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School of Mathematics and Statistics

MT4517 Rings & Fields

Part 1 - Introduction

A brief introduction

A ring is a set together with two binary operations + and · satisfying various natural axioms.
The ‘prototype’ example is the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} with the usual

arithmetic. The fact that this example on its own yields the whole of ‘Number Theory’ shows
what a rich structure rings can have.

In fact, many of the ‘usual’ examples where one can ‘add’ or ‘multiply’ give us rings. For
example: the integers Z, the rationals Q, the reals R, the complex numbers C, real valued
functions and so on...

However, starting with the axioms and looking for examples of things that satisfied them is
not the way rings first came into mathematics.

Some historical background

In about 1630 Fermat was reading a recently published translation of Arithmetica by Diophan-
tus of Alexandria. He was making notes in the margin and at one point he entered:

To divide a cube into two other cubes, a fourth power or in general any power whatever into
two powers of the same denomination above the second is impossible, and I have assuredly
found an admirable proof of this, but the margin is too narrow to contain it.

That is, if n > 2 there are no integer solutions x, y and z of the equation xn + yn = zn.
This is the famous Fermat’s Last Theorem which resisted all attempts to prove it until recently.
Investigations of this result led to much interesting mathematics, including some of the first
systematic investigations of ring theory.

Fermat was able to prove the case n = 4 (by something called the ‘method of descent’) but
all other cases proved much harder.

In his 1770 book Algebra Euler published a proof for the n = 3 case. The following is a
sketch of this proof. (We will return to this later in the semester!)

Assume that x3 + y3 = z3 and that x and y are both odd and coprime. Then put x = p+ q,
y = p − q and z = 2r and then get (p + q)3 + (p − q)3 = 8r3 or p(p2 + 3q2) = 4r3. Since p, q
are coprime it is possible to deduce that p is divisible by 4 and p2 + 3q2 must be a perfect cube.
Then Euler factorised p2 + 3q2 into (p + q

√
−3)(p − q

√
−3) and observed that in the ring (he
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didn’t use that term!) of complex numbers of the form {a+ b
√
−3 : a, b ∈ Z } these two factors

were coprime and so each factor is a perfect cube. That leads to a contradiction.
Unfortunately Euler’s proof relies on the fact that in this ring we can factor elements into a

unique product of primes just as one can in Z. But in the ring Euler used we have 4 = 2× 2 =
(1 +

√
−3)(1 −

√
−3) and these two factorisations are distinct. Hence this proof is incorrect,

though nobody noticed the problem at the time.
It only became apparent much later in 1847 when Lamé claimed he had proved Fermat’s

Last Theorem by factoring xn + yn = (x − η)(x − η2)...(x − ηn−1) where η is an nth complex
root of 1. It was swiftly realised that the rings in which this factorisation was done did not have
unique factorisation and it was left to Kummer to introduce the idea of an ‘ideal number’ to
restore unique factorisation and allow Fermat’s Theorem to be proved for some values of n.
This invention of Kummer led to the development of the idea of an ideal of a ring which we
will meet later.

Another area of mathematics which was important in the development of ring theory is
geometry. Many interesting curves and surfaces have equations which involve polynomials.

A circle x2 + y2 − 1 = 0

A hyperbola x2 − y2 − 1 = 0

Two lines x+ y = 0
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A single point x2 + y2 = 0

A paraboloid x2 + y2 − z = 0

A hyperboloid x2 + y2 − z2 − 1 = 0

It turns out that geometric objects like this are associated with particular rings of polyno-
mials and the algebra of these rings gives insight into the geometric properties. This area of
mathematics is called algebraic geometry.
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In the 19th Century it was realised that the complex numbers parametrise the plane R2

in a very useful way. Mathematicians realised that it would be nice to find a similar way to
parametrise the space R3. The mathematician William Rowan Hamilton worked on this for a
long time with no success. Each day at breakfast his daughter would ask:

Well, Papa can you multiply triplets?

but he had to admit that he could still only add and subtract them.
His breakthrough came in two stages. First he realised that one had to move from 3 to 4

dimensions and so (by analogy with the C case) one had numbers of the form a+ ib+ jc+ kd
for a, b, c, d and i2 = j2 = k2 = −1. Then one could put ij = k but to avoid a contradiction one
had to make the multiplication non-commutative with ji = −k.

And here there dawned on me the notion that we must admit, in some sense, a fourth di-
mension of space for the purpose of calculating with triples... An electric circuit seemed to
close, and a spark flashed forth.

This revelation came to Hamilton when he was walking with his wife by a canal in Dublin
in 1843 and he was so taken with it that he stopped and carved two rules for multiplication on
the Brougham bridge.

This system is called the quaternions or hamiltonians. These proved to be very important in
the development of mechanics and other areas of applied mathematics in the 19th century. In
fact, the quaternions contain what we now call the scalar and vector product of 3-dimensional
vectors and it is these products which are now used.

This was the first example of a non-commutative ring and when Cayley and Sylvester de-
veloped the ideas of matrices later in the century this too gave examples of such structures.

1. Numbers

Before beginning our study of abstract rings, we recall some well-known properties of the
integers Z.

If a, b ∈ Z such that a = qb for some q ∈ Z, then we say that b divides a and we write b | a.
Note that 1 | a, −1 | a, a | 0 for all a ∈ Z, and 0 | a if and only if a = 0.

Example 1.1. The numbers
1, 2, 3, 5, 6, 10, 15, 30

divide 30 and
1, 2, 19, 38

divide 38.

1.1. The Division Algorithm

Theorem 1.2 (Division Algorithm) If a, b ∈ Z with b 6= 0, then there exist unique quotient q ∈ Z
and remainder r ∈ Z such that

a = qb+ r

where q ∈ Z and 0 6 r < b.
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Proof. To prove that r is unique assume that

a = q1b+ r1 and a = q2b+ r2.

We must prove that r1 = r2. Seeking a contradiction assume that r1 < r2. It follows that
(q1 − q2)b = r2 − r1 > 0. But then b divides r2 − r1 ≤ r2 < b, a contradiction.

To prove that r exists, let M = { a − qb : q ∈ Z } and let r be the smallest number in M
such that r ≥ 0 (exercise: why does r exist?). Then r = a − qb for some q ∈ Z . If r ≥ b, then
r > r − b ≥ 0 and r − b = a− qb− b = a− (q + 1)b ∈M . Thus we have a contradiction since r
is the smallest number in M with r ≥ 0. Since r is unique also q = (a− r)/b is unique. �

Example 1.3. Let a = 13281 and b = 17. Then a = 781b + 4. So, the quotient is 781 and the
remainder is 4.

1.2. The Euclidean Algorithm

Definition 1.4. Let a, b ∈ Z. Then d ∈ N is the greatest common divisor of a and b if d | a and d | b
and d′ 6 d whenever d′ | a and d′ | b. The greatest common divisor d is denoted by gcd(a, b).

The next lemma will help us find a method for determining the gcd of any two integers.

Lemma 1.5. Let a, b ∈ Z. Then

(i) gcd(a, 0) = |a|;

(ii) gcd(a, b) = gcd(a− qb, b) for all q ∈ Z.

Proof. (i). As noted above, all integers divide 0 and the largest number dividing a is a. Hence
gcd(a, 0) = a.

(ii). Let d1 = gcd(a, b) and d2 = gcd(a−qb, b). Then d1 | a and d1 | b. Hence d1 divides a−qb
and so d1 6 d2. Conversely, if n | a− qb and n | b for some n ∈ N, then n | a. In particular, d2 | a
and d2 | b and so d2 6 d1. �

Theorem 1.6. Let a, b ∈ Z and d = gcd(a, b). Then there exist x, y ∈ Z such that d = ax+ by.

Before proving Theorem 1.6 let us consider an example.

Example 1.7. Let a = 76 and b = 32. Then the divisors of a are

1, 2, 4, 19, 38, 76

and the divisors of b are
1, 2, 4, 8, 16, 32.

So, the gcd(a, b) = 4. How do we find x and y? We use the extended Euclidean algorithm:

a = 76 32 = b
2b = 64 24 = 2a− 4b

r1 = a− 2b = 12 8 = −2a+ 5b = r2
−2a+ 5b = 8 8 = 6a− 14b

r3 = 3a− 7b = 4 0 = −8a+ 19b

7



Proof of Theorem 1.6. [Omitted from lectures.] If a, b ∈ N, then the extended Euclidean
algorithm described above can be used, as shown below, to find x and y. Assume without loss
of generality that a > b. Set a = r0 and b = r1. Applying the Division Algorithm, there exists
q2 ∈ Z such that r0 = q2r1 +r2 where 0 6 r2 < r1. It follows from Lemma 1.5(ii) that gcd(a, b) =
gcd(r0− q2r1) = gcd(r2, r1). If r2 = 0, then from Lemma 1.5(ii) that gcd(a, b) = gcd(0, b) = b and
a− (q2 − 1)b = b, and we can stop.

If r2 6= 0, then apply the Division Algorithm to find q3 ∈ Z such that r1 = q3r2 + r3 where
0 6 r3 < r2. Again, gcd(a, b) = gcd(r2, r1) = gcd(r2, r1 − q3r2) = gcd(r2, r3). So, if r3 = 0, then
gcd(a, b) = r2 and a − q2b = r2, and we can stop. If r3 6= 0, then we repeat this procedure by
applying the Division Algorithm to r2 and r3 and so on.

Now, b > r0 > r1 > · · · ≥ 0 and so ri+1 = 0 for some i. Hence we have found gcd(a, b) = ri
and the equations

r0 = q2r1 + r2, r1 = q3r2 + r3, . . . , ri−2 = qiri−1 + ri, ri−1 = qiri.

The integers x and y can be obtained as a combination of qjs by substituting (from the second
last to first) in these equations.

If a or b (or both) are in Z \ N, then −a and/or −b are in N. Hence changing the signs if
necessary, there exist x, y ∈ Z such that x(−a) + y(−b) = d. Hence (−x)a + (−y)b = d, as
required. �

Definition 1.8. Let a, b ∈ Z. Then a and b are called coprime if gcd(a, b) = 1.

Corollary 1.9. Let a, b, c ∈ Z such that a and b are coprime. Then

(i) if a | bc, then a | c;

(ii) if a | c and b | c, then ab | c;

(iii) if a and c are coprime, then a and bc are coprime.

Proof. As an exercise. �

Example 1.10. Let a = 15, b = 16, and c = 30. Then gcd(a, b) = 1 and a | bc and so 15 = a | c =
30 by Corollary 1.9(i).

Let c = 240. Then a | c and b | c, and so ab = 240 | 240 = c by Corollary 1.9(ii).
Let c = 17. Then a = 15 and bc = 272 are coprime by Corollary 1.9(iii).

1.3. Modular arithmetic

In this section we will recall the notions involved in modular arithmetic. Let m ∈ N and let
Z/(m) denote the set

{ n ∈ N : 0 6 n < m } = {0, 1, 2, . . . ,m− 1}.

(The reason for choosing this notation should become apparent later in the course!) If a, b ∈
Z/(m), then a+ b, a · b ∈ N and so by the Division Algorithm 1.2 we can write

a+ b = q1m+ r1 and a · b = q2m+ r2

where r1, r2 are the unique remainders such that 0 6 r1, r2 < m. Note that r1, r2 ∈ Z/(m). This
defines two operations addition modulo m and multiplication modulo m on Z/(m).
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We will write
x ≡ y (mod m)

if x and y leave the same remainder on division by m. Note that this is equivalent to the fact
that x− y is divisible by m. So for modular arithmetic we would write

a+ b ≡ r1 (mod m) and a · b ≡ r2 (mod m).

If n ∈ N and n ≡ r (mod m) with 0 ≤ r < m, then we may also say that r is n reduced
modulo m. Sometimes we denote the modulo m reduction of a number by putting a bar over
the number (if it is clear from the context modulo which number we reduce).

Example 1.11.

1 + 1 ≡ 2 (mod 7)

4 + 6 ≡ 3 (mod 7)

3 + 4 ≡ 0 (mod 7)

2 · 5 ≡ 3 (mod 7)

17 = 3 (if it is clear that we are reducing modulo 7).

You can (and should!) verify as an exercise that (modulo m)

x · y = x · y

and
x+ y = x+ y.

From this follows that addition and multiplication modulo m satisfy the following proper-
ties:

(x+ y) + z = x+ (y + z)

(xy)z = x(yz)

x+ 0 = 0 + x = x

1 · x = x · 1 = x

x+ (m− x) = (m− x) + x = 0

x+ y = y + x

xy = yx

x · 0 = 0 · x = 0

for all x, y, z ∈ Z/(m).

Example 1.12. The following is the table of multiplication for Z/(7) modulo 7.

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1
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1.4. The Chinese Remainder Theorem

Let us now consider the following problem. Player 1 thinks of any natural number x less than
30 and calculates the remainder of x modulo 2, modulo 3, and modulo 5. Player 1 then tells
Player 2 the three remainders Player 2 wins if he can tell Player 1 what the original x is, and
Player 1 wins if Player 2 cannot. For example, if x = 18, then x ≡ 0 (mod 2), x ≡ 0 (mod 3),
and x ≡ 3 (mod 5).

Is there a way for Player 2 to always win this game? The answer is yes! To see this let us
reformulate the game. If q1, q2, . . . , qt ∈ N \ {0} and N = q1q2 · · · qt 6= 0, then define

ρ : Z/(N) −→ Z/(q1)× Z/(q2)× · · · × Z/(qt)

by
ρ(x) = (x (mod q1), x (mod q2), . . . , x (mod qt)). (4.1)

(Note that the bars here indicate reductions modulo the different numbers q1 up to qt!)

Lemma 1.13. Let q1, q2, . . . , qt ∈ N \ {0} such that q1, q2, . . . , qt are pairwise coprime and let N =
q1q2 · · · qt. Then ρ : Z/(N) −→ Z/(q1)× Z/(q2)× · · · × Z/(qt) defined in (4.1) is a bijection.

