

School of Mathematics and Statistics
 MT4517 Rings \& Fields

Exercises 4

Exercise 4.1. Let R be the factor ring $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$. Find the multiplicative inverses of the elements $x, 1+x$, and $1+x^{2}$ in R.

Exercise 4.2. Let R be the factor ring $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$. Prove that R is a field.
Exercise 4.3. Let R be the factor ring $\mathbb{F}_{2}[x] /\left(x^{2}-1\right)$. Prove that R is not a field.
Exercise 4.4. Let R and S be rings and let $f: R \longrightarrow S$ be a homomorphism. Prove that the kernel of f is an ideal in R and that the image of f is a subring of S.

Exercise 4.5. Let $f(a+b i)=a-b i$ denote the conjugation map on the complex numbers \mathbb{C}. Prove that f is a homomorphism from $\mathbb{Z}[i]$ to $\mathbb{Z}[i]$.

Exercise 4.6. Let \mathbb{R}^{2} denote the ring from Exercise 2.6 and let R denote the set of mappings $f:\{0,1\} \rightarrow \mathbb{R}$ with + and $*$ as defined in Exercise 2.2. Prove that \mathbb{R}^{2} and R are isomorphic.

Exercise 4.7. Prove Lemma 7.2 from lectures.
Exercise 4.8. Let $f: \mathbb{Z} \rightarrow M_{2}(\mathbb{R})$ be defined by

$$
f(x)=\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right)
$$

Prove that f is a homomorphism.
Exercise 4.9. Prove that the $\operatorname{map} \phi$ from $\mathbb{Z} /(12)$ to $\mathbb{Z} /(4)$ given by $n \mapsto n \bmod 4$ for $n \in \mathbb{Z} /(12)$ is a ring homomorphism. What is its kernel? Is the map from $\mathbb{Z} /(14)$ to $\mathbb{Z} /(8)$ given by $n \mapsto n$ $\bmod 8$ for $n \in \mathbb{Z} /(14)$ a ring homomorphism?

Exercise 4.10. Which of the maps from \mathbb{C} to \mathbb{C} given by the following are ring homomorphisms

$$
x+y i \mapsto x, x+y i \mapsto|x+y i|, x+y i \mapsto y+x i ?
$$

Exercise 4.11. Describe all the ring homomorphisms from $\mathbb{Z} /(12)$ onto $\mathbb{Z} /(4)$. Describe all the ring homomorphisms from $\mathbb{Z} /(12)$ to $\mathbb{Z} /(5)$. For which values of m, n is it possible to find a surjective ring homomorphism from $\mathbb{Z} /(m)$ onto $\mathbb{Z} /(n)$?

Exercise 4.12. Prove that up to isomorphism there are two rings of order 2.
Exercise 4.13. Recall that the scalar product or dot product of 2 vectors $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right), \vec{v}=$ $\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ is defined by

$$
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

and that the vector product or cross product is defined by

$$
\vec{u} \times \vec{v}=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
$$

Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{H}$ be defined by

$$
\phi(\vec{u})=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k} .
$$

Such quaternions with zero 'constant' are called pure. Show the relationship between the scalar and vector products in vector space \mathbb{R}^{3} and the multiplication in the ring of quaternions \mathbb{H}.

Prove that the set \mathbb{R}^{3} under vector addition and the vector product is not a ring.
Exercise 4.14. Let R denote the factor ring $\mathbb{Z}[i] /(1+3 i)$. Show that $i-3 \in(1+3 i)$ and that $i+(1+3 i)=3+(1+3 i)$ in R. Use this to prove that $10+(1+3 i)=(1+3 i)$ in R and that $a+b i+(1+3 i)=a+3 b+(1+3 i)$ where $a, b \in \mathbb{Z}$.

Exercise 4.15. Let R be a commutative ring and let I and J be ideals in R with $I \subseteq J$.
(i) Show that $\phi: R / I \longrightarrow R / J$ given by $\phi(x+I)=x+J$ is a well-defined surjective homomorphism.
(ii) Let $R=\mathbb{Z}[i]$, let $n \in \mathbb{Z} \backslash\{0\}$ be arbitrary, and let $I=R n=\{r n: r \in R\}$. Prove that I is an ideal and that $a+b i \in I$ if and only if $n \mid a$ and $n \mid b$. Prove that R / I is a finite ring.
(iii) Let $J \neq\{0\}$ be an ideal in R. Prove that $J \cap \mathbb{Z}$ is an ideal in \mathbb{Z} and that $J \cap \mathbb{Z} \neq\{0\}$.
(iv) Show that R / J is a finite ring.

Exercise 4.16. Prove that every ideal in the quotient ring R / I of a principal ideal domain R is principal. Give an example of a ring which is not a domain but for which every ideal is a principal ideal.

