Chapter 1

Introduction

Finite fields is a branch of mathematics which has come to ¢he ih the last 50 years due to
its numerous applications, from combinatorics to codirgptl. In this course, we will study the
properties of finite fields, and gain experience in workinghwihem.

In the first two chapters, we explore the theory of fields ineggah Throughout, we emphasize
results particularly important to finite fields, but allowlfie to be arbitrary unless otherwise stated.

1 Group theory: a brief summary

We begin by recalling the definition of a group.

Definition 1.1
A groupis a set(F, together with a binary operation such that the following axioms hold:

Closure: G is closed under the operationz,y € G = x xy € G;
Associativity: (z*xy)*xz=x=x (yxz)forallz,y,z € G,

Identity: there exists an elemente G (called the identity of7) such thatc x ¢ = e x z = z for
allz € G,

Inverses: for every element: € G there exists an element! € G (called the inverse aof) such

thatz «z~ ' =2 1xx =e.

Note: We often write instead of« or leave it out completely.

Definition 1.2

A groupd is said to beabelianif the binary operatior is commutative, i.e. if: « y = y x = for all
x,y € G. The operatiorx is often replaced by for abelian groups, i.ex * y is writtenz + y

We then say that the group is “written additively” (as opabs®being “written multiplicatively”).

Example 1.3
The following are examples of groups:

e The setZ of integers with the operation of addition (this is abeljan)

e the set Gl,(R) of invertible (n x n)-matrices with real entries, with the operation of matrix
multiplication, forms a group (forn. > 1 this is not abelian).

e LetG be the set of remainders of all the integers on divisiompg.g.G = {0,1,...,n—1}.
Let a * b be the operation of taking the integer sum- b and reducing it modul@. Then
(G, *) is a group (this is abelian).
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Definition 1.4

A multiplicative groupG is said to becyclic if there is an elemeni € G such that for any € G
there is some integerwith b = /. Such an element is called a generator of the cyclic group, an
we writeG = (a).

Note we may have more than one generator, e.g. eitber-1 can be used to generate the additive
groupZ.

Definition 1.5
For a setS, a subsefk of S x S is called arequivalence relatioon S if it satisfies:

e (s,s) € Rforall s € S (reflexive)
e If (s,t) € Rthen(t,s) € R (symmetric)
o If (s,t),(t,u) € Rthen(s,u) € R (transitive).

An equivalence relatiotit on S induces gartition of S. If we collect all elements of equiv-
alent to a fixeds € S, we obtain theequivalence classf s, denoted by

[s] ={t e S:(st) € R}
The collection of all equivalence classes forms a partitibf, and[s] = [t| < (s,t) € R.

Definition 1.6

For arbitrary integers,b and positive integen, we say that is congruentto b modulon if the
differencea — b is a multiple ofn, i.e. a = b + kn for some integek. We writea = bmod n for
this.

It is easily checked that “congruence moduldis an equivalence relation on the sBtof
integers. Consider the equivalence classes into whichethon partitionsZ. These are the sets:

[a] = {meZ:m=amodn}
= {m€Z:m = a+ knforsomek € Z}.

E.g. forn = 4 we have:

0] ={...,-8,-4,0,4,8,...};
M ={.,-7,-3159..}%
2] ={...,-6,-2,2,6,10,...};
B ={...,-5-1,3,7,11,...}.
We may define on the séf0], [1], ..., [n—1]} a binary operation, which we shall write agthough

it is not ordinary addition) by
[a] + [b] := [a + 0]

wherea andb are any elements of the sétg and [b] respectively, and + b is the ordinary sum of
a andb. Can show (exercise) that this is well-defined, i.e. doeslepend on choice of representa-
tives.

Theorem 1.7

Letn € N. The sef][0],[1],...,[n — 1]} of equivalence classes moduldorms a group under the
operation+ given byla] + [b] := [a + b]. It is called the group of integers moduicand is denoted
Z,. Itis cyclic with [1] as a generator.

Proof. See Exercise Sheet 1. [ |
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Definition 1.8
A group is calledfinite (respectively,infinite) if it contains finitely (respectively, infinitely) many
elements. The number of elements of a finite grus called its order, writtefi7|.