Proof. Let x, y ∈ Z/(N) such that ρ(x) = ρ(y). Then x ≡ y(mod qi) for all i. It follows that
x − y ≡ 0(mod qi) for all i and so q1 | x − y, q2 | x − y, . . . , qt | x − y. Now, q1, q2, . . . , qt are
coprime and so by repeatedly applying Corollary 1.9(ii) and (iii) we obtain N = q1 · · · qt | x− y.
But x, y ∈ Z/(N) and so 0 6 x, y < N . Hence x = y and ρ is injective. Moreover, ρ must be
surjective as Z/(N) and Z/(q1)× Z/(q2)× · · · × Z/(qt) have equal size. �

So, in our example, we known that the number 18 is in 1-1 correspondence with the triple
(0, 0, 3). To recover 18 from the triple (0, 0, 3) we only have to apply ρ−1.

Theorem 1.14 (Chinese Remainder Theorem) Let q1, q2, . . . , qt ∈ N \ {0} such that q1, q2, . . . , qt
are pairwise coprime, let N = q1q2 · · · qt, and let a1, a2, . . . at ∈ Z be arbitrary. Then the system of
equations:

x ≡ a1 (mod q1)

x ≡ a2 (mod q2)

...
x ≡ at (mod qt)

has a solution x ∈ Z. Moreover, if x is a solution, then y ∈ Z is one if and only if x ≡ y (mod N).

Proof. We start by finding the solution x to the equations given in the theorem. By repeatedly
applying Corollary 1.9(iii) we deduce that qi and N/qi are coprime for all i. Hence from the
extended Euclidean Algorithm 1.6 there exist integers xi and yi such that

x1q1 + y1(N/q1) = 1

x2q2 + y2(N/q2) = 1

...
xtqt + yt(N/qt) = 1.

Set bi = yi(N/qi). Then
bi = 1− xiqi ≡ 1 (mod qi)
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and since qj | (N/qi) for all i 6= j
bi ≡ 0 (mod qj).

So, x = a1b1 + a2b2 + · · ·+ atbt ∈ Z is a solution to the equations in the theorem.
Now let x ∈ Z be a solution. An integer y is a solution if and only if x and y leave the

same remainder on division by all the qi, that is, the difference is divisible by qi for 1 ≤ i ≤ t.
However, the proof of Lemma 1.13 shows that this is the case if and only if x− y is divisible by
N . �

The proof of Theorem 1.14 can be used to find the solutions to specific examples of systems
of equations like those given in Theorem 1.14.

Example 1.15. Continuing with the example given above. Let N = 30 and (0, 0, 3) ∈ Z/(2) ×
Z/(3)× Z/(5). Then we want to find a solution x to the equations

x ≡ 0 (mod 2)

x ≡ 0 (mod 3)

x ≡ 3 (mod 5).

So, applying the extended Euclidean Algorithm to the pairs (2, 15), (3, 10), and (5, 6) we obtain:

N/q1 = 15 2 = q1
7q1 = 14

(N/q1)− 7q1 = 1

N/q2 = 10 3 = q2
3q2 = 9

(N/q2)− 3q2 = 1

N/q3 = 6 5 = q3
q3 = 5

(N/q3)− q3 = 1

So, b1 = N/q1 = 15, b2 = N/q2 = 10, and b3 = N/q3 = 6. Thus the solution we are looking for is

x = a1b1 + a2b2 + a3b3 = 0 · 15 + 0 · 10 + 3 · 6 = 18.

1.5. Prime Numbers

Recall that a prime number is a natural number p > 1 that is only divisible by itself and 1. The
first few primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, . . . .

They can be found as follows using a method called the sieve of Eratosthenes. Write out all the
natural numbers

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

and then cross out the numbers that are multiples of 2 but not 2 itself

2, 3,X4, 5,X6, 7,X8, 9,X10, 11,X12, 13,X14, 15,X16, 17,X18, 19,X20, 21,X22, 23,X24, 25.

The numbers not crossed out are not multiples of 2. Continue by crossing out the multiples of
3

2, 3,X4, 5,X6, 7,X8,X9,X10, 11,X12, 13,X14,X15,X16, 17,X18, 19,XX20,X21,X22, 23,X24, 25.

then 5, then 7, then 11 and so on

2, 3,X4, 5,X6, 7,X8,X9,X10, 11,X12, 13,X14,X15,X16, 17,X18, 19,X20,X21,X22, 23,X24,X25.

Repeating this procedure over and over again you can eventually tell if any number is prime
or not. The largest known prime (as of 2008!) is

243112609 − 1

and it has 12978189 digits!
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Theorem 1.16. Every non-zero natural number is a product of primes.

Proof. We will prove that every natural number n ≥ 1 is a product of primes by induction on
n.

The number 1 is the empty product of primes. Assume that for all m < n we know that m
is a product of primes. If n is a prime number, then it is a product of primes (of length 1). If n
is not a prime, then there exist a, b ∈ N such that a, b > 1 and n = ab. Then by induction a and
b are products of primes and hence so is n. �

Theorem 1.17. There are infinitely many prime numbers.

Proof. Seeking a contradiction assume the contrary. Then the primes can be listed as

p1, p2, . . . , pm

for some natural number m ≥ 1. Now, the natural number n = p1p2 · · · pm + 1 is a product of
primes and hence divisible by some pi for 1 6 i 6 m. But then pi | n and pi | p1p2 · · · pm and so
pi | (n− p1p2 · · · pm) = 1, a contradiction as 1 is not a prime. �

A crucial property of the primes is given in the following lemma. We will revisit this lemma
again in later sections.

Lemma 1.18. If p ∈ N is a prime and p | ab, then p | a or p | b.

Proof. If p - a, then gcd(p, a) = 1. Hence p | b by Corollary 1.9. On the other hand, if p | a,
then we are finished. �

Theorem 1.19. Let m ∈ N. Then there exists a unique (up to changing the order of the factors) factor-
ization of m into a product of prime numbers m = p1p2 · · · pn for some n ∈ N.

Proof. We may assume that m > 1. Let p1p2 · · · pn and q1q2 · · · qr be two factorizations of m
into products of primes. Then

m = p1p2 · · · pn = q1q2 · · · qr.

If pi = qj for some i and j, then we can cancel these factors. Hence we can also assume that
pi 6= qj for all i, j. There must also be at least 1 prime on the left hand side (say) and at least 2 on
the right hand side. So, we can assume that n ≥ 1 and r > 1. Now, p1 | m and so by repeatedly
applying Lemma 1.18 we find that p1 | qj for some j. But qj is a prime and so p1 = qj , a
contradiction to the assumption that pi 6= qj for all i, j. �
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School of Mathematics and Statistics

MT4517 Rings & Fields

Ring Theory – the basics

2. Definitions and first examples

The example of the integers in the previous chapter serves as a prototype for the more abstract
study we start in this chapter.

Definition 2.1. A ring is a setR together with a pair of binary operations + and ∗ satisfying the
axioms:

A1. r + (s+ t) = (r + s) + t for all r, s, t ∈ R;

A2. there exists 0 ∈ R such that r + 0 = 0 + r = r for all r ∈ R;

A3. for all r ∈ R there exists −r ∈ R such that r + (−r) = 0 = (−r) + r;

A4. r + s = s+ r for all r, s ∈ R;

M1. r ∗ (s ∗ t) = (r ∗ s) ∗ t for all r, s, t ∈ R;

D. (r + s) ∗ t = r ∗ t+ s ∗ t and r ∗ (s+ t) = r ∗ s+ r ∗ t for all r, s, t ∈ R.

A is for Addition, M is for multiplication, and D is for Distributive. A1, A2, A3, A4, M1,
D are called the ring axioms. The final Axiom D is called the distributive law. Note that we will
write r − s to mean r + (−s).

[Aside: (R,+, ∗) is a ring if (R,+) is an abelian group, (R, ∗) is a semigroup, and it satisfies
the distributive law.]

Example 2.2. The set of integers Z,Q,R,C with the usual addition and multiplication are all
rings.

The element 0 from Axiom A2 is called the zero of the ring R. The use of 0 here is symbolic
and it does not always mean the integer 0. The order of a ring R is the number of elements it
contains, that is, |R|. In the previous example, all the rings had infinite order.

Example 2.3. The integers Z/(n) = {0, 1, . . . , n − 1} with addition and multiplication modulo
n satisfy the ring axioms. Hence Z/(n) is a ring for all n ∈ N. The order of Z/(n) is n.
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Example 2.4. Let R be a finite set. Then it is possible to specify operations + and ∗ on R using
addition and multiplication tables.

For example, if R = {0, a, b, c}, then such tables might look like

+ 0 a b c

0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

. 0 a b c

0 0 0 0 0
a 0 0 a a
b 0 0 b b
c 0 0 c c

.

It is almost impossible to check by hand that these tables satisfy the ring axioms. But they do
and R is a ring.

Example 2.5. LetM2(R) denote the set of all 2×2 real matrices. ThenM2(R) forms a ring under
the usual matrix addition + and multiplication ∗. For instance,(

1 1
1 2

)
+

(
3 4
1 2

)
=

(
4 5
2 4

)
and

(
1 1
1 2

)
∗
(

3 4
1 2

)
=

(
4 6
5 8

)
.

In fact, the set of n×n matrices with entries in any ring R forms a ring denoted Mn(R) (see
Exercise 2.14).

Example 2.6. The quaternions are defined to be the set H = { a+ bi + cj + dk : a, b, c, d ∈ R }
with addition

(a1 + a2i + a3j + a4k) + (b1 + b2i + b3j + b4k) = (a1 + b1) + (a2 + b2)i + (a3 + b3)j + (a4 + b4)k

and multiplication

(a1+a2i+a3j+a4k)∗(b1+b2i+b3j+b4k) = (a1b1−a2b2−a3b3−a4b4)+(a1b2+a2b1+a3b4−a4b3)i
+ (a1b3 − a2b4 + a3b1 + a4b2)j + (a1b4 + a2b3 − a3b2 + a4b1)k.

Sometimes the quaternions are denoted Q8 or H.
The above multiplication is rather cumbersome. It is often more useful to multiply elements

of H together as if they are polynomials (with real coefficients and indeterminants i, j, and k)
and then apply the rules given in the following table:

* 1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

By rather laborious calculations it is possible to show that H together with the addition and
multiplication defined above satisfy the ring axioms. Thus H is a ring.

3. Further axioms for rings

Definition 3.1. Let R be a ring satisfying the axiom

M2. there exists 1 ∈ R such that 1 ∗ r = r ∗ 1 = r for all r ∈ R.
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ThenR is called a ring with identity. The element 1 ∈ R is referred to as the multiplicative identity
or one of R.

Again note that the 1 in Axiom M2 is symbolic and not necessarily the integer 1. Some
mathematicians include the existence of a multiplicative identity as an axiom in the definition
of a ring. In this course we will not assume, unless otherwise stated, that our rings have a
multiplicative identity.

Example 3.2. The rings Z,Q,R,C,Z/(n) all have identity 1 ∈ Z. The ring R in Example 2.4 has
no multiplicative identity. The one of the ring M2(R) is the identity matrix(

1 0
0 1

)
.

The multiplicative identity of the quaternions H is 1 + 0i + 0j + 0k = 1.

Definition 3.3. If R is a ring with identity 1, then the multiplicative inverse of an element x ∈ R
is an element x−1 ∈ R such that

x ∗ x−1 = x−1 ∗ x = 1.

If x ∈ R has a multiplicative inverse, then x is called a unit.

Even if a ring R has a multiplicative identity, it may not be possible to find a multiplicative
inverse for every element in R. In particular, if |R| > 1, then the element 0 will never have an
inverse.

Example 3.4. Let x ∈ Z be arbitrary. Then x is a unit if there exists y ∈ Z such that x ∗ y =
y ∗ x = 1. It follows that the only units in Z are 1 and −1. Let x ∈ Z/(n). Then x is a unit if
and only if x is coprime to n. A matrix A ∈ M2(R) is invertible (i.e. is a unit) if and only if
det(A) 6= 0. It can be shown the multiplicative inverse of a non-zero element a+ bi+ cj+ dk in
the quaternions H is

(a− bi− cj− dk) · 1

a2 + b2 + c2 + d2
.

Definition 3.5. Let R be a ring with identity satisfying the axiom

M3. every r ∈ R \ {0} is a unit.

Then R is called a division ring (or sometimes a skew field.)

Example 3.6. Every non-zero element of R,C,Q is a unit. Hence the rings R,C,Q are division
rings. The integers Z is not a division ring. The ring Z/(n) is a division ring if and only if n is
prime. The ring M2(R) is not a division ring. The quaternions form a division ring.

Definition 3.7. If R is a ring satisfying the axiom

M4. r ∗ s = s ∗ r for all r, s ∈ R.

Then R is called a commutative ring.
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Example 3.8. The rings Z,Q,R,C, and Z/(n) are commutative (for all n). In M2(R)(
3 4
1 2

)
∗
(

1 1
1 2

)
=

(
7 11
3 5

)
6=
(

4 6
5 8

)
=

(
1 1
1 2

)
∗
(

3 4
1 2

)
.

Hence is M2(R) is a non-commutative ring.
Since i ∗ j = k 6= −k = j ∗ i, it follows that H is non-commutative.

Definition 3.9. A commutative division ring is called a field. That is, a field is a set F together
with a pair of binary operations + and ∗ satisfying the axioms: A1, A2, A3, A4, M1, M2, M3,
M4, and D1.

Example 3.10. So, Z is not a field but Q,R,C are fields. The ring Z/(n) is a field if and only
if n is a prime. The ring M2(R) fails to satisfy M4 and so M2(R) is not a field. Likewise, the
quaternions H fail M4 and so H is not a field.

If p is a prime, we will denote Z/(p) by Fp and we will refer to it as the Galois field of order p.
If R is a ring and a, b ∈ R with a, b 6= 0 and a ∗ b = 0, then a and b are called zero divisors.

Example 3.11. In the commutative ring with identity Z/(6) we have 2 ∗ 3 = 0 and so 2 and 3
are zero divisors.

More generally, x ∈ Z/(n) is a zero divisor if and only if gcd(x, n) 6= 1.

Definition 3.12. If R is a commutative ring with identity (1 6= 0) where no element is a zero
divisor, then R is called an integral domain.

So, if R is an integral domain and a ∗ b = 0, then a = 0 or b = 0.

Example 3.13. The commutative ring Z is an integral domain, as are the fields Q,R,C. As seen
in Example 3.11, Z/(n) is an integral domain if and only if n is a prime. In M2(R)(

0 0
1 0

)
∗
(

0 0
0 1

)
=

(
0 0
0 0

)
and so M2(R) is not an integral domain. The quaternions H is not an integral domain as ∗ is
not commutative. However, H has no zero divisors (see Exercise 2.10).

