

School of Mathematics and Statistics
 MT4517 Rings \& Fields

Exercises 3

Exercise 3.1. Determine which of the following are subrings of the given rings.
(i) the positive integers in \mathbb{Z};
(ii) all polynomials with integer constant in $\mathbb{Q}[x]$;
(iii) all integers divisible by 3 in \mathbb{Z};
(iv) all polynomials of degree at least 6 in $\mathbb{Q}[x]$;
(v) the set $\{75 a+30 b: a, b \in \mathbb{Z}\}$ in \mathbb{Z};
(vi) all the zero divisors of $\mathbb{Z} /(14)$ in $\mathbb{Z} /(16)$.

Also determine which of the examples above are ideals in the respective rings.
Exercise 3.2. Let R denote the set of all subsets of a set S. Define operations + and $*$ on R by

$$
A+B=(A \cup B) \backslash(A \cap B) \text { and } A * B=A \cap B,
$$

where $A, B \in R$. Prove that R is a ring. [Aside: R is called a Boolean ring.]
Does this ring have an identity element? Which elements of the ring have multiplicative inverses? If we redefine + by $A+B=A \cup B$, do we still get a ring?

Let A be a subset of S. Describe the ideal of R generated by A.
Exercise 3.3. Prove that the set of real polynomials $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ where $a_{0}=a_{1}=0$ is a subring of the polynomial ring $\mathbb{R}[x]$. Is it an ideal?

Exercise 3.4. Prove that the set of all real polynomials $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ for which the sum $a_{0}+a_{1}+a_{2}+\cdots+a_{n}=0$ is an ideal of $\mathbb{R}[x]$.

Exercise 3.5. Prove that the set $\{r+s \sqrt{2}: r, s \in \mathbb{Q}\}$ is a field under real addition and multiplication. Prove that it is the smallest subfield of \mathbb{R} which contains $\sqrt{2}$.

Exercise 3.6. What is the ideal of \mathbb{R} generated by $\sqrt{2}$?
Exercise 3.7. If R is a commutative ring with identity whose only ideals are $\{0\}$ and R, prove that R is a field. If R is a commutative ring with identity, do the non-invertible elements of R form an ideal? Prove this or find a counterexample.

Exercise 3.8. Let R be the set of real matrices of the form

$$
\left(\begin{array}{cc}
a & b \\
2 b & a
\end{array}\right)
$$

Prove that R is a subring of the ring of all real matrices. If we insist that the entries of R are rationals, prove that R is then a field. [Hint: a matrix with entries in a field is invertible if its determinant is non-zero.]

If the entries of R are taken from the $\operatorname{ring} \mathbb{Z} /(3)$, prove that R is a field with 9 elements.
Exercise 3.9. Prove Lemma 5.13 from lectures.

Exercise 3.10. Prove that every field is a PID.
Exercise 3.11. Let I and J be ideals in a commutative ring R with identity. Prove that $I \cap J$, $I+J=\{i+j: i \in I, j \in J\}$, and

$$
I J=\left\{\sum_{i=1}^{n} a_{i} b_{i}: n \geq 1, a_{i} \in I, b_{i} \in J\right\}
$$

are ideals in R.
Prove that $I J \subseteq I \cap J$. Find examples of ideals I and J such that $I J \neq I \cap J$. Is $\{i j: i \in$ $I, j \in J\}$ an ideal?

Exercise 3.12. Let

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots
$$

be an infinite increasing sequence of ideals in a ring R. Prove that the union of the ideals is an ideal. Show that the union

$$
\{2 m: m \in \mathbb{Z}\} \cup\{3 n: n \in \mathbb{Z}\}
$$

of two ideals in \mathbb{Z} is not even a subring of \mathbb{Z}.
Exercise 3.13. Let R be a ring with the property that every ideal $I \subseteq R$ is finitely generated, that is, there exist $r_{1}, \ldots, r_{n} \in R$ where $I=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$. A ring with this property is called noetherian. Let

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots
$$

be an infinite increasing sequence of ideals in a ring R. Prove that there exists $N \in \mathbb{N}$ such that $I_{N}=I_{N+1}=\cdots$.

Exercise 3.14. Let I be an ideal in a ring R. Prove that $I[x]$ is an ideal in $R[x]$.