Definition 1.9

A subsetH of the groupG is asubgroupof G if H is itself a group with respect to the operation of
G, this is writtenH < G. The (cyclic) subgroup consisting of all powers of some @em € G is
denoted(a) and called the subgrougenerated by:. If | (a) | is finite, it is called theorder ofa, it is
the smallest natural numbésuch that’ = e.

Next, we generalize the notion of congruence, as follows.

Theorem 1.10

If H is a subgroup ofs, then the relatiorRy on G defined by(a,b) € Ry if and only ifa = bh
for someh € H (additively,a = b + h for someh € H) is an equivalence relation. The relation is
calledleft congruence moduld/ .

The equivalence classes are calledléfecosets off in G; each has sizgf|. Right congruence
and right cosets are defined analogously.

Note that when(G, ) = (Z,+) andH = (n), we get back our previous definition of congru-
ence, since. = bmodn < a = b+ h for someh € (n).

Definition 1.11
Theindexof H in G (denoted by|G : H]) is the number of left cosets df in G, and is equal to
the number of right cosets &f in G.

Theorem 1.12

The order of a finite grougr is equal to the product of the order of any subgréiiand the index
of H in G. In particular, the order ol divides the order of: and the order of any elememtc G
divides the order of;.

Proof. Exercise [ |
We can easily describe subgroups and orders for cyclic groupwhat follows,¢ is Euler’s

function; i.e.¢(n) := the number of integers with 1 < k& < n which are relatively prime ta. If
the integem has the prime factorizatiopfp52 . . . p¥r, then

1 1 1
n) =n(l— —)(1——)(1—=).
¢(n) = n( p1)( pQ) ( pr)
So, for exampleg(7) = 6 and¢(30) = 2-3-5- 5 - 2. 2 = 8. See Example Sheet for more details.

Theorem 1.13
(i) Every subgrougb of a cyclic groupG = (a) is cyclic.
. . . . k; m
(ii) In a finite cyclic group(a) of orderm, the element” generates a subgroup of or(égm.

(iii) For any positive divisor of m, (a) contains precisely one subgroup of ordeand precisely
one subgroup of indexX.

(iv) Let f be a positive divisor oin. Then{(a) containsy(f) elements of ordef.

(v) A finite cyclic group(a) of orderm containsy(m) generators, namely the powers with
ged(r,m) = 1.
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Proof.

(i) If S = {e}, thenS is cyclic with generatoe. Otherwise, let; be the least positive integer
for which a* € 5. We will show: S = (a*). Clearly(a*) C S. Now, take an arbitrary
s € S, thens = o™ for somen € Z. By the division algorithm for integers, there exist
q,r € Zwith 0 < r < k such that, = gk + r. Thena™ = a?*" = (a*)? - o, implying
a” € S. If r > 0, this contradicts the minimality of, so we must have = 0 and hence
s=a" = (aF)? € (a").

(i) Setd := ged(k,m). The order ofa” is the least positive integer such thata*” = e. This
identity holds if and only ifn divideskn, i.e. if and only if; dividesn. The least positive:
with this property is» = 2.

(iii) Exercise: see Exercise Sheet 1.

(iv) Let|(a)| = m andm = df. By (ii), the element* is of orderf if and only if gcd(k, m) = d.
So the number of elements of ordgis equal to the number of integekswith 1 < £ < m
andgcd(k, m) = d. Equivalently, writingk = dh with 1 < h < f, the condition becomes
ged(h, f) = 1. There are precisely(f) suchh.

(v) The first part follows from (iv), since the generators@f are precisely the elements of order
m. The second part follows from (ii).

Definition 1.14
e A subgroupH of G is normal < its left and right cosets coincide.

We write H < G in that case.

e For a normal subgrou@/, the set of (left) cosets off in G forms a group, denote@/H.
The operation is
(aH)(bH) := (ab)H.

Definition 1.15

A mappingf : G — H of the groupG into the groupH is called ahomomorphisnmof G into H
if f preserves the operation 6f, i.e. (¢gk)f = (gf) - (kf) forall g,k € G. If f is a bijective
homomorphism it is called asomorphismand we say> and H are isomorphic and writ& = H.
An isomorphism of7 onto itself is called amutomorphisnof G.

