is a standard tool in the theory of finite state automata and can for
example be found in [5].

Let s and t be two strings that label paths in A from q0 to some state q in Q.
Since G is a group and A is deterministic there has to be a path from q labelled
u to an accept state. Thus

s.u = s · u = 1 = t · u = t.u,

which implies s = t and therefore G is finite.

One direction of the above theorem stays true for semigroup and monoid
word-problems.

Theorem 3.2. Let S be a finite semigroup or monoid. Then S has regular
word-problem with respect to all generating sets.

Proof. Let S be a finite semigroup and let A be any generating set for S. Con-
sider the following automaton.

A =
〈
Q,A� ×A�, q0, F,∆

〉
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consisting of

Q = {q0} ∪ (S × S × {L,N,R})
F = {(s, s,N) | s ∈ S}
∆ = {[q0, (x, y), (x, y,N)]}

∪ {[(s, t, i) , (x, y), (sx, ty, i)] | x, y 6= �, i ∈ {L,N,R}}
∪ {[(s, t,N) , (x,�), (sx, t, R)]}
∪ {[(s, t,N) , (�, y), (s, ty, L)]}
∪ {[(s, t, R) , (x,�), (sx, t, R)]}
∪ {[(s, t, L) , (�, y), (s, ty, L)]} .

This automaton consists of three copies of the direct product of two copies of
the Cayley graph of S together with an initial state. Reading a pair of symbols
it keeps track of right multiplication by a generator with the � symbol acting
as identity. This way, the automaton determines the elements represented by
the input strings and accepts if and only if these are the same.

The copies indexed by L, N and R are needed to take care of padding
symbols: if a padding symbol is read on one tape for the first time the automaton
is only allowed to read padding symbols from that tape and non padding symbols
from the other tape.

This automaton accepts a pair (v, w)� of padded strings if and only if v = w.
The proof for monoids is similar.

In contrast with the group case there are examples of infinite semigroups
and monoids that do have regular word problem. The most striking examples
are the free semigroup and the free monoid on any finite set. Additionally, in
Sections 7 and 8 it will be shown that we can construct infinite semigroups with
rational word problem from semigroups which are known to have rational word
problem.

Example 3.3. Let A be a finite, non-empty set. Then the free semigroup A+

and the free monoid A∗ are infinite and SgWP(A+, A) and MonWP(A∗, A) are
regular.

Proof. The following automaton accepts pairs of equal strings.

q0 q1
(a, a) , a ∈ A

(a, a) , a ∈ A

In a free semigroup on a finite set A two strings v and w represent the same
element if and only if they are equal, therefore SgWP(A+, A) is regular. For an
automaton that decides MonWP(A∗, A) we turn q0 into an accept state.
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One important aspect in the above definitions of the word problem is the
dependence on the generating set. In general, if for a semigroup S with gener-
ating set A the set SgWP(S,A) is regular, then this might not be true for other
finite generating sets of S. The following theorem characterises the semigroups
that have regular word problem with respect to every generating set.

Theorem 3.4. Let S be a finitely generated semigroup. Then SgWP(S,A) is
regular for all finite generating sets A if and only if S is finite.

Proof. The if part is precisely Theorem 3.2.
Suppose S is infinite. Then by Theorem 6.1 there exists some s in S that has

infinite order. Let A be a generating set for S. The set B := A ∪ {s, t} where
t = s2 also generates S. Applying the Pumping Lemma to the pair (tn0 , s2n0)�

shows that the set SgWP(S,B) is not regular.

A consequence of the preceding paragraph is that SgWP(S,A) being regular
depends on the choice of the generating set for infinite semigroups. We will show
in Section 4 that using asynchronous finite state automata is the appropriate
choice of automaton model to achieve independence of change of generators
while keeping a finite state device.

The following example shows that there are semigroups that are finitely
generated, not finitely presentable and have rational word problem.

Example 3.5. Let S = Sg 〈a, b | (abna = aba)n≥2〉. This semigroup is infinite,
not finitely presentable and SgWP(S, {a, b}) is rational. Furthermore there is
no generating set A′ for S such that SgWP(S,A′) is regular.

Proof. The monoid S is infinite because the submonoid generated by a is infinite.
If S had a finite presentation then there would be a setX ⊆ {abna = aba | n ≥ 2}
such that S ∼= Sg 〈a, b | X〉. This would mean that there is an N ∈ N such that
abNa = aba is a consequence of abka = aba for k less than N , which is impossi-
ble.

