

School of Mathematics and Statistics
 MT4517 Rings \& Fields
 Exercises 5

Exercise 5.1. Prove that for all n every ideal of the ring $\mathbb{Z} /(n)$ is principal. Is $\mathbb{Z} /(n)$ a principal ideal domain? How would you determine the number of ideals of $\mathbb{Z} /(n)$?

Exercise 5.2. Let R be an integral domain and let $r \in R$. Prove that r is a unit if and only if $(r)=R$.

Exercise 5.3. Let R be an integral domain. Prove that $0 \in R$ is not an irreducible.
Also prove that if $u \in R$ is a unit and $r \in R$ is irreducible, then $a u$ is irreducible.
Exercise 5.4. Let $n \in \mathbb{Z}$ such that $n \neq m^{2}$ for all $m \in \mathbb{Z}$. Prove that the function $N: \mathbb{Z}[\sqrt{n}] \longrightarrow \mathbb{N}$ defined by

$$
N(a+b \sqrt{n})=a^{2}-n b^{2}
$$

satisfies

$$
N(a+b \sqrt{n}) N(c+d \sqrt{n})=N((a+b \sqrt{n})(c+d \sqrt{n})) .
$$

Exercise 5.5. Let R be an integral domain and $R^{\prime}=R \backslash\{0\}$. Is it true or false that:
(a) if \mid is an equivalence relation on R^{\prime}, then R is a field;
(b) if $x \sim y$ for all $x, y \in R^{\prime}$, then R is a field;
(c) if $a \sim b$ and $c \sim d$, then $a c \sim b d$;
(d) if $a \sim b$ and $c \sim d$, then $(a+c) \sim(b+d)$;
(e) if every element of R^{\prime} is a unit or a prime, then R is a field?

Give a proof if the statement is true and a counter-example if it is false.
Exercise 5.6. Determine whether 17 is irreducible in each of

$$
\mathbb{Z}, \mathbb{Z}[x], \mathbb{Z}[i], \mathbb{Z}[\sqrt{10}]
$$

Exercise 5.7. Find two different factorisations of 10 in $\mathbb{Z}[\sqrt{-6}]$. Find an irreducible element of $\mathbb{Z}[\sqrt{-6}]$ that is not prime.

Exercise 5.8. Show that 8 can be written as both the product of 2 irreducibles and as the product of 3 irreducibles in $\mathbb{Z}[\sqrt{-7}]$.

Exercise 5.9. Let R be a ring and I an ideal of R such that R / I is an integral domain. Prove that I is a prime ideal (that is, prove the direct implication of Theorem 9.2).

Exercise 5.10. Let R be the ring with elements $\{a / b \in \mathbb{Q}: b \equiv 1$ or $2(\bmod 3)\}$ and the usual operations + and $*$ in \mathbb{Q} and let $I=\{a / b \in R: a \equiv 0(\bmod 3)\}$. Then
(i) prove that R is a subring of \mathbb{Q};
(ii) prove that I is an ideal in R;
(iii) prove that R / I is a field.

Exercise 5.11. Prove that $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{3}]$ are not isomorphic rings.
Exercise 5.12. Let $\alpha \in \mathbb{Z}[i]$ be prime. Prove that precisely one of the following holds:
(i) $\alpha \sim 1+i$;
(ii) $\alpha \sim p$ where $p \in \mathbb{Z}$ is prime and $p \equiv 3(\bmod 4)$;
(iii) α divides a prime $p \in \mathbb{Z}$ with $p \equiv 1(\bmod 4)$.

Exercise 5.13. Let R be a principal ideal domain and let I be an ideal of R. Prove that R / I is a principal ideal domain.

Find an example of a ring that is not an integral domain but where every ideal is principal.
Exercise 5.14. Let I and J be ideals and K be a prime ideal of a ring R. Prove that if $I J \leqslant K$, then $I \leqslant K$ or $J \leqslant K$.

Exercise 5.15. Let R and S be rings and let $f: R \longrightarrow S$ be a homomorphism. Prove that $\operatorname{ker}(f)$ is a prime ideal if S is an integral domain. Prove that $\operatorname{ker}(f)$ is a maximal ideal if S is a field and f is surjective.