Definition 1.16
Thekernelof the homomorphisnf : G — H of the groupG into the groupH is the set (actually,
normal subgroup)

ker(f) :={a e G:af =en}.

The image off is the set (actually, subgroup)
im(f) :={af:aeG}.

Theorem 1.17
[First Isomorphism Theorem] Let : G — H be a homomorphism of groups. Theef is a
normal subgroup aof: and

G/kerf 2imf by the isomorphismgker(f) — gf.

Proof. Omitted. |
Example 1.18

TakeG := Z, H := Z, and f : a — [a]. Thenf is a homomorphism witfker(f) = (n) and
im(f) = Z,, and so the First Isomorphism Theorem says #hatn) andZ,, are isomorphic as
groups.
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2 Rings and fields

Definition 2.1
Aring (R, +, %) is a setR, together with two binary operations, denoteddyndsx, such that

R is anabelian groupwith respect tot+;

R is closed undes;

* Is associativethat is(a x b) xc = a * (b« ¢) forall a, b, c € R;

thedistributive lawshold, that is, for allu,b,c € R we havea  (b+ ¢) = (a % b) + (a * ¢)
and(b+c)xa= (bxa)+ (cxa).

Typically, we usd to denote the identity element of the abelian gréwith respect to addition,
and—a to denote the additive inverse efe R.

Definition 2.2
e Aring is called aring with identityif the ring has a multiplicative identity (usually denoted
orl).

Aring is calledcommutativef x is commutative.

A ring is called anintegral domainif it is a commutative ring with identity £ 0 in which
ab = 0impliesa = 0 or b = 0 (i.e. no zero divisorks

Aring is called adivision ring (or skew field) if the non-zero elements form a group under
e A commutative division ring is called féeld.

Example 2.3
e the integergZ, +, ) form an integral domain but not a field;

e the rationalg Q, +, *), reals(R, +, x) and complex nhumber&, +, ) form fields;

e the set of2 x 2 matrices with real entries forms a non-commutative rindhidientity w.r.t.
matrix addition and multiplication.

e the groupZ,, with addition as before and multiplication defined[by{d] := [ab] is a commu-
tative ring with identity[1].

So, in summary: afield is a séton which two binary operations, called addition and muiltipl
cation, are defined, and which contains two distinguishethehtse and0 with 0 # e. Moreover,
Fis an abelian group with respect to addition, havings the identity element, and the non-zero
elements off’ (often written£*) form an abelian group with respect to multiplication hayinas
the identity element. The two operations are linked by tisérithutive laws.

Theorem 2.4
Every finite integral domain is a field.

Proof. Let R be a finite integral domain, and let its elements-be-, ..., r,. Consider a fixed
non-zero element € R. Then the productsry,rr,...,rr, must be distinct, sincer; = rr;
impliesr(r; — r;) = 0, and sincer # 0 we must have; —r; = 0, i.e. r; = r;. Thus, these
products are precisely theelements ofR. Each element oR is of the formrr;; in particular, the
identity e = rr; for somel < i < n. SinceR is commutative, we also haver = e, and sor; is
the multiplicative inverse of. Thus the non-zero elements Bfform a commutative group, and
is a field. [ |
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Definition 2.5
e A subsetS of aring R is called asubringof R if S is closed unde# andx and forms a ring
under these operations.

e A subsetJ of aring R is called anideal if J is a subring ofR and for alla € J andr € R
we havear € J andra € J.

e Let R be a commutative ring with an identity. Then the smallesaidentaining an element
a € Ris (a) :={ra:r € R}. We call(a) theprincipal idealgenerated by..

Definition 2.6
An integral domain in which every ideal is principal is cdlleprincipal ideal domain(PID).

Example 2.7
Zis a PID.

Anideal J of R defines a partition oR into disjoint cosets (with respect tp), residue classes
modulo.J. These form a ring w.r.t. the following operations:

(a+J)+b+J)=(a+b)+J,

(a+J)b+J)=ab+ J.
This ring is called theesidue class rin@nd is denoted?/J.