To show that S has rational word problem we give the following asynchronous
finite state automaton that decides the word problem of S.
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q0

q1 q2

q3

q4

(a, a)

(b, b)

(a, a)

(b, b)

(b, b)

(b, ε) , (ε, b)

(a, a)

(b, ε) , (ε, b)

(a, a)

(b, b)

(a, a)

To show that SgWP(S,B) is not regular for any finite B, we first show that
SgWP(S,A) is not regular. For this assume SgWP(S,A) to be regular and to
be accepted by a finite state automaton with n states. Choose n0 > n and
consider the pair(

”ab”n0 .”a”.”b”2n0 .”a”, ”a”.”b”2n0 .”ab”n0 .”a”
)
.

Both strings represent the same element (ab)n0+1a of S and therefore the pair
is an element of SgWP(S,A).

Since n0 > n there are two natural numbers i and j with i < j such that
after reading (”ab”i, ”a”.”b”2i−1) and (”ab”j , ”a”.”b”2j−1) the automaton is in
some state q. From (”ab”i, ”a”.”b”i−1) the automaton can reach an accept state
by reading the pair (”a”.”b”2i−3.”a”, ”ab”i−1.”a”). Hence the automaton also
accepts

(”ab”j .”a”.”b”2i−3.”a”, ”a”.”b”2j−1.”ab”i−1.”a”)

which would mean that (ab)j+1a is equal to (ab)i+1a in contradiction to j > i.
Any generating set for S must give rise to representatives for a and b and

thus this argument also holds for any generating set of S. Therefore there cannot
be a generating set B for S such that SgWP(S,B) is regular.

The following lemma shows that a free commutative semigroup of rank at
least two does not have rational word problem. This will also become one way
of showing that a semigroup does not have rational word problem.

Lemma 3.6. Let A = {a, b} and S = Sg 〈A | ab = ba〉. Then SgWP(S,A) is
not regular.
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Proof. For completeness we demonstrate how the pumping lemma is useful in
this context.

Two strings s and t over A represent the same element of M if and only if
|s|a = |t|a and |s|b = |t|b.

For a contradiction assume that SgWP(M,A) is regular. By the Pump-
ing Lemma there exists a natural number n0 such that for all strings s ∈
SgWP(S,A) with |s| > n0 there is a factorisation s = x.u.y of s with |x.u| < n0
such that x.ui.y is also in SgWP(S,A) for all i ∈ N.

Consider the two representatives ”a”n0 .”b”n0 and ”b”n0 .”a”n0 of the same
element of S. Thus s = (”a”n0 .”b”n0 , ”b”n0 .”a”n0) is an element of SgWP(S,A).
Since |s| = 2n0 > n0, there is a factorisation s = x.u.y of s with |x.u| ≤ n0 such
that x.ui.y is also in SgWP(S,A). The factors are

• x = (”a”k, ”b”k)

• u = (”a”l, ”b”l)

• y = (”a”n0−k−l.”b”n0 , ”b”n0−k−l.”a”n0) for k, l ∈ N with k + l < n0.

But ”a”k.”a”il.”b”n0−k−l and ”b”k.”b”il.”a”n0−k−l do not represent equal el-
ements in S for i > 1, thus SgWP(S,A) is not regular, not even rational by
Proposition 2.3.

As a closing example for this section, we show that a very important and
well known monoid does not have rational word problem.

Lemma 3.7. The bicyclic monoid B = Mon 〈b, c | bc = 1〉 does not have ratio-
nal word problem.

Proof. This can be proven by applying the Pumping Lemma to (”b”n0”c”n0 , ””)

for an appropriate n0.

4. Change of Generators and Subsemigroups

This section is dedicated to showing that for finitely generated semigroups
rational word problem is independent of the choice of a finite generating set.
The proof employs closure of rational relations under composition.

To prove the main result of this section we first give a few technical lemmas.
We observe that the graph of a map that replaces every occurrence of some
symbol in a string by a string is a rational relation, after that we show how
closure of rational relations under compositions helps proving the main theorem.

Lemma 4.1. Let A be an alphabet and B = A∪{b}, where b is not an element
of A. For some string w over A consider the following map:

ϕ : B → A∗, x 7→

{
w if x = b

x otherwise
.
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This map extends to a surjective morphism Φ : B∗ → A∗ that replaces all
occurrences of b in a string over B with w. The sets

R := {(v,Φ(v)) ∈ B∗ ×A∗ | v ∈ B∗}

and
Rr := {(Φ(v), v) ∈ A∗ ×B∗ | v ∈ B∗}

are rational relations.