Lemma 3.14. Every field F is an integral domain.
Proof. Let a, b ∈ F with a ∗ b = 0. If a 6= 0, then 0 = a−1 ∗ 0 = a−1 ∗ a ∗ b = 1 ∗ b = b. Thus F
has no zero divisors. �

The following table shows the different axioms satisfied by the different types of rings de-
fined in this section. Z denotes that the ring has no zero divisors.

A1 A2 A3 A4 M1 D M2 M3 M4 Z
1 4 4 4 4 4 4 – – – – ring
2 4 4 4 4 4 4 – – 4 – commutative ring
3 4 4 4 4 4 4 4 – – – ring with identity
4 4 4 4 4 4 4 – – – 4 ring with no zero divisors
5 4 4 4 4 4 4 4 – 4 – comm. ring with one
6 4 4 4 4 4 4 – – 4 4 comm. ring with no zero divisors
7 4 4 4 4 4 4 4 – – 4 ring with one and no zero divisors
8 4 4 4 4 4 4 4 – 4 4 integral domain
9 4 4 4 4 4 4 4 4 – 4 division ring

10 4 4 4 4 4 4 4 4 4 4 field
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The following table shows which of the properties given in the table above are satisfied by
the examples we have followed throughout this section.

1 2 3 4 5 6 7 8 9 10
Z 4 4 4 4 4 4 4 4 – –

Q,R,C 4 4 4 4 4 4 4 4 4 4

Z/(n) 4 4 4 – 4 – – – – – n composite
Z/(p) 4 4 4 4 4 4 4 4 4 4 p prime
M2(R) 4 – 4 – – – – – – –
H 4 – 4 4 – – 4 – 4 –

We have seen that the following are equivalent

(i) n is a prime;

(ii) Z/(n) is a division ring;

(iii) Z/(n) is a field;

(iv) Z/(n) is an integral domain.

In fact, if Z/(n) is replaced with any finite ring R in (ii), (iii), and (iv), then they are still equiv-
alent! Clearly (iii) implies (ii) and (iv). The following shows that (iv) implies (iii) but proving
that (ii) implies (iii) is very hard!

Theorem 3.15. Every finite integral domain I is a field.

Proof. The only thing we need to show is that an arbitrary non-zero element a ∈ I has a
multiplicative inverse. The sequence a, a2, a3, . . . can only contain finitely many elements of I ,
since there are only finitely many elements in I . Therefore am = an for some m < n (say). Then
0 = am − an = am(1− an−m). Since there are no zero-divisors and a 6= 0 it follows that am 6= 0.
Hence 1 − an−m = 0 and so 1 = a ∗ an−m−1. It follows that an−m−1 = a−1 is a multiplicative
inverse for a. �

3.1. Further Examples

Example 3.16. Let R = { a+ b
√

2 : a, b ∈ Z } ⊆ Rwith the usual + and ∗ on real numbers. It is
straightforward to check that R satisfies Axioms A1, A2, A3, A4, M1, and D (and you should
check it!). Hence R is a ring. Let us consider which of the other axioms M2, M3, M4 and Z are
satisfied by R.

The integer 1 = 1 + 0
√

2 is an element of R and 1 ∗ (a + b
√

2) = (a + b
√

2) ∗ 1 = a + b
√

2.
Hence R satisfies M2 and is a ring with identity. An element a + b

√
2 ∈ R is a unit if and only

if a2 − 2b2 = ±1 (see Exercise 2.6). Let a+ b
√

2, c+ d
√

2 ∈ R. Then

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (bc+ ad)
√

2 = (c+ d
√

2)(a+ b
√

2)

and so R is commutative. Note that we only use that fact that the ring Z is commutative to
prove that R is commutative. Finally, suppose that (a + b

√
2).(c + d

√
2) = 0 = 0 + 0

√
2. Since

a+ b
√

2 and c+ d
√

2 belong to the field R, it follows that either a+ b
√

2 = 0 or c+ d
√

2 = 0. So,
R is an integral domain.
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Example 3.17. Let Z[i] denote the subset { a + bi : a, b ∈ Z } of C where i =
√
−1. It is

straightforward to check that (a + bi) ∗ (c + di) ∈ Z[i] for all a + bi, c + di ∈ Z[i] and that Z[i]
satisfies Axioms A1, A2, A3, A4, M1, and D. Hence Z[i] is a ring called the Gaussian integers.

The integer 1 = 1 + 0i is an element of Z[i] and 1 ∗ (a+ bi) = (a+ bi) ∗ 1 = a+ bi. Hence Z[i]
has a multiplicative identity. We will determine the units of Z[i] in a later section. Again Z[i]
is commutative since the integral domain Z is commutative. As in the previous example, since
Z[i] is contained in the field C, it follows that Z[i] has no zero divisors. Hence Z[i] is an integral
domain.

Example 3.18. Let M denote the set of real 2× 2 matrices of the form(
a b
0 d

)
.

If

A =

(
a1 b1
0 d1

)
, B =

(
a2 b2
0 d2

)
∈M,

then

A+B =

(
a1 + a2 b1 + b1

0 d1 + d2

)
∈M and A ∗B =

(
a1a2 a1b2 + b1c2

0 d1d2

)
∈M.

So, it makes sense to talk about the usual matrix operations of + and ∗ on M . It follows that M
satisfies Axioms A1, A2, A3, A4, M1, and D as M2(R) does. The identity of M is the identity
matrix (

1 0
0 1

)
and A ∈ M has an inverse if and only if a 6= 0 and b 6= 0. To prove that M is not commutative
it suffices to see that(

1 2
0 1

)
∗
(

0 0
0 1

)
=

(
0 2
0 1

)
6=
(

0 0
0 1

)
=

(
0 0
0 1

)
∗
(

1 2
0 1

)
.

The matrices (
1 0
0 0

)
,

(
0 0
0 1

)
are zero divisors in M . Hence M is a non-commutative ring with one and zero divisors that is
not a division ring.

3.2. Polynomial Rings

Polynomials are the source of some of the most important examples of rings.
Let R be a ring. Then a polynomial over R is an expression of the form

f =
n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n

where n is a non-negative integer, the coefficients a0, a1, . . . , an are elements of R and x is a
symbol not in R called the indeterminant. To reiterate, the indeterminate x is not a member of
R, and neither are x2, x3, . . .. They are simply markers that indicate how to add and multiply.

The degree of a polynomial f is the largest n such that an 6= 0 and is denoted deg(f) = n. By
convention, deg(0) = −∞. Polynomials of degree 0 are called constant polynomials.

18



Addition and multiplication of polynomials is done in the usual way. That is, if f =∑n
i=0 aix

i and g =
∑n

i=0 bix
i (taking coefficients to be 0 if necessary to ensure that the degrees

are equal), then

f + g =
n∑
i=0

(ai + bi)x
i

and

f ∗ g =

2n∑
k=0

ckx
k where ck =

∑
i+j=k, 06i,j6n

aibj .

Note that

deg(f + g) 6 max(deg(f),deg(g)) and deg(f ∗ g) 6 deg(f) + deg(g).

If R is an integral domain, then

deg(f ∗ g) = deg(f) + deg(g).

Two polynomials are equal if and only if all of their coefficients are equal.

Example 3.19. If f = 1 + 13x+ 3x2 + x3 and g = x+ 3x3 are polynomials over the ring Z/(14),
then

f + g = 1 + 3x2 + 4x3 and f ∗ g = x+ 13x2 + 6x3 + 12x4 + 9x5 + 3x6.

We denote by R[x] the set of polynomials over R with the operations + and ∗ given above.

Theorem 3.20. Let R be a ring. Then R[x] is a ring called the ring of polynomials over R, and its
zero element is the zero polynomial all of whose coefficients are zero.

Proof. As an exercise. �

Example 3.21. Let us consider the polynomial ring Z[x]. The one of Z[x] is just 1 ∈ Z[x] (the
polynomial of degree 0) and Z[x] is commutative as Z is commutative.

What are the units of Z[x]? If f =
∑n

i=0 aix
i, g =

∑n
i=0 bix

i ∈ Z[x] and f ∗ g = 1, then the
only non-zero coefficients must be a0 and b0. Hence either f = 1 and g = 1 or f = −1 and
g = −1. So, Z[x] is not a field.

Let f, g ∈ Z[x] be non-zero polynomials with deg(f) = m and deg(g) = n. Then deg(f ∗g) =
m+ n ∈ N. In particular, f ∗ g 6= 0 and so we have shown that Z[x] is an integral domain.

You can prove using an analogous argument that R[x] is a commutative ring with identity,
that the units of R[x] are the constant polynomials, and that R[x] is an integral domain.

Lemma 3.22. R[x] is commutative if and only if R is commutative.

4. Subrings

Definition 4.1. A subring S of a ring R is a subset of R which is a ring under the same opera-
tions as R. We will write S 6 R to denote that S is a subring of R.

Rather than rechecking all the ring axioms for S we can simply apply the following lemma.

Lemma 4.2. Let S be a non-empty subset of a ring R such that a− b, a ∗ b ∈ S for all a, b ∈ S. (That
is, S is closed under subtraction and multiplication.) Then S is a subring of R.
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Proof. Associativity and commutativity of addition A1 and A4, associativity of multiplication
M1, and the distributive laws D in S follow from the respective properties of R. Since a− b ∈ S
for all a, b ∈ S, in particular, 0 = a−a ∈ S and so S satisfies A2. Also since 0 ∈ S,−a = 0−a ∈ S
for all a ∈ S and so S satisfies A3. �

Example 4.3. Let R denote the set {a+ b
√

5 : a, b ∈ Z}. If + and ∗ denote the usual operations
on R, then

(a+ b
√

5)− (c+ d
√

5) = (a− c) + (b− d)
√

5 ∈ R

and
(a+ b

√
5)(c+ d

√
5) = (ac+ 5bd) + (ad+ bc)

√
5 ∈ R.

Hence R is a subring of R. An analogous argument shows that { x + y
√

5 : x, y ∈ Q } with +
and ∗ is also a subring of R.

We showed in Example 3.16 that { a+ b
√

2 : a, b ∈ Z } is a ring, and hence a subring of R.

Example 4.4. Let (2) denote the even integers. Then

2i− 2j = 2(i− j) ∈ (2)

and
2i ∗ 2j = 2 ∗ 2ij ∈ (2).

Hence, by Lemma 4.2, (2) is a subring of Z.
More generally, if n is any integer, then the same reasoning shows that the set (n) of all

multiples of n is a subring (n) of Z. On the other hand, the odd integers do not form a subring
of Z since 5− 3 = 2 is not odd.

Example 4.5. The subsets {0, 2, 4} and {0, 3} are subrings of Z/(6).

Lemma 4.6. Let R be a ring and let S, T be subrings of R. Then S ∩ T is a subring of R.

Proof. Since 0 ∈ S ∩ T , it follows that S ∩ T is non-empty. If s, t ∈ S ∩ T , then s − t ∈ S ∩ T
and s ∗ t ∈ S ∩ T . �

5. Ideals

Definition 5.1. A subring I of R is an ideal if for all a ∈ I and for all r ∈ R, then r ∗ i, i ∗ r ∈ I .

If R is any ring, then {0} and R are ideals in R. An ideal of a ring R is called proper if it is
not equal to R.

Example 5.2. In Example 4.4, we saw that the even integers (2) are a subring of Z. If i ∈ (2)
and r ∈ Z, then i = 2 ∗ j, for some j, and so i ∗ r = r ∗ i = 2 ∗ jr ∈ (2). Hence (2) is an ideal in Z.

In Example 4.5, we showed that I = {0, 2, 4} and J = {0, 3} are subrings of Z/(6). If i ∈ I
and r ∈ Z/(6), then from the table below, i ∗ r = r ∗ i ∈ I

* 0 1 2 3 4 5
0 0 0 0 0 0 0
2 0 2 4 0 2 4
4 0 4 2 0 4 2

Likewise, J is an ideal of Z/(6).
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Example 5.3. If a + bi ∈ Z[i] from Example 3.17, and r = c/d where d 6= 0 and d - ac or d - bc.
Then (c/d) ∗ (a+ bi) 6∈ Z[i]. Hence Z[i] is not an ideal of C even though it is a subring.

Likewise Z[
√

5] is not an ideal in R or C, although it is a subring of both.

Example 5.4. Let I be all the polynomials over any commutative ring R with 0 constant coeffi-
cient. That is,

I = { f =

n∑
i=0

aix
i ∈ R[x] : a0 = 0 }.

Thus f ∈ I if and only if f = x ∗ g for some g ∈ R[x]. Hence if f1, f2 ∈ I and h ∈ R[x], then

f1 = x ∗ g1, f2 = x ∗ g2

for some g1, g2 ∈ R[x]. Hence

f1 − f2 = x ∗ g1 − x ∗ g2 = x ∗ (g1 − g2) ∈ I

and
f1 ∗ h = x ∗ g1 ∗ h = x ∗ (g1 ∗ h) ∈ I and h ∗ f1 = h ∗ x ∗ g1 = x ∗ (h ∗ g1) ∈ I

It follows that I is an ideal in R[x].

Example 5.5. The set of all polynomials in Z[x] with even coefficients is an ideal. So is the set
of those polynomials with even constant coefficient.

Lemma 5.6. Let I be an ideal of a ring R with identity. Then

(i) if 1 ∈ I , then I = R;

(ii) if R is a division ring, then I = R or I = {0}.
Proof. (i). If r ∈ R, then r = r ∗ 1 ∈ I . Hence I = R.

(ii). Assume that I 6= {0}. Then there exists a ∈ I such that a 6= 0. Hence 1 = a−1 ∗ a ∈ I . It
follows that from part (i) that I = R. �

Corollary 5.7. Let R be a commutative ring. Then R[x] is not a field.
Proof. From Example 5.4 we know that the polynomials with 0 constant coefficient form a
proper ideal in R[x]. Hence by Lemma 5.6(ii), R[x] is not a division ring and hence not a field.

�

Corollary 5.8. Let R be a ring with identity. Then (1) = { r ∗ 1 : r ∈ R } = R.

