

School of Mathematics and Statistics
 MT4517 Rings \& Fields

Exercises 6

Exercise 6.1. Prove that the ring $\mathbb{Z}[\sqrt{n}]$ is a factorization domain for all $n \in \mathbb{Z}$ with $n \neq m^{2}$ for all $m \in \mathbb{Z}$.

Exercise 6.2. Prove that $\mathbb{Z}[\sqrt{6}]$ is a unique factorization domain. Why does $\sqrt{6} \sqrt{6}=2 * 3$ not violate unique factorization in $\mathbb{Z}[\sqrt{6}]$?

Exercise 6.3. Show that $\mathbb{Z}[\sqrt{10}]$ is not a unique factorization domain.
Exercise 6.4. Express as products of irreducibles:
(a) $4+7 \sqrt{2}$ in $\mathbb{Z}[\sqrt{2}]$;
(b) $4-\sqrt{-3}$ in $\mathbb{Z}[\sqrt{-3}]$;
(c) $5+3 \sqrt{-7}$ in $\mathbb{Z}[\sqrt{-7}]$.

Exercise 6.5. In the ring $\mathbb{Z}[\sqrt{-5}]$, prove that
(i) the units are 1 and -1 ;
(ii) $3,2+\sqrt{-5}, 2-\sqrt{-5}$ are irreducible;
(iii) 9 has two factorizations into a product of irreducibles;
(iv) the ideals $(3,2+\sqrt{-5})$ and $(3,2-\sqrt{-5})$ are prime.

Exercise 6.6. Is the r in the definition of a Euclidean function unique?
Exercise 6.7. Find four different $q, r \in \mathbb{Z}[i]$ such that $2+i=(1+i) q+r$ and $N(r)<N(1+i)$.
Find $a+b i, c+d i \in \mathbb{Z}[i]$ such that there exist only three, and then two, and then one, different $q, r \in \mathbb{Z}[i]$ such that $a+b i=(c+d i) q+r$ and $N(r)<N(c+d i)$.

Exercise 6.8. Let k be an arbitrary positive integer. Then, using Exercise 5.8 or otherwise, show that there is an element in $\mathbb{Z}[\sqrt{-7}]$ that can be written as the product of $2 k, 2 k+1, \ldots, 3 k$ irreducibles.

Exercise 6.9. Let $f: \mathbb{Z}[i] \longrightarrow \mathbb{Z}[i]$ be defined by $f(a+b i)=a-b i$. Prove that f is a homomorphism and that $f(a+b i)$ is prime in $\mathbb{Z}[i]$ if $a+b i$ is prime in $\mathbb{Z}[i]$.

Exercise 6.10. Let $\mathbb{Z}[\omega]=\{x+\omega y: x, y \in \mathbb{Z}\}$ where $\omega^{2}+\omega+1=0$, let $\alpha=x+\omega y \in \mathbb{Z}[\omega]$, and let $\bar{\alpha}$ denote the complex conjugate of α. Define $N(\alpha)=\alpha \bar{\alpha}$.
(i) Prove that $N(\alpha)=x^{2}-x y+y^{2}$ and that $N(\alpha) N(\beta)=N(\alpha \beta)$ for all $\alpha, \beta \in \mathbb{Z}[\omega]$.
(ii) Prove that $\alpha \in \mathbb{Z}[\omega]$ is irreducible if $N(\alpha)$ is a prime number.
(iii) Prove that $\mathbb{Z}[\omega]$ is a euclidean ring.
(iv) Prove that $1-\omega$ is a prime element in $\mathbb{Z}[\omega]$.

Exercise 6.11. Is $\mathbb{Z}[\sqrt{-3}]$ a Euclidean ring?
Exercise 6.12. Let $R=\mathbb{Z}[\sqrt{n}]$ where n is square-free. Then prove the following:
(i) if $n<-1$, then the units of R are -1 and 1 ;
(ii) if $n>1$ and $\left|R^{*}\right|>2$, then R^{*} is infinite;
(iii) if $n=2$, then $R^{*}=\left\{ \pm(1 \pm \sqrt{2})^{k}: k \geq 1\right\}$.

Exercise 6.13. Let R be a euclidean ring with euclidean function N and let $a, b \in R$. Prove that if $a \mid b$ and $N(a)=N(b)$, then $a \sim b$.

Exercise 6.14. Prove that $(2, \sqrt{10}),(3,4+\sqrt{10})$, and $(3,4-\sqrt{10})$ are prime ideals in $\mathbb{Z}[\sqrt{10}]$.
Exercise 6.15. Let R be the ring of 2×2 matrices with entries in a field F. Verify that

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
d & 0 \\
0 & 0
\end{array}\right)
$$

Find other similar expressions and deduce that the two-sided ideal generated by a single matrix is either $\{0\}$ or the whole ring.