Proof. Let w = ”t1 . . . tn” and consider R = 〈Q,B,A, q0, F,∆〉, where

Q = {q0, . . . , qn}
F = {q0}
∆ = {(q0, a, a, q0) | a ∈ A}

∪ {(qi−1, ε, ti, qi) | 1 ≤ i ≤ n}
∪ {(qn, b, ε, q0)}

Note that the states of R correspond to prefixes of w. A picture makes the
situation much easier to understand.

q0 q1 · · · qn

(a, a) , a ∈ A

(ε, t1) (ε, t2) (ε, tn)

(b, ε)

This automaton decides R.

This next lemma shows how composition of rational relations helps us.

Lemma 4.2. Let S be a semigroup generated by the finite set A and let B =

A ∪ {b}, where b is an element of S not in A. Choosing w in A+ such that
w = b, define R and Rr as in Lemma 4.1. Then the word problem SgWP(S,B)

can be written in terms of R, Rr and SgWP(S,A) as follows:

SgWP(S,B) = R ◦ SgWP(S,A) ◦Rr.

If SgWP(S,A) is rational then so is SgWP(S,B).

Proof. Note that for all u ∈ B∗ the equality u = Φ(u) holds. Therefore for all
(v, w) ∈ A+ ×A+

(v, w) ∈ SgWP(S,B)⇔ (Φ(v),Φ(w)) ∈ SgWP(S,A) .
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Also observe that for all (u,w) ∈ B+ ×A+

(u,w) ∈ R⇔ w = Φ(u)⇔ (w, u) ∈ Rr.

Therefore

(v, w) ∈ SgWP(S,B)

⇔ (v,Φ(v)) ∈ R, (Φ(w), w) ∈ Rr and (Φ(v),Φ(w)) ∈ SgWP(S,A)

⇔ ∃v′, w′ ∈ A∗ with (v, v′) ∈ R, (w′, w) ∈ Rr and (v′, w′) ∈ SgWP(S,A)

⇔ (v, w) ∈ R ◦ SgWP(S,A) ◦Rr.

It follows from Proposition 2.5 and Lemma 4.1 that if SgWP(S,A) is rational,
then SgWP(S,B) is rational as well.

The preceding lemmas are tied together to form the following theorem.

Theorem 4.3. Let S be a semigroup and let A be a finite generating set for S
such that SgWP(S,A) is rational.

1. If B := A∪ {b} where b is an element of S not in A, then SgWP(S,B) is
rational.

2. For the subsemigroup S′ generated by C := A\ {c} for any c ∈ A the word
problem SgWP(S′, C) is rational.

Proof. To prove 1, the relation SgWP(S,B) can be decomposed as shown in
Lemma 4.2 and is rational. For 2 assume A = 〈Q,A,A, q0, F,∆〉 to be the
asynchronous finite state automaton that decides SgWP(S,A), then by re-
moving all transitions involving a results in a new automaton that decides
SgWP(S′, C).

The promised results for this section are now corollaries of Theorem 4.3.

Corollary 4.4. Let S be a semigroup. If there exists a finite generating set A
for S such that SgWP(S,A) is rational then for all finite generating sets B of
S the set SgWP(S,B) is rational.

Proof. If there is a generating set A such that SgWP(S,A) is rational and
given any other generating set B for S, we add generators from B\A to A using
Theorem 4.3 (1). Then we remove everything in A\B by application of Theorem
4.3 (2).

Corollary 4.5. Let S be a semigroup and let A be a finite generating set for S
such that SgWP(S,A) rational. Then for every finitely generated subsemigroup
T the word problem SgWP(T,A′) is rational.

Proof. Given any finitely generated subsemigroup T of S, this follows from
4.3 by first adding a generating set for T to A and then removing superflous
generators from the resulting set.
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The preceding corollaries give us a means of proving non-rationality of the
word problem of semigroups. For example, if a semigroup contains a free com-
mutative semigroup of rank greater than one, it cannot have rational word
problem. This leads into Section 6 in which we discuss structural properties of
semigroups with rational word problem.

5. Change of Type

In this section we will show that groups with rational word problem are
finite, and that monoids have rational word problem regardless of whether they
are generated as a semigroup or a monoid.

We show that using asynchronous finite state automata does not result in
more power for groups: A group G with rational monoid word problem is still
finite. We will extend this result further by showing that the group of units of a
monoid is finite in Theorem 6.2 and by showing that in fact any group contained
in a semigroup with rational word problem has to be finite in Theorem 6.3.

Theorem 5.1. Let G be group, generated by a finite set A as a monoid. Then
the monoid word problem MonWP(G,A) is rational if and only if G is finite.

Proof. If G is finite, it follows from Theorem 3.2 that the MonWP(G,A) is
regular and thus rational.