Example 2.8

The residue class ring/(n)

Here,(n) is the principal ideal generated by the integgsame setZ as the subgroupr) but now
with two operations). As in the group case, we denote theuesilass of: modulon by [a], as well
as bya + (n). The elements d&/(n) are[0] =0+ (n),[1] =1+ (n),...,[n—1] =n—1+(n).

Theorem 2.9
Z/(p), the ring of residue classes of the integers modulo the jpahéideal generated by a prinpe
is a field.

Proof. By Theorem 2.4, it is enough to show tHat(p) is an integral domain. Nowg][b] =
[ab] = [0] if and only if ab = kp for somek € Z. Sincep is prime,p dividesab if and only if p
divides one of the factors. So, eithjef = [0] or [b] = [0], SOZ/(p) contains no zero divisors. W

These are our first examplesfafite fields

Example 2.10
Here are the addition and multiplication tables for the f@/d3):

+ [0+ 1+(3) 2+(3) «  |0+(3) 14+(3) 2+(3)
0+@3)|0+3) 1+(3) 2+ (3) 0+@3)[0+(3) 0+4+(3) 0+ (3)
1+3)|1+3) 2+3) 0+(3)" I+(3)10+3) 14+3) 2+(3)°
24+3)[2+3) 0+(3) 1+(3) 243)[0+(33) 24(3) 1+(3)

Remark 2.11

As you will prove in Exercise Sheet 1, the above result doesaold if p is replaced by a composite
n.

Definition 2.12
A mapping¢ : R — S (R,S rings) is called aing homomorphisnif for any a, b € R we have

¢(a +b) = ¢(a) + ¢(b) ande(ab) = ¢(a)¢(b).
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A ring homomorphism preserves bothand+ and induces a homomorphism of the additive group
of R into that ofS. Concepts such as kernel and image are defined analogoubly gooups case.
We have a ring version of the First Isomorphism Theorem:

Theorem 2.13 (First Isomorphism Theorem for Rings)
If ¢ is a ring homomorphism from a rinB onto a ringS then the factor ring? /ker¢ and the ring
S are isomorphic by the map

r + kerg — ¢(r).

We can use mappings to transfer a structure from an algetysiem to a set without structure.
Given aringR, a setS and a bijective map : R — S, we can use to define a ring structure o
that convertsp into an isomorphism. Specifically, fafi = ¢(r1) ands, = ¢(r2), define

s1 + sa to beg(r; + r2), andsy sy to bed(ry)p(rs).

This is called the ring structuieduced byp; any extra properties aR are inherited bys.
This idea allows us to obtain a more convenient representétir the finite fieldsZ/(p).

Definition 2.14

For a primep, letF, be the se{0,1,...,p—1} of integers, and lep : Z/(p) — F,, be the mapping
defined byp([a]) = afora =0,1,...,p— 1. ThenlF, endowed with the field structure induced by
¢ is a finite field, called th&alois field of ordep.

From above, the mapping becomes an isomorphism, 86[a] + [b]) = ¢([a]) + ¢([b]) and
#([al[b]) = ¢([a])o([b]). The finite fieldF, has zero elemertt, identity elementl and its structure
is that ofZ/(p). So, computing with elements Bf, now means ordinary arithmetic of integers with
reduction modul.

Example 2.15
e [y: the elements of this field afeand1. The operation tables are:
+]0 1 «|0 1
0|0 1, 00
1710 110 1

e We haveZ/(5), isomorphic tdfs = {0,1,2, 3,4}, where the isomorphism is given g} —

0,...,[4] — 4. The operation tables are:
+10 1 2 3 4 *|0 1 2 3 4
0/{0 1 2 3 4 0/0 0 00O
111 2 3 40 10 1 2 3 4
212 3 4 0 17 210 2 41 3
313 40 1 2 310 3 1 4 2
414 01 2 3 410 4 3 2 1

Definition 2.16

If R is an arbitrary ring and there exists a positive integesuch thathr = 0 for everyr € R

(i.e. r added to itself times is the zero element) then the least such positiveéntes called the
characteristicof R, andR is said to have positive characteristic. If no such posititegern exists,
R is said to have characteristic

Example 2.17
¢ [, andF5 have characteristi2 and5 respectively.
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e (Q andR have characteristi.