Example 5.9. Let R denote the ring of all 2×2 matrices with real entries and let I and J denote
the sets of matrices of the form (

0 b
0 d

)
,

(
a b
0 0

)
,

respectively. Now,(
x y
z t

)
∗
(

0 b
0 d

)
=

(
0 xb+ yd
0 zb+ td

)
∈ I and

(
0 b
0 d

)
−
(

0 y
0 t

)
=

(
0 b− y
0 d− t

)
∈ I.

Thus I is a subring and r ∗ i ∈ I for all i ∈ I and for all r ∈ R. But(
0 1
0 1

)
∗
(

1 1
1 1

)
=

(
1 1
1 1

)
6∈ I.

Hence it is not true that i ∗ r 6∈ I for all i ∈ I and for all r ∈ R. It follows that I is not an ideal
of R. It can also be shown that J is not an ideal of R. In fact, R has no proper ideals except {0}.
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Definition 5.10. Let R be a commutative ring with identity and let r1, r2, . . . , rn ∈ R. Then
define

(r1, r2, . . . , rn) = { λ1r1 + λ2r2 + · · ·+ λnrn : λ1, λ2, . . . , λn ∈ R }.

If i = λ1r1 + λ2r2 + · · ·+ λnrn, j = µ1r1 + µ2r2 + · · ·+ µnrn ∈ (r1, r2, . . . , rn), then

i− j = (λ1 − µ1)r1 + (λ2 − µ2)r2 + · · ·+ (λn − µn)rn ∈ (r1, r2, . . . , rn).

If x ∈ R is arbitrary, then

xi = ix = (xλ1)r1 + (xλ2)r2 + · · ·+ (xλn)rn ∈ (r1, r2, . . . , rn).

It follows that (r1, r2, . . . , rn) is an ideal in R. We say that (r1, r2, . . . , rn) is the ideal generated by
r1, r2, . . . , rn.

If I and J are ideals of a ring R, then define I + J = { i+ j : i ∈ I, j ∈ J }.
If R did not have an identity, then r1, r2, . . . , rn would not necessarily contain the elements

of (r1, r2, . . . , rn);

Example 5.11. We have already seen that the even integers (2) form an ideal in Z. Moreover,

(2) = { 2n : n ∈ Z }

and so (2) is the ideal generated by 2.

The ideal (r) generated by a single element r ∈ R is called the principal ideal generated by r.
So, with this nomenclature the even integers are the principal ideal generated by 2.

Example 5.12. In Example 5.4 we showed that the set I of all polynomials in R[x] with 0 con-
stant coefficient is an ideal. We also saw that f ∈ I if and only if f = x ∗ g for some g ∈ R[x]. It
follows that

I = (x) = { x ∗ g : g ∈ R[x] }.

Lemma 5.13. Let R be a commutative ring with identity, let I be an ideal of R, and let r1, r2, . . . , rn ∈
I . Then (r1, r2, . . . , rn) ⊆ I .

Proof. As an exercise. �
The previous lemma states that (r1, r2, . . . , rn) is the least ideal containing r1, r2, . . . , rn.

Definition 5.14. A principal ideal domain (PID) is an integral domain where every ideal is prinic-
ipal.

Lemma 5.15. The ring of integers Z is a principal ideal domain.

Proof. Let a, b ∈ Z be arbitrary. Then

(a, b) = { ax+ by : x, y ∈ Z }.

It follows from the euclidean algorithm that d = gcd(a, b) ∈ (a, b). Hence (d) ⊆ (a, b). But

(d) = { dc : c ∈ Z }

and so a, b ∈ (d). It follows that (a, b) = (d) and so Z is a principal ideal domain. �
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6. Quotients of rings

Definition 6.1. Let R be a commutative ring with identity, I be an ideal of R, and a ∈ R. Then
the coset of I with representative x is the subset

a+ I = { a+ s : s ∈ I }

of R.

Theorem 6.2. Let R be a commutative ring with identity and let I be an ideal of R. Then

(i) if a, b ∈ R, then a+ I = b+ I if and only if a− b ∈ I ;

(ii) any two cosets of I are either equal or disjoint: if a, b ∈ R, then either a+ I = b+ I or (a+ I) ∩
(b+ I) = ∅;

(iii) R is a disjoint union of the cosets of I ;

(iv) if a ∈ R, then the map r 7→ a+ r is a bijection from I to the coset a+ I .

Proof. For a proof see MT4003. �
From Theorem 6.2(ii) and (iii) we can talk about the set of cosets an ideal I in a commutative

ring with identity R; we will denote by R/I the set

{ a+ I : a ∈ R }

of cosets of the ideal I . The ringR/I is called a factor ring (or sometimes a quotient ring or residue
class ring); we may also say that R/I is the quotient of R by I . We may refer to the factor ring
R/I as R modulo I .

Theorem 6.3. Let R be a commutative ring with identity, I be an ideal of R. Then R/I is a ring under
the operations defined by

(a+ I) + (b+ I) = (a+ b) + I and (a+ I) ∗ (b+ I) = (a ∗ b) + I.

Proof. We must prove that the operations + and ∗ are well-defined and that (R/I,+, ∗) satis-
fies the ring axioms. To show that + and ∗ are well-defined we must prove that if a1+I = a2+I
and b1 + I = b2 + I , then

(a1 + b1) + I = (a2 + b2) + I

and
(a1 ∗ b1) + I = (a2 ∗ b2) + I.

From the direct implication of Theorem 6.2(i), a1 − a2 ∈ I and b1 − b2 ∈ I . Hence (a1 + b1) −
(a2 + b2) ∈ I and from the converse implication of Theorem 6.2(i) it follows that (a1 + b1) + I =
(a2 + b2) + I . Likewise a1b1 − a2b2 = (a1 − a2)b1 + a2(b1 − b2) ∈ I since a1 − a2, b1 − b2 ∈ I and
so (a1 ∗ b1) + I = (a2 ∗ b2) + I.

It is a straightforward exercise to prove that R/I satisfies the ring axioms. �
The way you should think of the factor ringR/I is that it is the ringRwhere all the elements

in the ideal I have been ‘made’ into zero. Here are two picture:

23



Example 6.4. Let n ∈ Z and let (n) be the principal ideal generated by n. Then we can form
the quotient Z/(n) of Z by (n). Two elements x, y ∈ Z are representatives of the same coset in
Z/(n) if and only if x− y ∈ (n) if and only if n | (x− y) if and only if x ≡ y (mod n). It follows
that the cosets in Z/(n) are

0 + (n), 1 + (n), . . . , n− 1 + (n)

and we add and multiply the representatives of cosets modulo n. For the sake of brevity, we
omit the (n) when referring to elements ofZ/(n) and we get back to the elements {0, 1, 2, . . . , n−
1}modulo n!

The moral of the story: you’ve been working with factor rings since the start of the course!
We will now consider another very important class of factor rings. Recall that if p is a prime,

we may write Fp to mean Z/(p).

Example 6.5. Let f = x. Then the elements of F2[x]/(f) are the cosets

g + (f)

where g ∈ F2[x]. The zero of F2[x]/(f) is the coset

0 + (f) = x+ (f).

So, if g ∈ F2[x], then
g + (f) ∈ {0 + (f), 1 + (f)},

as whenever an x appears in g it can be replaced by 0. For example,

x4 + x2 + 1 + (f) = 0 + 0 + 1 + (f) = 1 + (f).

Example 6.6. Let f = x2 + x+ 1. Then the elements of F2[x]/(f) are

0 + (f), 1 + (f), x+ (f), x+ 1 + (f)

as again whenever x2 appears it can be replaced by x+ 1. For example,

[1 + x+ (f)] ∗ [1 + x+ (f)] = 1 + 2x+ x2 = x.

The multiplicative inverses of 1, x, 1 + x are 1, 1 + x, x, respectively. So, F2[x]/(f) is a field with
4 elements.

We will return to the study of polynomial factor rings later in the course.
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7. Homomorphisms

Just as in many branches of mathematics, functions that preserve the structure of a ring are
very important.

Definition 7.1. A map f : R→ S between rings is called a ring homomorphism if

f(x+ y) = f(x) + f(y) and f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ R.

Note that + in f(x + y) is the operation in R and + in f(x) + f(y) is the operation in S.
Likewise, ∗ is the operation in R in f(x ∗ y) and in S in f(x) ∗ f(y).

LetR and S be rings and let f : R→ S be a homomorphism. If f is a bijection, then it is calle
a ring isomorphism. We say that the rings R and S isomorphic and write R ∼= S. Isomorphic rings
have identical ring-theoretic properties, that is, commutativity, the existence of an identity,
being a field etc. Any pair of isomorphic rings can be regarded as the same.

Lemma 7.2. Let f : R→ S be a homomorphism from the ring R to the ring S. Then

(i) if 0R and 0S are the zeros in R and S, respectively, then f(0R) = 0S ;

(ii) if 1R and 1S are the identities ofR and S, respectively, then it is not always true that f(1R) = 1S ;

(iii) if T is a ring and g : S → T is a ring homomorphism, then so is g ◦ f : R→ T .

Proof. As an exercise. �

Example 7.3. Let f : Z→ Z/(n) be defined by f : x 7→ x (mod n). Then

f(i+ j) = i+ j (mod n) ≡ i (mod n) + j (mod n) = f(i) + f(j)

and
f(i ∗ j) = i ∗ j (mod n) = i (mod n) ∗ j (mod n) = f(i) ∗ f(j)

for all i, j ∈ Z. It is not (of course) a ring isomorphism since it is not injective.

Example 7.4. Let f : Z→ (2) be defined by f(x) = 2x. Then

f(i+ j) = 2(i+ j) = 2i+ 2j = f(i) + f(j)

for all i, j ∈ Z. However,
f(2 ∗ 2) = 8 6= 16 = f(2) ∗ f(2)

so f is not a homomorphism.

Example 7.5. Let f : Z→M2(R) be defined by

f(x) =

(
x 0
0 0

)
.

Then

f(x+ y) =

(
x+ y 0

0 0

)
=

(
x 0
0 0

)
+

(
y 0
0 0

)
= f(x) + f(y)

and

f(x ∗ y) =

(
x ∗ y 0

0 0

)
=

(
x 0
0 0

)
∗
(
y 0
0 0

)
= f(x) ∗ f(y).
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Note that

f(0) =

(
0 0
0 0

)
.

But the identity of Z is 0 and the M2(R) is (
1 0
0 1

)
.

Example 7.6. The set C[0, 1] of real-valued continuous functions on the interval [0, 1] is a ring
under the operations + and ∗ defined by

(f + g)(x) = f(x) + g(x)

and
(f ∗ g)(x) = f(x) ∗ g(x).

The ‘evaluation at 1/2’ map φ : C[0, 1]→ R defined by φ(f) = f(1/2) is a ring homomorphism
since

φ(f + g) = (f + g)(1/2) = f(1/2) + g(1/2) = φ(f) + φ(g)

and
φ(f ∗ g) = (f ∗ g)(1/2) = f(1/2) ∗ g(1/2) = φ(f) ∗ φ(g).

Example 7.7. Let R denote the set of all real-valued matrices of the form(
a b
−b a

)
.

The map f from C to R defined by

a+ bi 7→
(
a b
−b a

)
is a ring isomorphism. The mapping is clearly a bijection. Let a+ bi, c+ di ∈ C. Then

f(a+ bi) + f(c+ di) =

(
a b
−b a

)
+

(
c d
−d c

)
=

(
a+ c b+ d
−b− d a+ c

)
= f((a+ bi) + (c+ di))

and

f(a+ bi)f(c+ di) =

(
a b
−b a

)(
c d
−d c

)
=

(
ac− bd ad+ bc
−(ad+ bc) ac− bd

)
= f((a+ bi)(c+ di))

Example 7.8. Let φ : Q[x]→ Q be defined by

φ(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a0 + a1 + · · ·+ an.

Then φ is a ring homomorphism.

Example 7.9. Let φ : Z[x]→ R given by

φ(a0 + a1x+ a2x
2 + · · ·+ anx

n) = a0 + a1
√

2 + · · ·+ an
√

2
n
.

Then this is a ring homomorphism.
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Definition 7.10. Let R and S be rings and let f : R → S be a homomorphism. Then the kernel
of f is ker(f) = f−1(0) = { r ∈ R : f(r) = 0S }.

Lemma 7.11. Let R and S be f : R→ S be a ring homomorphism. Then ker(f) is an ideal of R.
Proof. As an exercise. �

Example 7.12. It was shown in Example 7.3 that the map from Z to Z/(n) defined by f : x 7→ x
mod n is a homomorphism. The kernel of f is the set (n) of all multiples of n.

Example 7.13. In Example 7.5 we showed that the mapping f : Z→M2(R) defined by

f(x) =

(
x 0
0 0

)
is a homomorphism. The kernel of f is {0}.

Example 7.14. In Example 7.6 we proved that the function φ : C[0, 1] → R defined by φ(f) =
f(1/2) is a homomorphism. The kernel of φ is

{ f ∈ C[0, 1] : f(1/2) = 0 }.

Example 7.15. In Example 7.7 we saw that the function f : C→M2(R) defined by

a+ bi 7→
(
a b
−b a

)
is a homomorphism. If

f(a+ bi) =

(
0 0
0 0

)
,

then a = b = 0. Hence ker(f) = {0}.

Example 7.16. Let φ : R[x]→ R be defined by

φ(a0 + a1x+ · · ·+ anx
n) = a0.

Then the kernel of φ is the set of polynomials with zero constant term. We proved that ker(φ)
is the principal ideal (x) in Example 5.12.

Example 7.17. Let φ : Z[x]→ Z2 be defined by

φ(a0 + a1x+ · · ·+ anx
n) = a0 (mod 2).

Then the kernel of φ is the set of polynomials with even constant terms.

Lemma 7.18. Let R and S be rings and let f : R→ S be a homomorphism. Then ker(f) = {0} if and
only if f is injective.
Proof. (⇒) We have to prove that f is injective. Let f(r) = f(s) for some r, s ∈ R. Then
f(r − s) = f(r)− f(s) = f(r)− f(r) = 0 and so r − s ∈ ker(f) and so r − s = 0. It follows that
r = s and so f is injective.

(⇐) If a ∈ ker(f) and a 6= 0, then f(a) = f(0) = 0 and so f is not injective. �
Let R and S be rings and let f : R→ S be a homomorphism. Then the image of f is the set

im(f) = { s ∈ S : s = f(r) for some r ∈ R }.