Suppose that G is an infinite group finitely generated by A and that A is an
asynchronous finite state automaton that decides MonWP(G,A). Without loss
of generality assume A to be accessible and co-accessible because any state not
reachable from the initial state and every state from which no final state can be
reached cannot occur in an accepting computation and can be removed without
changing the accepted relation.

Let (v1, w1) and (v2, w2) be two pairs of strings that induce computations
γ1 : q0 →∗ q and γ2 : q0 →∗ q respectively for some fixed state q of A. The
quotients w1

−1v1 and w2
−1v2 coincide, because q is co-accessible and there is

a pair (s, t) that induces a computation δ : q →∗ qf to some accept state
qf , because G is a group. Therefore v1.s = w1.t and v2.s = w2.t which after
rearrangement yields

w1
−1v1 = ts−1 = w2

−1v2.

In particular if there are computations γ1 : q0 →∗ q and γ2 : q0 →∗ q induced by
(v1, ”ε”

|v1|) and (v2, ”ε”
|v2|) respectively then v1 = v2. Since G is infinite, there

have to be two strings w1 and w2 such that w1 6= w2 and such that (w1, ”ε”
|w1|)

and (w2, ”ε”
|w2|) induce computations γ1 : q0 →∗ q and γ2 : q0 →∗ q for some

state q. This contradicts the choice of w1 and w2.

Moving from semigroup generation to monoid generation and vice versa is
possible for monoids without destroying rational word problem.
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Theorem 5.2. Let M be a finitely generated monoid and let A be a finite
monoid generating set for M . Let S = Sg 〈A〉 be the subsemigroup of M gen-
erated by A. Then the semigroup word-problem SgWP(S,A) is rational if and
only if the monoid word-problem MonWP(M,A) is rational.

Proof. Let M be a finitely generated monoid and let A be a finite monoid
generating set for M that does not contain the identity element of M and let
S = Sg 〈A〉. Suppose that SgWP(S,A) is rational. The set

E =
{
v ∈ A+ | v = e

}
,

where e is the identity element of M is regular, because if e ∈ Sg 〈A〉 then there
is a string w over A with w = e and thus E is regular by Proposition 2.8, and
if e 6∈ Sg 〈A〉 then E is empty. Therefore the set

W = SgWP(S,A) ∪ (E × {ε}) ∪ ({ε} × E) ∪ {(ε, ε)}

is rational and in fact W = MonWP(M,A).
Conversely, assume MonWP(M,A) is rational. We observe that

SgWP(S,A) = MonWP(M,A) ∩
(
A+ ×A+

)
.

It remains to be shown that the intersection on the left hand side is rational.
For this we use that the intersection of a rational and a recogniseable subset of a
monoid is rational. This result can be found in [6]. Since MonWP(M,A ∪ {e})
is rational and A+ × A+ as a subset of A∗ × A∗ is recogniseable, the result
follows.

6. Structural Properties

Having proven in Section 4 that SgWP(S,A) being rational is independent of
the choice of A and thus a property of S, we want to establish structural results
about such semigroups. We prove that semigroups with rational word problem
cannot be periodic, monoids with rational word problem have finite group of
units and that in fact all groups contained in a semigroup with rational word
problem have to be finite.

We first show that an infinite semigroup with rational word problem cannot
be periodic.

Theorem 6.1. Let S be an infinite semigroup with rational word problem. Then
there is an element y such that the subsemigroup Sg 〈y〉 of S is infinite.

Proof. Proposition 2.6 ensures existence of a regular language D that contains
only finitely many representatives for each element of S. Since D is regular,
Proposition 2.3 implies the existence of a natural number n0 such that for every
v in D with |v| > n0 there exists a factorisation of v into three substrings x, y
and z, such that |y| ≥ 1, |x.y| < n0 and x.yi.z ∈ D for all i ∈ N. This means
that the element y has to have infinite order.
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For monoids an interesting submonoid is the group of units. A monoid with
rational word problem can only contain a finite group of units as is shown in
the following theorem.

Theorem 6.2. Let M be a finitely generated monoid and let U(M) denote the
group of units of M . If M has rational word problem then U(M) is finite.

Proof. Let M be a monoid generated by A with MonWP(M,A) rational and
let C = M\U(M).

Note that C is an ideal if and only if every right-invertible element is also
left-invertible, if and only if every left-invertible element is right-invertible.

If C is an ideal, then U(M) is finitely generated by U(M) ∩ A and has
rational word problem by Corollary 4.5. This means that by Theorem 5.1, the
group U(M) is finite.

If C is not an ideal, we can pick a from C and and b in U(M) with the
property that ab = 1 and ba 6= 1. By [10], Corollary 1.32 the submonoid of M
that is generated by a and b is a bicyclic monoid. By Corollary 4.5 and Lemma
3.7 this cannot happen for a monoid with rational word problem.