Theorem 2.18
Aring R # {0} of positive characteristic with an identity and no zero stivé must have prime
characteristic.

Proof.  SinceR contains non-zero element8,has characteristia > 2. If n were not prime, we
could writen = km with k,m € Z, 1 < k,m < n. Then0 = ne = (km)e = (ke)(me), so either
ke = 0 or me = 0, sinceR has no zero divisors. Hence either = (ke)r = 0 for all » € R or
mr = (me)r = 0 for all » € R, contradicting the definition of as the characteristic. |

Corollary 2.19
A finite field has prime characteristic.

Proof. From Theorem 2.18, we need only show that a finite fieldas a positive characteristic.
Consider the multiples, 2¢, 3¢, . . . of the identity. SinceF' contains only finitely many elements,
there must exist integefsandm with 1 < k < m such thatce = me, i.e. (k — m)e = 0, and thus
(k—m)f=(k—m)ef =0f =0forall f € F soF has a positive characteristic. [ |

Example 2.20
The fieldZ/(p) (equivalently,F,) has characteristip.

Theorem 2.21 (Freshmen’s Exponentiation)
Let R be a commutative ring of prime characterigticthen

'3 T

(a+b)P" =a?" +b"" and(a — b)P" = a®" — bP
fora,b € R andn € N.
Proof. It can be shown (see Exercise Sheet 1) that
(P) _ p(p — 1)"'(P.—Z+1) = Omodp
1 1-2---2

for all i € Z with 0 < i < p. By the Binomial Theorem,

(a+0b)P =a”+ <];>ap—1b+---+ (pf 1>abp‘1 + 0P = aP + VP
and induction om establishes the first identity. The second identity foll@ivee

" = ((a—b)+ )" = (a—b)"" +17".

3 Polynomials

Let R be an arbitrary ring. Avolynomial overR is an expression of the form

n
/= E a;x' =ag+a1x+ -+ a,z”,
i=0

wheren is a non-negative integer, tlwefficientsa; (0 < i < n) are elements oR, andx is a
symbol not belonging t@&, called anindeterminateover R.
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Definition 3.1

Let f = >0 jaix* = ap + ez + -+ + ap2™ be a polynomial overR which is not the zero
polynomial, so we can supposg # 0. Thenn is called thedegreeof f. By conventiondeg(0) =
—o0. Polynomials of degree are calledconstant polynomialsif the leading coefficient of is 1
(the identity ofR) then f is called amonicpolynomial.

Given two polynomialsf and g, we can writef = > I ja;2* andg = > I, bia® (taking
coefficients zero if necessary to ensure the sajn&Ve define their sum to be

n

f+g="> (a;+b)a'

i=0
and their product to be

2n

fg= chack, wherec, = Z a;b;.

k=0 i+i=k,0<i<n,0<j<n

STV >

Note that the degree of the product of two non-zero polyntsmiandg is equal to the sum of the
degrees off andg.

Theorem 3.2

With the above operations, the set of polynomials dvdorms a ring. It is called thpolynomial
ring over R and denoted by [z|. Its zero element is theero polynomial all of whose coefficients
are zero.

Proof. Exercise. [ |

Let F' denote a (not necessarily finite) field. From now on, we cargadlynomials over fields.
We say that the polynomial € F'[z] dividesf € Fx] if there exists a polynomiat € Fx]
such thatf = gh.

Theorem 3.3 (Division Algorithm)
Letg # 0 be a polynomial inF'[x|. Then for anyf € Flz|, there exist polynomialg,r € F|x]
such that

f =qg+r, wheredeg(r) < deg(g).

Using the division algorithm, we can show that every ideak'f] is principal:

Theorem 3.4
F[z] is a principal ideal domain. In fact, for every ide&l# (0) of F|x] there is a uniquely
determined monic polynomigl € F|x] such that] = (g).

