

School of Mathematics and Statistics MT4517 Rings & Fields Exercises 6

Exercise 6.1. Prove that the ring $\mathbb{Z}[\sqrt{n}]$ is a factorization domain for all $n \in \mathbb{Z}$ with $n \neq m^2$ for all $m \in \mathbb{Z}$.

Exercise 6.2. Prove that $\mathbb{Z}[\sqrt{6}]$ is a unique factorization domain. Why does $\sqrt{6}\sqrt{6} = 2 * 3$ not violate unique factorization in $\mathbb{Z}[\sqrt{6}]$?

Exercise 6.3. Show that $\mathbb{Z}[\sqrt{10}]$ is not a unique factorization domain.

Exercise 6.4. Express as products of irreducibles:

(a)
$$4 + 7\sqrt{2}$$
 in $\mathbb{Z}[\sqrt{2}]$;

(b)
$$4 - \sqrt{-3}$$
 in $\mathbb{Z}[\sqrt{-3}]$;

(c)
$$5 + 3\sqrt{-7}$$
 in $\mathbb{Z}[\sqrt{-7}]$.

Exercise 6.5. In the ring $\mathbb{Z}[\sqrt{-5}]$, prove that

- (i) the units are 1 and -1;
- (ii) $3, 2 + \sqrt{-5}, 2 \sqrt{-5}$ are irreducible;
- (iii) 9 has two factorizations into a product of irreducibles;
- (iv) the ideals $(3, 2 + \sqrt{-5})$ and $(3, 2 \sqrt{-5})$ are prime.

Exercise 6.6. Is the *r* in the definition of a Euclidean function unique?

Exercise 6.7. Find four different $q, r \in \mathbb{Z}[i]$ such that 2 + i = (1 + i)q + r and N(r) < N(1 + i). Find $a+bi, c+di \in \mathbb{Z}[i]$ such that there exist only three, and then two, and then one, different $q, r \in \mathbb{Z}[i]$ such that a + bi = (c + di)q + r and N(r) < N(c + di).

Exercise 6.8. Let *k* be an arbitrary positive integer. Then, using Exercise 5.8 or otherwise, show that there is an element in $\mathbb{Z}[\sqrt{-7}]$ that can be written as the product of $2k, 2k + 1, \ldots, 3k$ irreducibles.

Exercise 6.9. Let $f : \mathbb{Z}[i] \longrightarrow \mathbb{Z}[i]$ be defined by f(a + bi) = a - bi. Prove that f is a homomorphism and that f(a + bi) is prime in $\mathbb{Z}[i]$ if a + bi is prime in $\mathbb{Z}[i]$.

Exercise 6.10. Let $\mathbb{Z}[\omega] = \{x + \omega y : x, y \in \mathbb{Z}\}$ where $\omega^2 + \omega + 1 = 0$, let $\alpha = x + \omega y \in \mathbb{Z}[\omega]$, and let $\bar{\alpha}$ denote the complex conjugate of α . Define $N(\alpha) = \alpha \bar{\alpha}$.

- (i) Prove that $N(\alpha) = x^2 xy + y^2$ and that $N(\alpha)N(\beta) = N(\alpha\beta)$ for all $\alpha, \beta \in \mathbb{Z}[\omega]$.
- (ii) Prove that $\alpha \in \mathbb{Z}[\omega]$ is irreducible if $N(\alpha)$ is a prime number.
- (iii) Prove that $\mathbb{Z}[\omega]$ is a euclidean ring.
- (iv) Prove that 1ω is a prime element in $\mathbb{Z}[\omega]$.

Exercise 6.11. Is $\mathbb{Z}[\sqrt{-3}]$ a Euclidean ring?

Exercise 6.12. Let $R = \mathbb{Z}[\sqrt{n}]$ where *n* is square-free. Then prove the following:

- (i) if n < -1, then the units of R are -1 and 1;
- (ii) if n > 1 and $|R^*| > 2$, then R^* is infinite;
- (iii) if n = 2, then $R^* = \{ \pm (1 \pm \sqrt{2})^k : k \ge 1 \}$.

Exercise 6.13. Let *R* be a euclidean ring with euclidean function *N* and let $a, b \in R$. Prove that if $a \mid b$ and N(a) = N(b), then $a \sim b$.

Exercise 6.14. Prove that $(2, \sqrt{10})$, $(3, 4 + \sqrt{10})$, and $(3, 4 - \sqrt{10})$ are prime ideals in $\mathbb{Z}[\sqrt{10}]$.

Exercise 6.15. Let *R* be the ring of 2×2 matrices with entries in a field *F*. Verify that

(0	1	(a	b	(0	0)		d	0)
$\left(0 \right)$	0)	c	d	(1	$\begin{pmatrix} 0\\ 0 \end{pmatrix} =$	$\left(0 \right)$	0)	

Find other similar expressions and deduce that the two-sided ideal generated by a single matrix is either $\{0\}$ or the whole ring.