The following theorem extends Theorem 6.2 to semigroups, stating that ev-
ery group that is contained in a semigroup with rational word problem has to
be finite. This is straightforward for groups that are finitely generated subsemi-
groups by Theorem 4.3.

Theorem 6.3. Let S be a semigroup with rational word problem. Then all
subsemigroups of S that are groups are finite.

Proof. Let S be a semigroup finitely generated by A with rational word problem
and assume there exists an infinite subsemigroup G of S that is a group. Let A
be an asynchronous finite state automaton that decides SgWP(S,A) and let N
be the number of states of A. Let e be the identity of G, let f be a string with
f = e, and let n be the length of f .

Since G is infinite, there exist g = w in G with the property that a shortest
string w′ such that wfw′ = e has length greater than (n+ 1)N + n.

The automaton accepts (wfw′, f), therefore it has to go into a loop while
reading a subword of w′ on the first and reading nothing on the second tape.
This means that there are strings a, b and c with |b| ≥ 1 such that w′ = abc and
(wfabic, f) is accepted by the automaton for all i ∈ N, in particular (wfac, f)

is accepted by A. Therefore

e = w f ac = geac

which implies
g−1 = g−1geac = eeac = eac = f ac = fac

in contradiction to the choice of w′ as a shortest string such that fw′ represents
of g−1 of this form.
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7. Constructions

In this section we examine natural algebraic constructions or decompositions
involving semigroups and show which of them preserve rational word problem.
In particular we show that rational word problem is preserved under adding a
zero element or an identity and that a semigroup that is a disjoint union of an
infinite semigroup and a finite ideal has rational word problem if and only if the
infinite semigroup has rational word problem.

Theorem 7.1. Let S be a finitely generated semigroup. Then the following
statements are equivalent.

1. S has rational word problem.
2. S0 has rational word problem.
3. S1 has rational word problem.

Proof. We only prove the equivalence of (1) and (3), the equivalence of (1) and
(2) is a special case of Theorem 7.2.

Let A = 〈Q,A,A, q0, F,∆〉 be an asynchronous finite state automaton that
decides SgWP(S,A).

For S1 we add 1 to the set of generators. To form an automaton that decides
SgWP

(
S1, A ∪ {1}

)
we add transitions (q, ε, 1, q) and (q, 1, ε, q) for all q ∈ Q.

If S1 has rational word problem, we remove 1 from the generating set. By
Theorem 4.3, S has rational word problem.

We show that an infinite semigroup that consists of a finite ideal and an
infinite semigroup has rational word problem if and only if the infinite semigroup
has rational word problem. In particular the equivalence of (1) and (2) in
Theorem 7.1 is a special case of Theorem 7.2.

Theorem 7.2. Let T = S ∪ I be a finitely generated semigroup and assume I
to be a finite ideal of T and S to be an infinite subsemigroup of T . Then S has
rational word problem if and only if T has rational word problem.

Proof. To show that S has rational word problem if T has rational word problem,
let A be a finite generating set for T . The set B = A ∩ S generates S and
therefore S has rational word problem by Theorem 4.3.

Conversely, let S be finitely generated by B and let SgWP(S,B) be rational.
Denote by lb for b ∈ B the map that maps every element i of I to bi and let

ϕl : B → TI , b 7→ lb,

where TI is the full transformation monoid of the set I. We denote concatena-
tion for TI by ◦ for better readability, and α ◦ β for α and β in TI means that
we first apply β and then α. The map ϕl uniquely extends to a homomorphism
ϕ from A∗ to TI . Also note that since TI is finite, we may use it as a subset of
the set of states in a finite state automaton.
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Let B = 〈Q,B,B, q0, F,∆〉 be an asynchronous finite state automaton de-
ciding the word problem for S with respect to the finite generating set B. The
idea of the constructed automaton is as follows.

Given two strings v and w over the generating set A of T , to decide whether
v = w we can distinguish the following cases.

1. None of the two strings contain an element of I and both elements lie in
S, or

2. precisely one string contains an element of I, or
3. both strings contain an element of I and both elements lie in I.

To construct an automaton that decides the word problem of T we need
three components that provide accepting runs for the cases (1) and (3), and
for (2) we have to make sure that there is no run that accepts. For (1), we
include the automaton B, for (3) we use a direct product of two copies of TI
that memorises left-transformations of I by S that are read on both tapes and
a direct product of two copies of I to compare elements of I.

