

School of Mathematics and Statistics MT4517 Rings & Fields Exercises 2

Exercise 2.1. Let *R* be any ring. Use the Ring Axioms to prove that 0 * a = 0 = a * 0 for any $a \in R$.

If *R* has a multiplicative identity 1, prove that (-1) * (-1) = 1.

Exercise 2.2. Let \mathbb{R} denote the real numbers and *R* be the set of mappings $f : \mathbb{R} \to \mathbb{R}$. Define + and * on *R* by

$$(f+g)(x) = f(x) + g(x)$$

 $(f*g)(x) = f(x)*g(x)$

for all $x \in \mathbb{R}$. Prove that *R* is a commutative ring with identity. Which elements of *R* have multiplicative inverses? Does *R* have zero divisors? Is *R* a ring when multiplication * is defined to be composition of mappings?

Exercise 2.3. Let *R* be a set with operations + and * satisfying **A2** and **M2**. Prove that if 1 = 0 in *R*, then *R* is a ring with one element.

Exercise 2.4. Let *R* be a ring satisfying M2 and M3. Prove that *R* has no zero divisors.

Exercise 2.5. Let $R = \mathbb{R} \times \mathbb{R} = \{ (a, b) : a, b \in \mathbb{R} \}$. Define + and * by

$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b)(c,d) = (ac,bd).$$

Prove that R is a commutative ring with identity. Find the elements of R that have a multiplicative inverse.

Exercise 2.6. Prove that the set $R = \{ a + b\sqrt{2} : a, b \in \mathbb{Z} \}$ is a ring under real addition and multiplication. Find the multiplicative inverses of the elements $1 + \sqrt{2}$ and $3 + 2\sqrt{2}$.

Show that $a + b\sqrt{2} \in R$ is a unit if and only if $a^2 - 2b^2 = 1$. Deduce that *R* is not a division ring and hence not a field.

Exercise 2.7. Let *M* be the set of matrices

$$\left\{ \begin{array}{cc} 0 & a \\ 0 & b \end{array} \right) : a, b \in \mathbb{R} \left\}.$$

Show that M is a ring under the operations of matrix addition and multiplication. Is M a commutative ring? Does M have an identity?

Exercise 2.8. Let \mathbb{H} denote the quaternions as defined in Example 2.6. From the multiplication table defined in Example 2.6, we deduce that

$$i^2 = j^2 = k^2 = ijk = -1.$$
 (2.1)

Prove that it is possible to deduce the multiplication table from the equalities in (2.1).

Exercise 2.9. Let $x \in \mathbb{Z}/(n)$ with $x \neq 0$. Prove that x is a unit if and only if x is coprime to n. Deduce that $\mathbb{Z}/(n)$ is a division ring if and only if n is a prime.

Exercise 2.10. Let $a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ be a non-zero element in the quaternions \mathbb{H} . Prove that

$$(a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}) \frac{1}{a^2 + b^2 + c^2 + d^2}$$

is the multiplicative inverse of $a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$. Deduce that \mathbb{H} is a division ring.

Prove that \mathbb{H} is not an integral domain.

Exercise 2.11. Prove the following statements:

- (i) $\mathbb{R}, \mathbb{C}, \mathbb{Q}$ are division rings;
- (ii) \mathbb{Z} is not a division ring;
- (iii) the ring $M_2(\mathbb{R})$ is not a division ring.

Exercise 2.12. Let *R* be a ring and $a, b \in R \setminus \{0\}$ with ab = 0. Prove that neither *a* nor *b* is a unit.

Exercise 2.13. Prove that the set C[0, 1] of real-valued continuous functions on the interval [0, 1] is a ring under the operations + and *. What are the one and zero in C[0, 1]? Is C[0, 1] commutative, or an integral domain? Does C[0, 1] have zero divisors? What are the units in C[0, 1]? Is C[0, 1]? Is C[0, 1] a division ring or a field?

Exercise 2.14. Let *R* be a ring and let $M_n(R)$ denote the set of $n \times n$ matrices with entries in *R*. Prove that $M_n(R)$ is a ring.

Exercise 2.15. Let *R* be a set with operations + and * satisfying the Ring Axioms except **A4** and including **M2**. Prove that **A4** holds. [Hint: Expand (1 + 1) * (a + b) using **A2**, **A3** and **D** in two different ways.]

Exercise 2.16. Let *R* be a ring where $x^2 = x * x = x$ for all $x \in R$. Prove that *R* is a commutative ring where 2x = x + x = 0 for all *x*.

Exercise 2.17. Is it true that $(x + y)^2 = x^2 + 2x * y + y^2$ in all rings?