Proof. Let [ be an ideal inf'[z]. If I = {0}, thenl = (0). If I # {0}, choose a non-zero
polynomialk € I of smallest degree. Létbe the leading coefficient &, and setn = b= k. Then
m € I andm is monic. We will show:I = (m). Clearly,(m) C I. Now takef € I; by the division
algorithm there are polynomialg r with f = gm + r where eitherr = 0 or deg(r) < deg(m).
Now,r = f — gm € I. If r # 0, we contradict the minimality of.; so we must have = 0, i.e. f
is a multiple ofm andl = (m).

We now show uniqueness: if; € F|x] is another monic polynomial with = (m,), then
m = c¢ymq andmy = com With ¢;, ¢y € Flz]. Thenm = c¢ieam, i.e. cieo = 1, and socy, o are
constant polynomials. Since bath andm; are monic, we must have = m;. [ |

We next introduce an important type of polynomial.
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Definition 3.5

A polynomialp € F[z] is said to bdrreducible over Fif p has positive degree and= bc with
b,c € Flx] implies that eitheb or ¢ is a constant polynomial. A polynomial which does allow a
non-trivial factorization ovef ' is calledreducible overF'.

Note that the field” under consideration is all-important here, e.g. the patyiabz? + 1 is irre-
ducible inR[z] but reducible inC[x], where it factors agx + i)(z — 7).

Theorem 3.6 (Unique Factorization)
Any polynomial f € F[z] of positive degree can be written in the form

f=api ... pk

wherea € F, py,. .., py are distinct monic irreducibles ifi[x] andey, . . ., e, are positive integers.
This factorization is unique up to the order in which the dastoccur; it is called theanonical
factorizationof f in F[x].

Proof. Omitted. ]

Example 3.7
Find all irreducible polynomials ovéf, of degrees.

First, note that a non-zero polynomial f3[z] must be monic. The degreepolynomials are of
the formz3 + az? + bx + ¢, where each coefficient Bor 1, i.e. there ar@3 = 8 of them. Such
a polynomial is reducible ovéf, precisely if it has a divisor of degree Compute all products
(7 +ag) (w2 + by + by) to obtain all reducible degrelepolynomials oveify. There are of these,

leaving2 irreducibles:z® + z + 1 andz?® + 22 + 1.

Theorem 3.8
For f € F[z], the residue class ring[z]/(f) is a field if and only iff is irreducible over'.

Proof.  Details omitted. For those who know some ring theory thisriediate since, for a PID
S, S/(c) is a field if and only ifc is a prime element d8. Here, the prime elements of the PH)x|
are precisely the irreducible polynomials. [ |

We will be very interested in the structure of the residus<lidngF'[x]/(f), for arbitrary non-
zero polynomialf € F[z]. To summarize,

e F[x]/(f) consists of residue classes- (f) (also denotedy]) with g € F[x].

e Two residue classes+ (f) andh+(f) are identical if and only iff = hmod f, i.e. precisely
if ¢ — h is divisible by f. This is equivalent toy andh have the same remainder on division

by f.

e Each residue class+ (f) contains a unique representative F'[x] with deg(r) < deg(f),
namely the remainder whenis divided by f. The process of moving from to r is called
reduction modf. (Exercise: uniqueness?)

e Hence the distinct residue classes compridifig]/(f) are precisely the residue classes
(f), wherer runs through all polynomials if"[z] with deg(r) < deg(f).

e In particular, if i = I, anddeg(f) = n, then the number of elementsBf/(f) is equal to
the number of polynomials iR, /(f) of degree< n, namelyp™.

Example 3.9
e Let f =z € Fy[z]. The fieldFs[z]/(x) has2! = 2 elements, namel§ + (z) and1 + (z).
This field is isomorphic td;.
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o letf = 22+ + 1 € Folx]. ThenFy[z]/(f) is a finite field of2? = 4 elements:{0 +
(), 14+ (f),z+ (f),z+ 14 (f)}. Its behaviour under addition and multiplication is shown
below (remember our field has characterigicWhen performing field operations note that,
since we replace each occurrencefdby 0, the polynomial representative for each residue
class has degree less tHan