For a formal construction consider the automaton

A = 〈R,A,A, r0, G,Γ〉 ,

over the alphabet A = B ∪ I, with the set

R = {r0} ∪ Q ∪ TI ×TI ∪ I × I,

of states and the following transition relation in which we denote by α and β

elements of TI , by i and j elements of I, by x and y elements of B and by a
and b elements of A,

Γ = {(r0, ε, ε, q0)} ∪ {(r0, ε, ε, (id, id))}
∪ ∆

∪ {((α, β), x, ε, (α ◦ (ϕlx), β)) | x ∈ B}
∪ {((α, β), ε, y, (α, β ◦ (ϕly))) | y ∈ B}
∪ {((α, β), a, b, (αa, βb) | a, b ∈ I}
∪ {((i, j), a, ε, (ia, j)) | a ∈ A}
∪ {((i, j), ε, b, (i, jb)) | b ∈ A} .

The set G of accept states is F ∪ {(i, i) | i ∈ I}.
To prove correctness we show that (v, w) is accepted by A if and only if

v = w.
Assume that a pair (v, w) is accepted by A. This means there is an accepting

computation γ of A on (v, w). If the computation has the form

γ : r0
(ε,ε)−−−−−→ q0

(v,w)−−−−−→
∗
q ∈ F,

we are in case (1). By assumption B decides SgWP(S,B), and therefore v = w.
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If γ has the form

γ : r0
(ε,ε)−−−−−→ (id, id)

(v,w)−−−−−→
∗

(i, i)

for some i in I, we are in case (3) and by construction v = w because they
represent equal elements of I.

Conversely assume v = w in T . In case (1) there is an accepting computation
on B by assumption, and thus an accepting computation on A exists by con-
struction. In case (3) we can decompose v and w as v = v1av2 and w = w1bw2,
where v1 and w1 are elements of B∗, a and b are elements of I and v2 and w2

are elements of A∗. By construction of A the following computation of A on
(v, w) exists:

γ : r0
(ε,ε)−−−−−→(id, id)

(v1,w1)−−−−−→ (ϕlv1, ϕlw1)
(a,b)−−−−−→ ((ϕlv1)a, (ϕlw1)b)

(v2,w2)−−−−−→((ϕlv1)a)v2, ((ϕlw1)b)w2).

What is left to show is that (ϕrv2)(ϕlv1)a = (ϕrw2)(ϕlw1)b.

((ϕlv1)a)v2 = v1av2 = v1av2 = v = w = w1bw2 = w1bw2 = ((ϕlw1)b)w2

8. Products

In this section we examine products of semigroups with rational word prob-
lem. The direct product of two semigroups with rational word problem does
not have rational word problem in general, even if we assume the direct product
to be finitely generated. This can most easily be seen by considering N0 × N0

which does not have rational word problem by 3.6.
It has been shown in [11] that for two finitely generated semigroups S and

T the direct product S× T of S and T is finitely generated if and only if one of
the following conditions is true.

1. S and T are finite,
2. S is finite and S2 = S,
3. T is finite and T 2 = T , or
4. S2 = S and T 2 = T .

Following an example which can be found in Remark 7.5 of [11] we consider a
finitely generated infinite semigroup S with rational word problem that has the
property S2 = S, effectively enabling us to form the finitely generated infinite
semigroup S × S.
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q0

q1

q2

(a, a)

(b, b)

(a, ε) , (ε, a)

(b, b)

(b, b) , (a, ε) , (ε, a)

Figure 1: Asynchronous finite state automaton A that decides SgWP(S, {a, b}) for S =
Sg

〈
{a, b} | a2 = a, ba = b

〉
.

Example 8.1. Let S be given by the presentation

S = Sg
〈
a, b | a2 = a, ba = b

〉
.

The semigroup S is infinite, finitely generated and has rational word problem.
The direct product S × S is finitely generated but does not have rational word
problem.

There is an easily described set of representatives of elements of S consisting
of non-empty strings of the form ”a”α”b”β for α ∈ {0, 1} and β ∈ N.

Consider the automaton A depicted in Figure 1. We prove that two non-
empty strings v and w over {a, b} are accepted by A if and only if v = w.

Let v and w be two non-empty strings such that v = w. Then either both
begin with a or they both begin with b. In either case the automaton ends up
in a final state after reading the first character of both strings. After that, both
strings can contain any number of as as long as there is an equal number of bs
in both strings. The automaton can just skip occurrences of a until it reaches
a b on each tape which it can read then. Now consider T = S × S. Following

[11], the resulting semigroup T is finitely generated and finitely presented. A
generating set is for example

B = {(a, a), (a, b), (b, a), (b, b)} .

The elements (b2, b) and (b, b2) generate a free commutative semigroup of rank
2 in T and therefore by Theorem 4.3 T does not have rational word problem.