Lemma 7.19. Let R and S be rings and let f : R → S be a homomorphism. Then im(f) is a subring
of S.
Proof. As an exercise. �
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8. Three Isomorphism Theorems

Theorem 8.1 (First Isomorphism Theorem) Let R and S be rings and let f : R → S be a ring
homomorphism. Then

φ : R/ ker(f) ∼= im(f), a+ ker(f) 7→ f(a)

is an isomorphism of rings.

Proof. First we prove that φ is well-defined: If a+ ker(f) = b+ ker(f), then a− b ∈ ker(f) and
thus 0 = f(a− b) = f(a)− f(b) so f(a) = f(b).

Next we will prove that φ is an isomorphism.
Homomorphism. Let a+ker(f), b+ker(f) ∈ R/ ker(f) and remember that f is a homomor-

phism. Then

φ(a+ ker(f)) + φ(b+ ker(f)) = f(a) + f(b) = f(a+ b) = φ((a+ b) + ker(f))

= φ((a+ ker(f)) + (b+ ker(f))

and

φ(a+ker(f))∗φ(b+ker(f)) = f(a)∗f(b) = f(a∗b) = φ((a∗b)+ker(f)) = φ((a+ker(f))∗(b+ker(f)).

Surjective. If y ∈ im(f), then there exists x ∈ R such that f(x) = y. It follows that y =
f(x) = φ(x+ ker(f)) and so φ is surjective.

Injective. It is straightforward to prove this directly. Alternatively, φ(x+ker(f)) = f(x) = 0
if and only if x ∈ ker(f). Hence ker(φ) = {0 + ker(f)}. But 0 + ker(f) is the zero of R/ ker(f)
and so, by Lemma 7.18, φ is injective. �

The preceding theorem and section indicate that there is a close relationship between ideals
and kernels of homomorphisms.

Let R be a ring and I be an ideal of R. Then define f : R → R/I by f(r) = r + I . It is
straightforward to verify that f is a homomorphism. It is called the “natural homomorphism”
from R to R/I . Moreover, ker(f) = { r ∈ R : f(r) = I } = { r ∈ R : r ∈ I } = I . It follows that
every ideal I of a ring is the kernel of a homomorphism.

Furthermore, it is straightforward to verify that for every subring S of a ring R, the map
ι : S → R, s 7→ s (the so-called “inclusion map”) is a ring homomorphism.

The name of the First Isomorphism Theorem indicates that there may be other isomorphism
theorems. Here’s one.

Theorem 8.2 (Second Isomorphism Theorem) Let I and J be ideals of a ring R. Then

(I + J)/J ∼= I/(I ∩ J).

Proof. We first note that the set I + J := {i + j | i ∈ I, j ∈ J} is a subring of R and that
I ∩ J is an ideal in I . To show these use the subring criterion Lemma 4.2 and the facts that an
intersection of ideals is an ideal and that every ideal of R is an ideal in every subring in which
it is contained.

Here is a picture showing the inclusions. The double lines represent the two factor rings.
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To prove the result we will use Theorem 8.1. Define

f : I → (I + J)/J, i 7→ i+ J.

The map f is the composition of the inclusion homomorphism I → I + J with the natural map
I + J → (I + J)/J and as such a ring homomorphism.

All we need to show is that f is surjective and that its kernel is I ∩ J . To prove that f
is surjective, consider an arbitrary element i + j ∈ I + J , that is, i ∈ I and j ∈ J . Since
(i + j) + J = i + J it follows, that f(i) = i + J = (i + j) + J . An element i ∈ I is mapped to
0 + J by f if and only if it lies in J and therefore in I ∩ J , so ker(f) = I ∩ J .

It follows by Theorem 8.1 that I/ ker(f) ∼= im(f) = (I + J)/J . �

Example 8.3. Let m,n ∈ Z and consider the principal ideals (m) and (n). Then

(m) + (n) = (gcd(m,n))

and
(m) ∩ (n) = (lcm(m,n)).

From Theorem 8.2 we deduce that

(gcd(m,n))/(n) ∼= (m)/(lcm(m,n))

and so
n/ gcd(m,n) = lcm(m,n)/m.

Hence
gcd(m,n)lcm(m,n) = mn.

Theorem 8.4 (Third Isomorphism Theorem) Let I and J be ideals of a ring R with I ⊆ J . Then
J/I is an ideal of R/I and

(R/I)/(J/I) ∼= R/J.

Proof. Let j + I ∈ J/I and r+ I ∈ R/I . Then j ∗ r, r ∗ j ∈ J since J is an ideal. It follows that

(j + I) ∗ (r + I) = (j ∗ r) + I ∈ J/I and (r + I) ∗ (j + I) = (r ∗ j) + I.

Thus J/I is an ideal of R/I (it clearly is a subring!).
We will now prove that (R/I)/(J/I) ∼= R/J . Define φ : R/I → R/J by a + I → a + J for

any coset a+ I of I in R. Since a ∈ R is arbitrary it follows that φ is surjective. By the definition
of + and ∗ in R/I and R/J we have that φ is a homomorphism. An element a + I is in the
kernel of φ if and only if a ∈ J . Thus from the definition of J/I , ker(φ) = J/I and

(R/I)/(J/I) = (R/I)/ ker(φ) ∼= im(φ) = R/J

by the First Isomorphism Theorem 8.1. �
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School of Mathematics and Statistics

MT4517 Rings & Fields

Factorization

We will also write ab instead of a∗ b whenever there is no ambiguity! We will also use R∗ to de-
note the set of all units in R. Throughout this section we will assume that all rings encountered
are commutative with identity unless specified otherwise.

9. Prime Ideals

The purpose of this and the following section is to answer the questions: when is a factor ring
R/I an integral domain? When is R/I a field?

Definition 9.1. An ideal I of a ring R is said to be prime if I 6= R and if a, b ∈ R with ab ∈ I ,
then either a ∈ I or b ∈ I .

Theorem 9.2. Let I be an ideal of a ring R. Then I is a prime ideal if and only if R/I is an integral
domain.

Proof. (⇐) Since R/I is an integral domain, R/I 6= {0} and so R 6= I . If a, b ∈ R with ab ∈ I ,
then ab+ I = (a+ I)(b+ I) = 0 + I . Hence since R/I is an integral domain either a+ I = 0 + I
or b+ I = 0 + I . Thus either a ∈ I or b ∈ I by Theorem 6.2(i) and so I is a prime ideal.

(⇒) As an exercise. �

10. Maximal Ideals

Definition 10.1. An ideal I of a ring R is said to be maximal if whenever I ( J for some ideal
J of R, then J = R.

Theorem 10.2. Let I be an ideal of a ring R. Then I is a maximal ideal if and only if R/I is a field.

Proof. (⇐) SinceR/I is a field, R/I 6= {0} and for all a+I ∈ R/I there exists b+I ∈ R/I such
that (a+ I)(b+ I) = ab+ I = 1 + I . Hence for all a 6∈ I there exists b ∈ R such that ab− 1 ∈ I .

Let J be an ideal of R where I ⊆ J ⊆ R. If a ∈ J \ I , then there exists b 6∈ I such that
ab − 1 ∈ I ⊆ J . But ab ∈ J since a ∈ J and J is an ideal. Hence 1 = ab − (ab − 1) ∈ J and so
J = R. We have shown that I is a maximal ideal of R.

(⇒) Let a+ I ∈ R/I such that a+ I 6= 0 + I . Then a 6∈ I . Set

J = I +Ra = { i+ ra : i ∈ I, r ∈ R }.
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It is straightforward to verify that J is an ideal of R and that I ( J . Since I is maximal, it
follows that J = R. Hence 1 ∈ J and so 1 = i+ ra for some i ∈ I and r ∈ R. Now,

1 + I = [i+ ra] + I = ra+ I = (r + I)(a+ I)

It follows that a+ I is a unit in R/I and, since a was arbitrary, R is a field. �
Let I be a maximal ideal. Then R/I is a field and hence an integral domain. Hence I is a

prime ideal.

Example 10.3. The ring of integers Z is a principal ideal domain. Hence every ideal of Z is of
the form (n) for some n ∈ Z. If p ∈ Z is a prime number and n ∈ Z such that (p) ⊆ (n), then
p ∈ (n) and so n | p. Thus n = ±1 or n = ±p. It follows that (n) = Z or (n) = (p), and so (p) is
a maximal ideal.

On the other hand, if a, b ∈ Zwith a, b 6= ±1, then ab ∈ (ab) but a 6∈ (ab) and b 6∈ (ab). Hence
(ab) is not a prime ideal and hence not a maximal ideal.

Corollary 10.4. Let n ∈ Z. Then the following are equivalent:

(i) n or −n is a prime number;

(ii) (n) is a prime ideal;

(iii) (n) is a maximal ideal.

Proof. The proof that (i) and (iii) are equivalent is contained in Example 10.3.
By Theorem 9.2 and Example 3.11, (n) is a prime ideal if and only if Z/(n) is an integral

domain if and only if n is prime. �

11. Divisors

Lemma 11.1. Let R be an integral domain and let a, b, c ∈ R with c 6= 0 and ac = bc. Then a = b.

Proof. As ac = bc, we have that (a − b)c = ac − bc = 0. But R is an integral domain and so
a− b = 0. Hence a = b, as required. �

Throughout the remainder of this chapter we will assume, unless otherwise specified, that
R is an integral domain.

Definition 11.2. An element b of R is said to be a divisor of a ∈ R if there exists c ∈ R such that
a = bc.

If b is a divisor of a, we write b | a. Note that a | a and if a | b and b | c, then a | c. Also note
that if 0 | a, then a = 0, and that 1 | a for all a ∈ R.

Definition 11.3. Elements a, b ∈ R are said to be associates if a | b and b | a. Throughout we will
denote this by a ∼ b.

The only associate of 0 is 0. Let u ∈ R be arbitrary. Then u is a unit if and only if there exists
v ∈ R such that uv = 1 if and only if u | 1.

Lemma 11.4. Let a, b ∈ R. Then a ∼ b if and only if a = bu for some unit u ∈ R.
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Proof. (⇒) If a = 0, then b = 0 and a = b1. Likewise, if b = 0, then a = 0 and a = b1.
If a, b 6= 0, then as a ∼ b, a | b and b | a. Hence there exist c, d ∈ R such that b = ac and

a = bd. Thus a = acd and so cd = 1. Therefore both c and d are units.
(⇐) If a = 0 or b = 0, then b = 0 or a = 0, respectively, and so a ∼ b. If a, b 6= 0, then a = bu

and so b | a. It follows that b = au−1 and so a | b. �

Lemma 11.5. If a, b ∈ R, then

(i) b | a if and only if (a) 6 (b);

(ii) a and b are associates if and only if (a) = (b).
Proof. (i). b | a if and only if there exists x ∈ R such that a = bx if and only if a ∈ (b) if and
only if (a) 6 (b).

(ii). a and b are associates if and only if a | b and b | a if and only if (a) 6 (b) and (b) 6 (a) if
and only if (a) = (b). �

Example 11.6. The units in Z are Z∗ = {−1, 1}. The associates of a ∈ Z are a and −a.

Definition 11.7. The element d of an integral domain R is said to be the greatest common divisor
of a, b ∈ R if

(i) d | a and d | b; and

(ii) if c | a and c | b, then c | d.

If R is a principal ideal domain and a, b ∈ R, then there exists d ∈ R such that (a, b) =
{ ax + by : x, y ∈ R } = (d). Hence (a) 6 (d) and (b) 6 (d), and so, by Lemma 11.5, d | a
and d | b. On the other hand, if c ∈ R divides a and b, then (a) 6 (c) and (b) 6 (c). Thus
(d) = (a, b) 6 (c) and so c | d. It follows that d is a greatest common divisor of a and b.

12. Irreducibles and primes

Definition 12.1. An element a ∈ R \R∗ is irreducible if a = bc for b, c ∈ R implies that b or c is a
unit.

Example 12.2. The irreducibles elements of Z are the primes and their negatives.

Definition 12.3. An element p ∈ R \R∗ is said to be prime if whenever p | ab for some a, b ∈ R,
we have that p | a or p | b.

If q is an associative of a prime p and q | ab, then p | ab and so p | a or p | b. It follows that
q | a or q | b. Hence the associates of primes are also primes.

Lemma 12.4. Every prime element of an integral domain R is irreducible.
Proof. Let p ∈ R \ R∗ be a prime element and assume that p = ab for some a, b ∈ R. Then
p | ab and so p | a or p | b. If p | a, then a = px for some x ∈ R. But then a = abx and so bx = 1
and b is a unit. Likewise, if p | b, then a is a unit. Hence p is irreducible. �

We require the following notion so that we can give some specific examples of irreducible
elements. A function N : R −→ Z is called a norm if

N(ab) = N(a)N(b)

for all a, b ∈ R.
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Example 12.5. Let n be a non-square in Z (i.e. n 6= m2 for allm ∈ Z) and let Z[
√
n] = {a+b

√
n :

a, b ∈ Z }. Then we define N : Z[
√
n] −→ Z by

N(a+ b
√
n) = a2 − nb2.

It is straightforward to verify that

N(a+ b
√
n)N(c+ d

√
n) = N((a+ b

√
n)(c+ d

√
n))

and so N is a norm on Z[
√
n].

Lemma. Let n be a non-square in Z. Then Z[
√
n] is an integral domain.

Proof. As an exercise. �
What goes wrong if n in the previous lemma and example is not a non-square?

Example 12.6. We will show that the element 2 +
√
−5 is irreducible in

Z[
√
−5] = { a+ b

√
−5 : a, b ∈ Z }.

Let us start by determining the units of Z[
√
−5]. If α ∈ Z[

√
−5] is a unit, then there exists

β ∈ Z[
√
−5] such that αβ = 1. Hence

N(α)N(β) = N(αβ) = N(1) = 1.

Hence N(α)|1 and so N(α) = ±1. Hence α = ±1.
If a+b

√
−5 | 2+

√
−5, thenN(a+b

√
−5) | N(2+

√
−5) = 9. HenceN(a+b

√
−5) = 1, 3, or 9.

