

School of Mathematics and Statistics
 MT4517 Rings \& Fields

Exercises 2

Exercise 2.1. Let R be any ring. Use the Ring Axioms to prove that $0 * a=0=a * 0$ for any $a \in R$.

If R has a multiplicative identity 1 , prove that $(-1) *(-1)=1$.
Exercise 2.2. Let \mathbb{R} denote the real numbers and R be the set of mappings $f: \mathbb{R} \rightarrow \mathbb{R}$. Define + and $*$ on R by

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f * g)(x) & =f(x) * g(x)
\end{aligned}
$$

for all $x \in \mathbb{R}$. Prove that R is a commutative ring with identity. Which elements of R have multiplicative inverses? Does R have zero divisors? Is R a ring when multiplication $*$ is defined to be composition of mappings?

Exercise 2.3. Let R be a set with operations + and $*$ satisfying A2 and M2. Prove that if $1=0$ in R, then R is a ring with one element.

Exercise 2.4. Let R be a ring satisfying M2 and M3. Prove that R has no zero divisors.
Exercise 2.5. Let $R=\mathbb{R} \times \mathbb{R}=\{(a, b): a, b \in \mathbb{R}\}$. Define + and $*$ by

$$
\begin{gathered}
(a, b)+(c, d)=(a+c, b+d) \\
(a, b)(c, d)=(a c, b d) .
\end{gathered}
$$

Prove that R is a commutative ring with identity. Find the elements of R that have a multiplicative inverse.

Exercise 2.6. Prove that the set $R=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$ is a ring under real addition and multiplication. Find the multiplicative inverses of the elements $1+\sqrt{2}$ and $3+2 \sqrt{2}$.

Show that $a+b \sqrt{2} \in R$ is a unit if and only if $a^{2}-2 b^{2}=1$. Deduce that R is not a division ring and hence not a field.

Exercise 2.7. Let M be the set of matrices

$$
\left\{\left(\begin{array}{ll}
0 & a \\
0 & b
\end{array}\right): a, b \in \mathbb{R}\right\} .
$$

Show that M is a ring under the operations of matrix addition and multiplication. Is M a commutative ring? Does M have an identity?

Exercise 2.8. Let \mathbb{H} denote the quaternions as defined in Example 2.6. From the multiplication table defined in Example 2.6, we deduce that

$$
\begin{equation*}
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i} \mathbf{j} \mathbf{k}=-1 . \tag{2.1}
\end{equation*}
$$

Prove that it is possible to deduce the multiplication table from the equalities in (2.1).
Exercise 2.9. Let $x \in \mathbb{Z} /(n)$ with $x \neq 0$. Prove that x is a unit if and only if x is coprime to n. Deduce that $\mathbb{Z} /(n)$ is a division ring if and only if n is a prime.

Exercise 2.10. Let $a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ be a non-zero element in the quaternions \mathbb{H}. Prove that

$$
(a-b \mathbf{i}-c \mathbf{j}-d \mathbf{k}) \frac{1}{a^{2}+b^{2}+c^{2}+d^{2}}
$$

is the multiplicative inverse of $a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$. Deduce that \mathbb{H} is a division ring.
Prove that \mathbb{H} is not an integral domain.
Exercise 2.11. Prove the following statements:
(i) $\mathbb{R}, \mathbb{C}, \mathbb{Q}$ are division rings;
(ii) \mathbb{Z} is not a division ring;
(iii) the ring $M_{2}(\mathbb{R})$ is not a division ring.

Exercise 2.12. Let R be a ring and $a, b \in R \backslash\{0\}$ with $a b=0$. Prove that neither a nor b is a unit.
Exercise 2.13. Prove that the set $C[0,1]$ of real-valued continuous functions on the interval $[0,1]$ is a ring under the operations + and $*$. What are the one and zero in $C[0,1]$? Is $C[0,1]$ commutative, or an integral domain? Does $C[0,1]$ have zero divisors? What are the units in $C[0,1]$? Is $C[0,1]$ a division ring or a field?

Exercise 2.14. Let R be a ring and let $M_{n}(R)$ denote the set of $n \times n$ matrices with entries in R. Prove that $M_{n}(R)$ is a ring.

Exercise 2.15. Let R be a set with operations + and $*$ satisfying the Ring Axioms except A4 and including M2. Prove that A4 holds. [Hint: Expand $(1+1) *(a+b)$ using A2, A3 and D in two different ways.]

Exercise 2.16. Let R be a ring where $x^{2}=x * x=x$ for all $x \in R$. Prove that R is a commutative ring where $2 x=x+x=0$ for all x.

Exercise 2.17. Is it true that $(x+y)^{2}=x^{2}+2 x * y+y^{2}$ in all rings?