The following theorems characterise how rational word problem behaves un-
der direct products. Given a direct product of two semigroups with rational
word problem, it follows that the factors have rational word problem. Con-
versely, the direct product of two semigroups with rational word problem gives
a semigroup with rational word problem only if the direct product is finitely
generated and one of the factors is finite.
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Theorem 8.2. Let S and T be semigroups. If S × T is finitely generated and
has rational word problem, then S and T are finitely generated and have rational
word problem.

Proof. It is sufficient to prove the statement for S. Assume S×T to be generated
by the finite set C. Applying the projection

πS : S × T → S, (s, t) 7→ s,

to C gives the finite generating set πS(C) for S.
Assume that S × T has rational word problem and that

A = 〈Q,A,A, q0, F,∆〉

is an asynchronous finite state automaton that decides SgWP(S × T ,A). The
following automaton then decides SgWP(S, πS(A)).

A′ = 〈Q, πS(A), πS(A), q0, F,∆
′〉 ,

where
∆′ = {(p, πSa, πSb, q) | (p, a, b, q) ∈ ∆} .

Lemma 8.3. Let S be a finite semigroup and T be a finitely generated semigroup
with rational word problem. If S×T is finitely generated, then S×T has rational
word problem.

Proof. Let C be a finite generating set for S × T . We denote by πS and πT the
projections from S × T onto S and T respectively.

Since T has rational word problem there is an asynchronous finite state
automaton

B = 〈R, πT (C), πT (C), r0, G,Γ〉

that decides SgWP(T, πT (C)).
The automaton C that decides SgWP(S × T ,C) can then be given as follows.

C =
〈
S1 × S1 ×R,C,C, (1, 1, r0), H,Π

〉
,

where
H = {(s, s, g) | s ∈ S, g ∈ G} ,

and the transition relation Π is given as

Π = {[(s, t, q), c, d, (s · πS(c), t · πS(d), r)] | (q, πT (c), πT (d), r) ∈ Γ}
∪ {[(s, t, q), ε, d, (s, t · πS(d), r)] | (q, πT (c), πT (d), r) ∈ Γ}
∪ {[(s, t, q), c, ε, (s · πS(c), t, r)] | (q, πT (c), πT (d), r) ∈ Γ}
∪ {[(s, t, q), ε, ε, (s, t, r)] | (q, πT (c), πT (d), r) ∈ Γ} .
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We show that (v, w) is accepted by C if and only if v = w. Let C accept the
pair (v, w) in C+. Then, by construction, there exists an accepting computation
on B, thus πT (v) = πT (w). Also by contruction πS(v) = πS(w).

Now let v = w. In particular πT (v) = πT (w), and hence there exists an
accepting run of B. One can immediately find a run on C by lifting this run
from B to C. Since also πS(v) = πT (w) the lifted run is accepting.

Lemma 8.4. Let S and T be finitely generated infinite semigroups with rational
word problem. Then S × T contains a free commutative semigroup of rank 2.

Proof. By Theorem 6.1 there are elements s in S and t in T that generate
infinite monogenic subsemigroups in S and T respectively. The elements (s2, t)

and (s, t2) generate a free commutative semigroup of rank 2 in S×T . Theorem
4.3 now implies that S × T cannot have rational word problem.

We summarise the above in the following theorem.

Theorem 8.5. Let S and T be two semigroups such that S × T is finitely
generated. Then S × T has rational word problem if and only if at least one of
S or T is finite.

Proof. If S × T has rational word problem, then Theorem 8.2 implies that S
and T have rational word problem.

Conversely, if both S and T are finite then the direct product S×T is finite
and therefore has rational word problem. If S is finite and T is infinite or vice
versa, we use Lemma 8.3. Finally, if both S and T are infinite Lemma 8.4 proves
that S × T does not have rational word problem.

Inductively it follows that any finite direct product S1×· · ·×Sn of semigroups
has rational word problem if and only if it is finitely generated and there is at
most one Si that is infinite and has rational word problem.

Rational word problem is not preserved under monoid free products. Con-
sider the cyclic group C2. The monoid free product of two copies of C2 is
an infinite group. But infinite groups do not have rational word problem by
Theorem 5.1. Thus monoid free products even of finite monoids with rational
word problem do not necessarily have rational word problem. The situation is
different for semigroup free products.

Theorem 8.6. Let S and T be two semigroups generated by finite sets A and
B respectively. The semigroup free product S ? T has rational word problem if
and only if S and T have rational word problem.