IfN(a+b
√
−5) = 1, then a = ±1 and b = 0. That is, a+b

√
−5 is a unit. IfN(a+b

√
−5) = 3, then

there exist a, b ∈ Z such that a2 + 5b2 = 3. But there are no integer solutions to this equation.
If N(a + b

√
−5) = 9, then (a + b

√
−5)(c + d

√
−5) = 9 for some c + d

√
−5 ∈ Z[

√
−5]. Hence

N(c+ d
√
−5) = 1 and so, as above, c+ d

√
5 is a unit. It follows that 2 +

√
−5 is irreducible.

Note that the element 2 +
√
−5 is not prime in Z[

√
−5] since

2 +
√
−5 | 9 = 3 · 3

but N(2 +
√
−5) = 9 = N(3) and 3 6= ±1 · (2 +

√
−5) and so 2 +

√
−5 does not divide 3.

Example 12.7. Let Z[
√

10] = { a+ b
√

10 : a, b ∈ Z }. Then the norm on Z[
√

10] is defined by

N(a+ b
√

10) = a2 − 10b2.

The norms of 2, 3, (4 +
√

10), (4−
√

10) ∈ Z[
√

10] are

N(2) = 4, N(3) = 9, N(4 +
√

10) = N(4−
√

10) = 6.

If a+ b
√

10 ∈ Z[
√

10], then

N(a+ b
√

10) (mod 10) = a2 (mod 10).

But x2 (mod 10) ∈ {0, 1, 4, 5, 6, 9} for all x ∈ Z and so N(a+ b
√

10) (mod 10) ∈ {0, 1, 4, 5, 6, 9}.
Thus N(a+ b

√
10) 6= ±2 or ±3. It follows that 2, 3, (4 +

√
10), and (4−

√
10) are irreducible in

Z[
√

10].
On the other hand,

6 = 2 · 3 = (4 +
√

10)(4−
√

10)

and 2 - (4 +
√

10) and 2 - (4 −
√

10) as N(2) = 4 - 6 = N(4 +
√

10) = N(4 −
√

10). Hence 2 is
not prime and by similar arguments neither are 3, 4 +

√
10, and 4−

√
10.
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Example 12.8. Let Z[i] denote the Gaussian integers. Then the norm on Z[i] = Z[
√
−1] is de-

fined by by N(a + bi) = a2 + b2. Let p be a prime in N such that there exist a, b, c ∈ Z with
gcd(p, c) = 1 and

a2 + b2 = cp.

(For example, a = 3, b = 5, c = 2 and p = 17.) Then we will prove that p is not prime in Z[i].
Seeking a contradiction assume that p is prime in Z[i]. Now,

cp = a2 + b2 = (a+ bi)(a− bi)

and p | cp. Therefore p | (a + bi) or p | (a − bi). If p | (a + bi), then a + bi = (u + vi)p for some
u, v ∈ Z and so a = pu and b = pv. Thus p | (a− bi). Hence p2 | (a+ bi)(a− bi) = cp and so p | c.
But gcd(p, c) = 1, a contradiction.

13. Factorization domains

Definition 13.1. Let x ∈ R \ R∗ be an arbitrary non-zero element. Then x is said to have
a factorization into irreducibles if there exists irreducible elements p1, p2, . . . , pm ∈ R such that
x = p1p2 · · · pm.

Definition 13.2. An integral domain is said to be a factorization domain if every non-zero ele-
ment in R \R∗ has a factorization into irreducibles.

Example 13.3. The integers Z are a factorization domain, as every element can be given as a
product of primes and primes are irreducible. If n is a non-square integer, then the integral
domain Z[

√
n] is a factorization domain (Prove it as an exercise!).

Let x ∈ R \ R∗. Then x is said to have a unique factorization into irreducibles if for any two
factorizations of x into irreducibles p1p2 · · · pm and q1q2 · · · qn we have that for all i there exists j
such that pi | qj . That is, for all i there exists j such that qj = piui for some unit ui. In particular,
m = n.

Example 13.4. In the integers Z, the following factorizations of 6 has a unique factorization
into irreducibles even though

6 = 3 · 2 = 2 · 3 = (−2) · (−3).

Definition 13.5. An integral domainR is a unique factorization domain if every non-zero element
of R \R∗ has unique factorization into irreducibles.

Theorem 13.6. Let R be a factorization domain. Then R is a unique factorization domain if and only if
every irreducible element in R is a prime.

Proof. (⇒) Let a ∈ R be an irreducible and assume that a | bc for some b, c ∈ R. Then we must
prove that a | b or a | c.

Since a | bc, there exists x ∈ R such that ax = bc. If x ∈ R∗, then, by Exercise 5.3, ax is
irreducible. Hence ax is not a unit and so bc is not a unit either. If either b or c is a unit, then
b−1ax = c or axc−1 = b and so a | c and a | b, respectively.

If neither b nor c is a unit, then there exist factorizations into irreducibles for both b and c.
But a is an irreducible and so, by unique factorization, a is a divisor of one of the irreducibles
dividing b or c. Hence a divides b or c, as required.
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(⇐) Let x ∈ R \R∗ be an arbitrary non-zero element and let

x = p1p2 · · · pm = q1q2 · · · qn

be factorizations of x into irreducibles. Since every irreducible element is also a prime element,
p1, p2, . . . , pm are prime elements of R. Hence for all i as pi | q1q2 · · · qn it follows that pi | qj for
some j, as required. �

Example 13.7. The integers Z are a unique factorization domain because the irreducible and
prime elements coincide.

Example 13.8. We saw in Example 12.6 that in Z[
√
−5] the element 2 +

√
−5 is irreducible but

not prime. It follows that Z[
√
−5] is not a unique factorization domain.

Likewise in Example 12.7 we saw that in Z[
√

10] the element 2 is irreducible but not prime.
It follows that Z[

√
10] is not a unique factorization domain.

What about the Gaussian integers? We will see later on that they are a unique factorization
domain.

Lemma 13.9. Let R be a principal ideal domain. Then R is a factorization domain.
Proof. To prove this lemma we require the following. If a1, a2, . . . ∈ R are such that (a1) ⊆
(a2) ⊆ · · · , then by Exercise 3.12 the union

I =

∞⋃
i=1

(ai)

is an ideal of R. It follows that I = (d) for some d ∈ R. From the definition of I , there exists
N ∈ N such that d ∈ (aN ). Thus I = (d) ⊆ (an) for all n ≥ N . That is, (aN ) = (aN+1) =
(aN+2) = · · · = I .

Let r0 ∈ R \ R∗ be a non-zero element. We must prove that r0 has a factorization into
irreducibles. Assume the contrary. Then r0 is not an irreducible. So there exist r1, s1 ∈ R \ R∗
such that r0 = r1s1. Thus r1 | r0 and s1 | r0 and so (r0) ⊆ (r1) and (r0) ⊆ (s1). If (r0) = (r1), say,
then r0 ∼ r1 and so there exists a unit u ∈ R∗ such that r1 = r0u. But then r0 = r1s1 = r0us1
and so us1 = 1, or in other words s1 ∈ R∗, a contradiction. Hence (r0) 6= (r1) and (r0) 6= (s1).

If both r1 and s1 had factorizations into irreducibles, then so would r0. Hence, say, r1 has no
factorization into irreducibles. Then repeating the above argument replacing r0 with r1 we find
r2, s2 ∈ R \ R∗ such that r1 = r2s2, (r1) ( (r2), and (r1) ( (s2). Again not both r2 and s2 can
have factorizations into irreducibles, and so we can assume that r2 has no such factorization.

Continuing in this way we obtain

(r0) ⊆ (r1) ⊆ · · ·

But (ri) 6= (ri+1) for all i ∈ N, a contradiction to the first part of the proof. �

Theorem 13.10. Let R be a principal ideal domain that is not a field and let r ∈ R. Then the ideal (r)
is maximal if and only if r is an irreducible element of R.
Proof. (⇐) Let (s) be any ideal of R with (r) 6 (s). Then r = sx for some x ∈ R. But r is
irreducible and so either s or x is a unit. If s is a unit, then (s) = R. If x is a unit, then r ∼ s and
so (r) = (s). Hence (r) is a maximal ideal.

(⇒) Assume that r = ab for some a, b ∈ R. We must prove that a or b is a unit. Assume the
contrary that neither a nor b is a unit. Then since a | r we have that (r) 6 (a). If (r) = (a), then
r | a and so there exists x ∈ R such that a = rx. Hence a = rx = abx and so bx = 1 and b is a
unit, a contradiction. Hence (r) 6= (a). On the other hand, a is not a unit and so (a) 6= R. Hence
(r) � (a) � R, a contradiction to the assumption that (r) is maximal. �
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Corollary 13.11. Let R be a principal ideal domain that is not a field. Then an ideal in R is maximal if
and only if it is prime.
Proof. We saw earlier that every maximal ideal is prime. Hence it suffices to prove that every
prime ideal is maximal.

Let (r) be a prime ideal of R with (r) 6= {0}. Recall from the definition of a prime ideal
that (r) 6= R. If r ∈ R∗, then 1 ∈ (r) and so (r) = R. Hence r 6∈ R∗. Since R is a factorization
domain, it follows that there exist irreducibles x1, x2, . . . , xn ∈ R such that

r = x1x2 · · ·xn.

But (r) is prime and so xi ∈ (r) for some i. Now, by Theorem 13.10, (xi) is maximal in R. But
certainly (xi) ⊆ (r) 6= R and so (xi) = (r). Hence (r) is a maximal ideal, as required. �

Theorem 13.12. Let R be a principal ideal domain. Then R is a unique factorization domain.
Proof. We proved in Lemma 13.9 that R is a factorization domain. By Theorem 13.6 it suffices
to prove that every irreducible element in R is prime. Let x ∈ R be an irreducible element
such that x | ab for some a, b ∈ R. Then (ab) 6 (x) and in particular, ab ∈ (x). But (x) is a
maximal ideal by Theorem 13.10 and hence a prime ideal by Corollary 13.11. It follows that
either a ∈ (x) or b ∈ (x) and so (a) 6 (x) or (b) 6 (x), respectively. Therefore x | a or x | b and
so x is prime. �

The converse of Theorem 13.12 is not true.

Example 13.13. We saw earlier that the rings Z[
√
−5] and Z[

√
10] are not unique factorization

domains. Hence they are not principal ideal domains either.

14. Euclidean rings

Let R be a unique factorization domain and let a, b ∈ R \ R∗. Then a and b can be given as a
product of irreducible (and prime) elements x1, x2, . . . , xk ∈ R as follows

a = xm1
1 xm2

2 · · ·x
mk
k

b = xn1
1 x

n2
2 · · ·x

nk
k

where mi, ni ≥ 0. Then the greatest common divisor of a and b is

c = xp11 x
p2
2 · · ·x

pk
k

where pi = min(mi, ni) for all i. However, except for very small examples, even in the integers
it exceeds human patience and soon after the ability of a computer to use this method to find
gcd(a, b). In the integers we use the division algorithm and the Euclidean algorithm instead.

Definition 14.1. Let R be an integral domain. Then a function N : R \ {0} −→ N satisfying the
following is called a Euclidean function: for all a ∈ R and b ∈ R \ {0} there exist q, r ∈ R such
that

a = qb+ r

and either r = 0 or N(r) < N(b).

If R is an integral domain such that there exists a Euclidean function from R\{0} to N, then
R is called a Euclidean ring.

For example, by the Division Algorithm (Theorem 1.2), the integers Z have a Euclidean
function N : Z \ {0} −→ N defined by N(x) = |x|. Hence the integers are a Euclidean ring.
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Theorem 14.2. Let R be a Euclidean ring. Then R is a principal ideal domain.

Proof. Let N : R \ {0} −→ N denote the Euclidean function. Let I 6= {0} be an ideal in R and
let x ∈ I be any non-zero element where N(x) is minimal in I . We will prove that I = (x).

If y ∈ I is any element, then there exists q, r ∈ R such that y = qx + r where r = 0 or
N(r) < N(x). But N(x) is minimal and so r = 0. In other words, y = qx ∈ (x), as required. �

The converse of Theorem 14.2 does not hold. The ring Z[(1 +
√
−19)/2] is an example of

a principal ideal domain that is not a Euclidean ring. Proving that a ring R is Euclidean only
requires us to find a Euclidean function for R. To prove that R is not Euclidean we must show
that none of the functions from R \ {0} to N is a Euclidean function.

14.1. Gaussian integers – the division algorithm

A norm is defined on the Gaussian integers Z[i] by

N(x+ yi) = (x+ yi)(x− yi) = |x+ yi|2 = x2 + y2.

Recall from Exercise 5.4 that N(α)N(β) = N(αβ) for all α, β ∈ Z[i].

Theorem 14.3. Z[i] is a Euclidean ring.

Proof. Let N : Z[i] −→ N be defined by N(x + yi) = x2 + y2. We must prove that for all
α ∈ Z[i] and β ∈ Z[i] \ {0} there exist q, r ∈ Z[i] such that

α = qβ + r

and either r = 0 or N(r) < N(β). So, α/β is an element of Q[i] = { c+ di : c, d ∈ Q } ⊆ C. We
can then plot α/β in the complex plane, for example:

From this picture we deduce that we may find q = c+ di ∈ Z[i] such that

N(α/β − q) = N(αβ−1 − q) 6

(√
2

2

)2

< 1

where N denotes the norm in C, that is, |a + bi| = a2 + b2, a, b ∈ R. Multiplying both sides of
the inequality by N(β) and using N(α)N(β) = N(αβ) we get

N(α− qβ) < N(β).

Hence N is a Euclidean function and Z[i] is a Euclidean ring. �

Corollary 14.4. Z[i] is a principal ideal domain, and Z[i] is a unique factorization domain.

Proof. This follows immediately from Theorems 14.2 and 13.12. �
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Example 14.5. We will find q, r ∈ Z[i] such that 3 + 4i = (1 − i)q + r where r = 0 or N(r) <
N(1− i) = 2. So, dividing 3 + 4i by 1− i in Cwe obtain

3 + 4i

1− i
=

3 + 4i

1− i
1 + i

1 + i
=
−1

2
+

7i

2
∈ Q[i].