+ [0+ 1+ () et () ozl ()
0+ () | 0+(H  1+()  z+()) a+i+())
L+(f) 1+(f) 0+(f) a+1+(f) O0+(f)
z+(f) e+ (f) z+1+(f) 0+ (f) 1+(f)

e+1+(f) Je+1+(f)  a+(f) 1+(f) 0+ (f)

* o0+ 1+() aH () aetl+(f)
0+(f) |0+(f)  0+(f) 0+ (f) 0+ (f)
L+(f) |0+(f) 1+(f) e+ z+1+(f)
e+ (f) J0+(f)  wr(f) w+1+()  14(f)

e 1+ () [0+ (f) v+1+(f) 1+(f) z+(f)

Note that, in the multiplication table,
@+UMNe+) =+ =f-z—1+()=z+1+(f),

@E+(MNe+1+(f))="+z+()=f—-1+())=1+(),

@E+1+(MNE+1+() =2 +1+ () =f—z+(f) =z +(f)

Comparing these tables to thoseZafwe see that the fiellz[x]/( f) is notisomorphic tdZ,,
which is not a field since i, we have2 - 2 = 0.

What is the multiplicative order af+(f) in Fo[x]/(f)? The multiplicative group of this field
has ordep? — 1 = 3, so the order must beor 3. Clearlyz+ (f) # 1+ (f), so the order must
be3. Check:(z +(f))* = (z+ (f))(@®* +(f)) = 2(z+ 1)+ (f) = 2 +z+(f) = 1+ (f).

o Letf = 2%+ 2 € F3[z]. We find thatF3[z]/(f) is a ring of9 elements which is not even an
integral domain, let alone a field. Its elements gbet- (f), 1+ (f),2 + (f),z + (f),z +
1+ (f),x+2+(f),2c 4+ (f),2x+ 1+ (f),2c+ 2+ (f)}. To see thatitis not an integral
domain, note thatz + 1 + (f))(x — 1+ (f)) =22 =1+ (f) =22+ 2+ (f) = 0+ (f),
but neitherz + 1 4 (f) norz — 1 + (f) are zero.

Definition 3.10
An elementa € F'is called aroot (or zerg of the polynomialf € Fx] if f(a) = 0.

Example 3.11
(i) The element, 3 € Q are roots ofe? — 52 + 6 € Q|x].
(ii) The polynomialz? + 1 € Q[z] has no roots i, but two roots+i € C.

Definition 3.12
If f = ap+ arx+ ax®+ - + a,a™ € Fla], then thederivative f’ of f is defined byf’ =
ay + 2asx + - - - + na,x" ! € Flz].

This obeys the familiar rules:
(f+9)=f+d
and

(f9) =fd+ f'g.
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Theorem 3.13
An elementu € F is a root of the polynomiaf € Fx] if and only ifx — a divides .

Proof.  Using the Division Algorithm, we can write
f=q - (xr—a)+c

with ¢ € F[z] andc € F. Substitutingr = a, we getf(a) = ¢, hencef = ¢q- (z — a) + f(a). The
theorem follows from this identity. [ |

Definition 3.14
Leta € F be aroot off € F[z]. If k is a positive integer such thdtis divisible by (z — a)* but
not (x — a)**1, thenk is called themultiplicity of a. If £ > 2 thena is called amultiple rootof f.

Theorem 3.15
Anelement € F is a multiple root off € F[x] ifand only ifit is a root of bothf and its derivative

I
Proof. Exercise [ |

Example 3.16

Consider the polynomigf = 23 — 722 + 162 — 12 € Q[z]. It factors agx —2)?(x — 3), so its roots
are2 (with multiplicity 2) and3 (with multiplicity 1). Here, ' = 322 — 14z + 16 which factors as
(x — 2)(3z — 8), so we can verify tha is also a root off’.

The following observation is very important.

Theorem 3.17
If Fis afield andf € F[x] has degree, thenF contains at most roots off.

Proof.  Outline: Supposé’ containsn + 1 distinct rootsaq, ..., a,+1 Of f. By Theorem 3.13,
we can show that this implie§ = (z — a1)(z — a2) -+ (x — an+1)g for some polynomial,
contradictingdeg(f) = n. [ |