Proof. Let S and T be semigroups with rational word problem and let A be
an asynchronous automaton that decides SgWP(S,A), and B be an asyn-
chronous automaton that decides SgWP(T,B). An automaton that decides
SgWP(S ∗ T ,A ∪B) can be constructed by using both A and B and adding a
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new initial state q0 and (ε, ε) transitions from q0 to the initial states of A and
B as well as from the accept states of both automata to q0.

The converse follows directly from Theorem 4.3.

Another product construction that is possible for semigroups is the zero
union of two semigroups. We define the zero union as follows.

Definition 8.7. Let U be a semigroup with zero. If there exist subsemigroups
S and T of U such that S∩T = {} and T = S∪U and st = 0 = ts for all s ∈ S
and t ∈ T then U is a zero union of S and T , denoted by S ∪0 T .

Note that S ∪0 T is finitely generated if and only if S and T are finitely
generated. A generating set for S can be obtained from a generating set C for
S ∪0 T by the intersecting C with S, a generating set for T can be obtained by
intersecting C with T . Given generating sets for S and T the union of those
generating sets together with the zero element gives a generating set for S ∪0 T .
Rational word problem is preserved under zero union.

Theorem 8.8. Let U be a finitely generated semigroup that is a zero union of
two subsemigroups S and T . Then U has rational word problem if and only if
S and T have rational word problem.

Proof. If U = S ∪0 T has rational word problem, then S and T are finitely
generated subsemigroups of U and therefore have rational word problem by
Theorem 4.3.

Conversely let C be a generating set for U . Let A = C∩S and let B = C∩T
be generating sets for S and T respectively and assume that SgWP(S,A) and
SgWP(T,B) are rational.

Additionally we observe that the set

Z =
{
v ∈ C+ | v = 0

}
,

is regular and hence Z × Z is rational. We show that

SgWP(S ∪0 T ,C) = SgWP(S,A) ∪ SgWP(T,B) ∪ (Z × Z) .

Let (v, w) be in SgWP(S ∪0 T ,C), which is the case if and only if v = w and
we distinguish three cases

1. v is a non-zero element of S,
2. v is a non-zero element of T , or
3. v is zero.

In the first two cases (v, w) is contained in the right hand side, because it is
either contained in SgWP(S,A) or in SgWP(T,B) respectively. A string v over
C represents the zero element of S ∪0 T if and only if it is contained in Z, thus
if v = 0 then (v, w) is contained in Z × Z.
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9. Remarks and Outlook

This section aims at giving reference to further research questions which are
outside the scope of this paper.

Obviously a semigroup with rational word problem has decidable word prob-
lem and it is undecidable whether a given finitely generated semigroup has ra-
tional word problem because then it would be decidable whether a given finitely
generated semigroup was trivial, because it can be easily checked whether a
semigroup with rational word problem is trivial. One interesting project is to
find an algorithm that, given a presentation of a monoid finds an automaton
that decides the word problem if it exists.

Once one has characterised all semigroups with rational word problem, one
also has classified all rational congruences. This is because the word problem
of a semigroup S finitely generated by a subset A is the kernel of the canonical
map : A+ → S, and every rational congruence is the kernel of such a map. An
open question that is tied to this is whether rational equivalence relations have
regular cross sections, that is can we find a regular set of unique representatives
for each equivalence class or even a finite state automaton that computes for
any given word this normal form. This problem was investigated in [8] and to
this day was not solved.

Further research will aim at finding a full characterisation of all semigroups
with rational word problem, extending the notion of rational word problem to
intersections of rational relations as well as giving a better picture of the rela-
tionship between different definitions of word problem and different automaton
models that decide those word problems. This will provide a more complete
picture of the complexity of word problems that arise. In connection to the
structure theory of semigroups, there are questions to be asked about Green’s
relations. For example are Green’s relations rational for semigroups with ratio-
nal word problem? How many R− or L−classes can a semigroup with rational
word problem have? Are all H classes of such semigroups finite?

A further direction of research is connections to geometric semigroup the-
ory because there is an interesting connection between the theory of automatic
groups and geometric group theory as described in [12] it should be determined
in how far there might be a connection of this type for the theory presented in
this paper.

10. Conclusion

We have introduced a natural class of finitely generated semigroups with the
property that the word problem is decidable by an asynchronous finite state
automaton. We showed this property to be independent of the generating set
and then also showed behaviour of the property under a few basic constructions.
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Also it was shown that all finite groups are contained in this class but no infi-
nite ones. There are some very simple infinite semigroups with rational word
problem.

We were not yet able to achieve a full characterisation of all semigroups
with rational word problem. This is due to the fact that there is no nice de-
composition theory for semigroups, but this goal seems to be achieveable. It is
also desirable to develop this theory with less ad-hoc proofs for the automata
theoretic theorems.
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