Now, −1 < −1/2 < 0 and 3 < 7/2 < 4 and so plotting (−1 + 7i)/2 in the plane gives:

And so the four possible quotients are 1− 3i, 1− 4i, 3i, and 4i. Now,

N

(
−1 + 7i

2
− (1− 3i)

)
= N

(
1 + i

2

)
=

(
1

2

)2

+

(
1

2

)2

=
1

2
< 1

N

(
−1 + 7i

2
− (1− 4i)

)
= N

(
1− i

2

)
=

1

2
< 1

N

(
−1 + 7i

2
− 3i

)
= N

(
−1 + i

2

)
=

1

2
< 1

N

(
−1 + 7i

2
− 4i

)
= N

(
−1− i

2

)
=

1

2
< 1.

So, from the proof of Theorem 14.3, any of 1− 3i, 1− 4i, 3i, and 4i can be used as the quotient
q. If q = −1 + 3i, then

r = 3 + 4i− (−1 + 3i)(1− i) = 3 + 4i− (2 + 4i) = 1

and N(r) = 1 < 2 = N(1− i), as required.
If q = −1 + 4i, then r = −i. If q = 3i, then r = i, and if q = 4i, then r = −1.

Note that if α, β ∈ Z[i], then there are at most 4 quotients q and remainders r such that
α = qβ + r and r = 0 or N(r) < N(β).

14.2. Polynomial rings – the division algorithm

Let us begin by recalling some definitions relating to rings. The degree of a polynomial f =
a0 + a1x + · · · + anx

n ∈ R[x] is the largest n such that an 6= 0, denoted by deg(f), and where
deg(0) = −∞. If R is an integral domain and f, g ∈ R[x] \ {0}, then

deg(fg) = deg(f) + deg(g).

Lemma 14.6. Let R be an integral domain. Then f ∈ R[x] is a unit if and only if f ∈ R is a unit.
Proof. Note that if f ∈ R[x], then deg(f) = 0 if and only if f ∈ R. If f ∈ R ( R[x] is a unit,
then there exists g ∈ R ( R[x] such that fg = 1. Hence f is a unit in R[x].

Conversely, if f ∈ R[x] is a unit, then there exists g ∈ R[x] such that fg = 1. Hence
0 = deg(1) = deg(fg) = deg(f) + deg(g) and so deg(f) = deg(g) = 0. Thus f ∈ R is a unit in R.

�improve the previous proof.
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Example 14.7. Let f = 3x4 + 2x3 + x2 − 4x+ 1, g = x2 + x+ 1 ∈ Z[x]. Then

3x2 − x− 1

x2 + x+ 1
)

3x4 + 2x3 + x2 − 4x+ 1
− 3x4 − 3x3 − 3x2

− x3 − 2x2 − 4x
x3 + x2 + x

− x2 − 3x+ 1
x2 + x+ 1

− 2x+ 2

.

Here q = 3x2 − x− 1 and r = −2x+ 2.

Example 14.8. Let f = 10x5 − 2x2 + 4x− 3, g = 3x2 + 3x+ 3 ∈ Q[x]. Then

10
3 x

3 − 10
3 x

2 + 8
3

3x2 + 3x+ 3
)

10x5 − 2x2 + 4x − 3
− 10x5 − 10x4 − 10x3

− 10x4 − 10x3 − 2x2

10x4 + 10x3 + 10x2

8x2 + 4x − 3
− 8x2 − 8x − 8

− 4x− 11

.

In this case, q = (10/3)x3 − (10/3)x2 + (8/3) and r = −4x− 11. �

Theorem 14.9. Let R be an integral domain and f, g ∈ R[x] be arbitrary non-zero polynomials. Then
there exist q, r ∈ R[x] such that

f = qg + r

and either r = 0 or none of the terms in r is divisible by the leading term of g.

Proof. Omitted. �

Corollary 14.10. Let F be a field and f, g ∈ F [x] be arbitrary be arbitary non-zero polynomials. Then
there exist unique q, r ∈ F [x] such that

f = qg + r

and either r = 0 or deg(r) < deg(g).

Proof. By Theorem 14.9 there exist q, r ∈ F [x] such that f = qg + r and either r = 0 or
none of the terms in r is divisible by the leading term of g. In the latter case, assume that
deg(r) ≥ deg(g). Let anxn be the leading term of g. Then an is a unit (we’re in a field!) and so
divides every element of F . Since deg(r) ≥ deg(g), there exists m ≥ n such that bmxm is a term
in r and bm 6= 0. Hence anxn divides bmxm, a contradiction. Hence deg(r) < deg(g).

Assume that f = q1g + r1 = q2g + r2 for some q1, q2, r1, r2 ∈ F [x] and deg(r1),deg(r2) <
deg(g). Then (q1 − q2)g = r2 − r1. If r2 − r1 6= 0, then deg(q1 − q2) + deg(g) = deg((q1 − q2)g) =
deg(r2 − r1) 6 max{deg(r2),deg(r1)} and so deg(r2 − r1) 6 deg(r1) or deg(r2 − r1) 6 deg(r2),
say the former. Hence deg(g) 6 deg(q1 − q2) + deg(g) 6 deg(r1), a contradiction. Thus r1 = r2
and so q1 = q2, as required. �
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The proof of Theorem 14.9 only relies on the fact that the leading coefficient of g is not a
zero divisor. Hence it is possible to prove Theorem 14.9 under the weaker assumption that R
is a commutative ring with one and the leading coefficient of g is not a zero divisor. Likewise,
Corollary 14.10 holds when F is replaced with a commutative ring with one and the leading
coefficient of g is invertible.

If R is an arbitrary ring, then it can be difficult to prove that R[x] is a unique factorization
domain, a Euclidean ring, or a principal ideal domain. Likewise it can be hard to determine
what the units are or what the irreducible elements are.

Theorem 14.11 (Gauss) Let R be a unique factorization domain. Then R[x] is a unique factorization
domain.
Proof. Omitted. �

Theorem 14.12. Let F be a field. Then F [x] is a Euclidean ring, and hence a principal ideal domain
and a unique factorization domain.
Proof. It follows from Corollary 14.10 that F [x] the function N : F [x] \ {0} −→ N defined by
N(f) = deg(f) is a Euclidean function. Hence F [x] is a Euclidean ring and hence a principal
ideal domain and a unique factorization domain. �

15. Greatest common divisors again

Recall that an element d of an integral domain R is a greatest common divisor of a, b ∈ R if

(i) d | a and d | b; and

(ii) if c | a and c | b, then c | d.

Let R be a principal ideal domain. Then we also proved that d is a gcd of a, b ∈ R if and
only if (d) = (a, b). In particular, if R is a Euclidean ring, then gcd(a, b) exists for all a, b ∈ R.

The next example shows that the gcd of two elements of an integral domain does not always
exist.

Example 15.1. Z[
√
−5] is an integral domain but not a unique factorization domain since

9 = 3 · 3 = (2 +
√
−5)(2−

√
−5)

and the elements 3, 2 +
√
−5, and 2−

√
−5 are irreducible but not prime.

Let a + b
√
−5 ∈ Z[

√
−5] such that a + b

√
−5 | 9. Then N(a + b

√
−5) | N(9) = 81 and so

N(a+ b
√
−5) ∈ {1, 3, 9, 27, 81}. If N(a+ b

√
−5) = 1, then a+ b

√
−5 is a unit and so a+ b

√
−5 =

±1. If N(a + b
√
−5) = 3, then a2 + 5b2 = 3, which is not possible. If N(a + b

√
−5) = 9, then

a2 + 5b2 = 9 and so a = ±3 and b = 0 or a = ±2 and b = ±1, that is, a + b
√
−5 = ±3 or

±(2 +
√
−5). If N(a+ b

√
−5) = 81, then a+ b

√
−5 = ±9. Hence the only divisors of 9 are

±1,±3,±(2 +
√
−5), and ± 9.

By a similar argument the only divisors of 3 · (2 +
√
−5) are

±1,±3,±(2 +
√
−5), and ± [3 · (2 +

√
−5)].

It follows that if d is a greatest common divisor of 9 and 3 · (2 +
√
−5), then d = ±1, d = ±3

or d = ±(2 +
√
−5). Now, d 6= ±1, as 3 | 9 and 3 | 3 · (2 +

√
−5) but 3 - 1.

If d = ±3, then as 2 +
√
−5 | 9 and 2 +

√
−5 | 3 · (2 +

√
−5), we deduce that (2 +

√
−5) | ±3.

But (2+
√
−5) | ±3 implies that±3 = α · (2+

√
−5) where α is a unit, a contradiction. Likewise,

if d = ±(2 +
√
−5), then 3 | 2 +

√
−5, a contradiction.

Hence the greatest common divisor of 9 and 3 · (2 +
√
−5) does not exist.
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Theorem 15.2. Let R be a factorization domain. Then R is a unique factorization domain if and only if
gcd(a, b) exists for all a, b ∈ R.

Proof. Omitted. �
Let R be a Euclidean ring. Then the following algorithm can be used to find gcd(a, b) for all

a, b ∈ R. Note that d = gcd(a, b) if and only if (a, b) = (d). Moreover, if (d′) = (d) = (a, b), then
d′ ∼ d.

Let N : R \ {0} −→ N be a Euclidean function and let a, b ∈ R be arbitrary. If a = 0, then
gcd(a, b) = b and if b = 0, then gcd(a, b) = a. In either case, we have found the gcd and we can
stop.

Assume without loss of generality that a, b 6= 0 and N(a) ≥ N(b). Set a0 = a and a1 = b.
Then there exists q0, a2 ∈ R such that a0 = q0a1 + a2 and a2 = 0 or N(a2) < N(a1). Hence
a0 ∈ (a1, a2) and a2 = a0 − q0a1 ∈ (a0, a1) and so (a0, a1) = (a1, a2). If a2 = 0, then gcd(a, b) =
gcd(a0, a1) = gcd(a1, a2) = a1 = b. Otherwise we repeatedly apply this procedure on all
subsequent ai and ai+1, i > 0 until aj = 0 for some j. This is guaranteed to happen as N(a0) >
N(a1) > N(a2) > · · · > 0. It follows that gcd(a, b) = aj−1.

Example 15.3. Let a0 = 7 + 8i and a1 = 4 + 5i. Then

a0
a1

=
7 + 8i

4 + 5i

4− 5i

4− 5i
=

68− 3i

41
.

Plotting a0/a1 in the complex plane we note that the nearest elements of Z[i] are 1, 2, 1− i, 2− i.
Since

N

(
68− 3i

41
− 1

)
=

(
27

41

)2

+

(
3

41

)2

< 1,

we have that 7 + 8i = (4 + 5i) + (3 + 3i) and N(3 + 3i) < N(4 + 5i).
Set a2 = 3 + 3i and repeat the previous steps on a1 and a2. Then

4 + 5i = (3 + 3i) + (1 + 2i)

and N(1 + 2i) < N(3 + 3i).
Set a3 = 1 + 2i and repeat the previous steps on a2 and a3. Then

3 + 3i = (1 + 2i)2 + (1− i)

and N(1− i) < N(1 + 2i).
Set a4 = 1− i and repeat the previous steps on a3 and a4. Then

1 + 2i = (1− i)i+ i

and N(i) < N(1− i).
Set a5 = i and repeat the previous steps on a4 and a5. Then

1− i = i(−i− 1) + 0.

Hence gcd(7 + 8i, 4 + 5i) = i.
If d′ is any other gcd of a0 and a1, then d′ ∼ d and so there exists a unit u such that d = d′u.

In Z[i] the units are ±1 and ±i and so ±1, ±i are the only gcds of a0 and a1.
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Example 15.4. Let a0 = x5 + x + 1, a1 = x4 + x3 + x + 1 ∈ F2[x]. Then using the division
algorithm for polynomials we get:

a0 = (x+ 1)a1 + (x3 + x2 + x).

Set a2 = x3 + x2 + x and divide again:

a1 = x · a2 + (x2 + x+ 1).

Set a3 = x2 + x+ 1 and divide again:

a2 = x · a3 + 0.

Hence gcd(x5 + x+ 1, x4 + x3 + x+ 1) = x2 + x+ 1.

Note that if you calculate a gcd of (say) 2 and 4 as polynomials you can get the answer 1,
while as integers the result is always 2.

16. Some nasty examples

In this section we present a few examples showing odd behaviour with respect to the theoretical
things we did so far.

Example 16.1. Let R := F2 × F2 with componentwise addition and multiplication. Then of
course the zero is (0, 0) and the identity is (1, 1). The units are {(1, 1)}.

However, R does not have irreducible elements at all: (1, 0) = (1, 0) · (1, 0), where both
factors are no units.

In particular, R is not a factorization domain, since no element is a product of irreducibles.

Example 16.2. LetR := Z×Zwith componentwise addition and multiplication. Then of course
the zero is (0, 0) and the identity is (1, 1). The units are {(1, 1), (−1, 1), (1,−1), (−1,−1)}.

The ringR does have irreducible elements, namely (up to units) the set {(p, 1) : p a prime}∪
{(1, p) : p a prime}. Any other pair (m,n) with m,n 6= 0 that is not a unit can be written as a
product those.

However, R is no factorization domain, since again (1, 0) = (1, 0) · (1, 0), where both factors
are no units, and (1, 0) (and indeed all (m, 0) and (0, n) for m,n 6= 0) cannot be written as a
product of irreducible elements.

The previous two examples failed to be factorization domains because of a lack of irre-
ducible elements. Now we are looking for infinite chains of principal ideals.

Example 16.3. Let R := ZZ, by which we mean the set of all functions from Z to Z. We de-
note elements of R by two-sided sequences (ai)i∈Z where all ai ∈ Z. We add and multiply
componentwise:

[(ai)i∈Z] + [(bi)i∈Z] := (ai + bi)i∈Z and [(ai)i∈Z] ∗ [(bi)i∈Z] := (ai · bi)i∈Z

Similarly to the previous example, the units are all elements in which all components are in
{±1}. All elements (up to units) with a prime in one position and±1 in all others are irreducible
and these are all irreducibles.

As soon as at least one component of a = (ai)i∈Z is equal to 0, the element a is not a product
of irreducibles as before.
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Now take the elements b(n) = (b
(n)
i )i∈Z where b(n)i = 0 for i >= n and b(n)i = 1 for i < n. The

principal ideal generated by b(n) is:

(b(n)) = {a = (ai)i∈Z ∈ R : ai = 0 for i ≥ n}.

Thus, we have for m < n that (b(m)) ( (b(n)) and so there is an infinite ascending chain of
principal ideals.
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School of Mathematics and Statistics

MT4517 Rings & Fields

Part 4 - Finite Fields

16. The classification of finite fields

Finite fields are one of the few examples of algebraic structures that are completely classified.
That is, the finite fields of any given order are classified. No such classification is known for
finite rings in general. No such classification is known for finite groups or finite semigroups.
The classification of finite simple groups is arguably one of the more important mathematical
results of the late twentieth century.

In this part of the course we will only outline the very rich topic of finite fields. Many of the
proofs in this section are omitted. If you are interested in the details, take MT5826 Finite Fields
next year!

Let p be a prime. Then recall that we defined the Galois field Fp of order p to be the field over
the set {0, 1, . . . , p− 1}with + and ∗ the usual arithmetic of the integers modulo p.

16.1. Characteristic

Let R be a ring such that there exists n > 0 with

nr = r + r + · · ·+ r︸ ︷︷ ︸
n times

= 0

for all r ∈ R. Then the minimum such n is called the characteristic of R.
If no such n exists, then R is said to have characteristic 0.

Example 16.1. The rings Z[i] and Z[
√
n] have characteristic 0.

The fields F2 = Z/(2) or F5 = Z/(5) have characteristic 2 and 5, respectively.

Theorem 16.2. Let R 6= {0} be a ring with identity 1, positive characteristic, and no zero divisors.
Then R has prime characteristic.

Proof. Since R contains non-zero elements, R has characteristic n ≥ 2. If n were not prime,
we could write n = km with k,m ∈ Z, 1 < k,m < n. Then 0 = n · 1 = (km)1 = (k · 1)(m · 1), so
either k · 1 = 0 or m · 1 = 0, since R has no zero divisors. Hence either kr = (k · 1)r = 0 for all
r ∈ R or mr = (m · 1)r = 0 for all r ∈ R, contradicting the definition of characteristic. �

Corollary 16.3. Fp has characteristic p.
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Proof. From Theorem 16.2, we only have to show that a finite field F has positive character-
istic. Consider the sums 1 · 1, 2 · 1, 3 · 1, . . . of the identity. Since F has finitely many elements,
there must exist integers k and m with 1 6 k < m such that k · 1 = m · 1, i.e. (k −m)1 = 0, and
thus (k −m)f = (k −m)1f = 0f = 0 for all f ∈ F so F has positive characteristic. �

16.2. Polynomials again

Let R be an integral domain. Then an element a ∈ R \ R∗ is irreducible if a = bc for b, c ∈ R
implies that b or c is a unit. If R = F [x] for some field F , then R∗ = F \ {0}. Hence f ∈ R \ R∗
is irreducible if and only if whenever f = gh either g ∈ F \ {0} or h ∈ F \ {0}. In other words,
f ∈ R \R∗ is irreducible if and only if whenever f = gh either deg(g) = 0 or deg(h) = 0.

In F [x], an element is reducible if it is not irreducible.

Example 16.4. In R[x], x2 + 1 is irreducible but in C[x]

x2 + 1 = (x+ i)(x− i)

is reducible.

Example 16.5. The polynomial

x2 + 5x+ 6 = (x+ 2)(x+ 3)

is reducible in Z[x]. The polynomial x2 + 1 is irreducible in F3[x] but

x2 + 1 = (x− 2)(x− 3) ∈ F5[x].

Theorem 16.6. Let F be a field and let f ∈ F [x] be arbitrary. Then F [x]/(f) is a field if and only if f
is an irreducible element of F [x].

Proof. From Theorem 14.12, F [x] is a principal ideal domain and it is not a field since the
units are F \ {0}. Hence by Theorem 13.10, (f) is maximal if and only if f is an irreducible in
F [x]. Moreover, by Theorem 10.2, (f) is maximal if and only if F [x]/(f) is a field. �

The following is a summary of the steps required to describe the field F [x]/(f):

• the elements of F [x]/(f) are cosets g + (f) with g ∈ F [x];

• g + (f) = h+ (f) if and only if g − h ∈ (f) if and only if f | g − h;

• if g = qf + r, then g+ (f) = r+ (f), deg(r) < deg(f), and r is unique (by Theorem 14.10);

• the cosets in F [x]/(f) are precisely g + (f) where g runs through all the polynomials in
F [x] with deg(g) < deg(f);

• if F = Fp and deg(f) = n, then Fp[x]/(f) has pn elements.

A root of a polynomial f ∈ F [x] is an element a ∈ F such that f(a) = 0.

Example 16.7. (i) The elements 2, 3 ∈ Q are roots of x2 − 5x+ 6 ∈ Q[x].

(ii) The polynomial x2 + 1 ∈ Q[x] has no roots in Q, but two roots ±i ∈ C.

Theorem 16.8. Let f ∈ F [x] and a ∈ F . Then a is a root of f ∈ F [x] if and only if x− a | f .
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Proof. (⇐) Dividing f by x− a we obtain

f = q · (x− a) + c

with q ∈ F [x] and c ∈ F . Substituting x = a, we get f(a) = c. Hence f = q · (x − a) + f(a) =
q · (x− a) and so x− a | f , as required.

(⇒) x − a | f implies that f = g · (x − a) for some g ∈ F [x]. Hence f(a) = g(a) · (a − a) =
g(a) · 0 = 0, and so a is a root of f . �

Corollary 16.9. Let f ∈ F [x]. Then

(i) if deg(f) = 1, then f is irreducible;

(ii) if f is irreducible and deg(f) > 1, then f has no roots;

(iii) if deg(f) = 2 or 3, then f is irreducible if and only if it has no roots.

Example 16.10. (See Example 6.5.) Let f = x. Then deg(f) = 1 and so f is irreducible. Hence
F2[x]/(f) is a field and from the comments above the elements are:

0 + (f), 1 + (f).

Example 16.11. (See Example 6.6.) Let f = x2 + x+ 1. Then

f(0) = f(1) = f(2) = 1

and so f is irreducible. Hence F2[x]/(f) is a field and its elements correspond to the elements
of F2[x] with degree at most 1. That is,

0 + (f), 1 + (f), x+ (f), x+ 1 + (f)

16.3. Field extensions

If F is a field and K a subfield of F , then F is called an extension field of K. If K 6= F , then K is
called a proper subfield. For example, Q is a proper subfield of C and R is an extension field of
Q.

The prime subfield of F is the intersection of all subfields of a field F , and contains no proper
subfields.

Theorem 16.12. Let K be the prime subfield of a field F . Then

(i) if F has characteristic 0, then K ∼= Q;

(ii) if F has characteristic p, then K ∼= Fp.
Proof. Let F be a field of characteristic 0 and let P be the prime subfield of F . If m,n ∈ Z
such that m 6= n and m · 1 = n · 1, then (m− n) · 1 = 0 and so (m− n)x = 0 for all x ∈ F . This
implies that the characteristic of F is at most m − n, a contradiction. Hence the elements n · 1
(n ∈ Z) are all distinct. It is straightforward to prove that they form a subring of F isomorphic
to Z. The set

Q = {m · 1 · (n · 1)−1 : m,n ∈ Z, n 6= 0}
is a subfield of F isomorphic toQ. Any subfield of F must contain 1 and 0 and so must contain
Q, so Q(F ) ⊆ P . Since Q is itself a subfield of F , we also have P ⊆ Q and so in fact Q = P .

If F has characteristic p, a similar argument proves that

P = {0 · 1, 1 · 1, 2 · 1, . . . , (p− 1) · 1},

and that P ∼= Fp. �
A polynomial a0 + a1x+ · · ·+ anx

n is monic if the largest non-zero coefficient an equals 1.
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Lemma 16.13. Let K be a subfield of F and α ∈ F be the root of a non-zero polynommial in K[x].
Then there exists a unique monic polynomial in F [x] of minimal degree with α as a root.
Proof. As an exercise you can prove that

{ f ∈ K[x] : f(α) = 0 }

is an ideal of F [x].
Since F [x] is a principal ideal domain, I = { f ∈ K[x] : f(α) = 0 } = (g) for some

g ∈ K[x]. Using the Division Algorithm in F [x], we can assume without loss of generality that
deg(g) = min{deg(f) : f ∈ I }. Furthermore, if deg(g) = n and g = a0+a1x+ · · ·+anxn ∈ F [x],
then h = a−1n a0 + a−1n a1x+ · · ·+ a−1n an−1x

n−1 + xn ∈ (g) and g ∈ (h). Hence (g) = (h) and h is
a monic polynomial in F [x] of minimal degree with α as a root.

Let h′ be any other monic polynomial in F [x] of minimal degree with α as a root. Then h′ | h
and h | h′. Hence there exists a unit u ∈ F such that h′u = h. But h′ and h are both monic and
so h′ = h. �

The unique monic polynomial of minimal degree from Lemma 16.13 is called the minimal
polynomial of α over K.

Theorem 16.14. Let α ∈ F be the root of a non-zero polynomial in K[x], let g be the minimal polyno-
mial of α, and let f ∈ K[x]. Then

(i) g is irreducible in K[x];

(ii) f(α) = 0 if and only if g divides f .
Proof. (i). Since g has the root α, it has positive degree. Suppose g = h1h2 in K[x] with
1 6 deg(hi) < deg(g) (i = 1, 2). This implies 0 = g(α) = h1(α)h2(α), and so one of h1 or h2
must lie in the ideal

{ f ∈ K[x] : f(α) = 0 } = (g)

from Lemma 16.13. Hence either h1 or h2 is divisible by g, a contradiction.

(ii). This follows immediately from the definition of g. �

Example 16.15. • 3
√

3 ∈ R is a root of x3 − 3 ∈ Q[x]. Since x3 − 3 is irreducible over Q, it is
the minimal polynomial of 3

√
3 over Q.

• i =
√
−1 ∈ C is a root of the polynomial x2 + 1 ∈ R[x]. Since x2 + 1 is irreducible over R,

it is the minimal polynomial of i over R.

Let L be an extension field of K. An important observation is that L may be viewed as
a vector space over K. The elements of L are the “vectors” and the elements of K are the
“scalars”. We omit the definition of a vector space and the proof that L is a vector space over
K (it follows almost immediately from the definition of a field!).

A basis of a vector space V over F can be defined as a subset {v1, . . . , vn} of vectors in V
such that every v ∈ V can be uniquely written as

v = a1v1 + · · ·+ anvn

where a1, . . . , an ∈ F .
Vector spaces can have many different bases, but there are always the same number of basis

vectors; called the dimension of V over F .
Let L be an extension field of K. If L is finite-dimensional as a vector space over K, then

L is said to be a finite extension of K. The dimension of the vector space L over K is written
[L : K].
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Example 16.16. Let L = C and K be the subfield R. Then we can easily check that C is a vector
space over R. Since C = {a+ bi : a, b ∈ R}, it is clear that {1, i} is a basis and so [C : R] = 2.

Let α1, α2, . . . , αn ∈ F and let K be a subfield of F . Then the least, with respect to contain-
ment, subfield of F containing α1, α2, . . . , αn and K is denoted by K(α1, α2, . . . , αn).

Theorem 16.17. Let F be an extension field of K and α ∈ F be the root of a non-zero polynomial in
K[x], and let g be the minimal polynomial of α over K. Then

(i) K(α) is isomorphic to K[x]/(g);

(ii) [K(α) : K] = deg(g) and {1, α, . . . , αn−1} is a basis of K(α) over K;

(iii) if β ∈ K(α) is a root of a non-zero polynomial in K[x], then the degree of the minimal polynomial
of β is a divisor of deg(g).

Proof. Omitted. �
This theorem tells us that the elements of the simple extension K(α) of K are polynomial

expressions in α, and any β ∈ K(α) can be uniquely expressed in the form β = a0 +a1α+ · · ·+
an−1α

n−1 for some ai ∈ K.

Example 16.18. Consider the simple extension R(i) of R. We saw earlier that i has minimal
polynomial x2 + 1 over R.

So R(i) ∼= R[x]/(x2 + 1), and {1, i} is a basis for R(i) over R. So

R(i) = {a+ bi : a, b ∈ R} = C.

Example 16.19. Consider the simple extensionQ( 3
√

3) ofQ. We saw earlier that 3
√

3 has minimal
polynomial x3 − 3 over Q.

So Q( 3
√

3) ∼= Q[x]/(x3 − 3), and {1, 3
√

3, ( 3
√

3)2} is a basis for Q( 3
√

3) over Q. So

Q(
3
√

3) = {a+ b
3
√

3 + c(
3
√

3)2 : a, b, c ∈ Q}.

16.4. The Main Theorems

In the remainder of this section we will outline the proofs of the following theorems.

Theorem 16.20. Let F be a finite field. Then F has pn elements where the prime p is the characteristic
of F and n is the dimension of F over its prime subfield.

Proof. Since F is finite, it has characteristic p for some prime p by Corollary 16.3. Hence by
Theorem 16.12 the prime subfield of F is isomorphic to Fp. Thus F is an extension field of Fp.
In particular, F is a vector space over Fp of dimension n, for some n ∈ N. Hence |F | = pn, as
required. �

Theorem 16.21. Let p be a prime and n be a positive integer. Then, up to isomorphism, there exists a
unique finite field with pn elements.

Proof. Omitted. �

Example 16.22. In Exercise 8.1 we proved that the polynomials x2 + 1 and y2 + 2y2 are irre-
ducible in F3[x]. Hence it follows that F1 = F3[x]/(x2 + 1) and F2 = F3[y]/(y2 + 2y + 2) are
fields with 32 = 9 elements. It follows from Theorem 16.20 that F1 and F2 are isomorphic.

49



Theorem 16.23 (Subfield Criterion) Let Fq be a finite field where q = pn for some prime p. Then
every subfield of Fq has pm elements where m is some divisor of n.

If m is a divisor of n, then there exists a unique subfield of Fq with pm elements

Proof. LetK be a subfield of Fq and let P be the prime subfield of F . Since P is the intersection
of all subfields of F , it follows that P ⊆ K. Hence by Theorem 16.20, |K| = pm for some m ∈ N.
Since F is a vector space over K, it follows that q = pn is divisible by pm and so m divides n.

The proof of the second part of the theorem is omitted. �

Theorem 16.24. Let Fq be a finite field. Then Fq \ {0} = {x, x2, . . . , xq−1 = 1} for some x ∈ Fq, that
is Fq \ {0} is a cyclic group.

Proof. Omitted. �
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