
Chapter 1

Introduction

Finite fields is a branch of mathematics which has come to the fore in the last 50 years due to
its numerous applications, from combinatorics to coding theory. In this course, we will study the
properties of finite fields, and gain experience in working with them.

In the first two chapters, we explore the theory of fields in general. Throughout, we emphasize
results particularly important to finite fields, but allow fields to be arbitrary unless otherwise stated.

1 Group theory: a brief summary

We begin by recalling the definition of a group.

Definition 1.1
A group is a setG, together with a binary operation∗, such that the following axioms hold:

Closure: G is closed under the operation∗: x, y ∈ G =⇒ x ∗ y ∈ G;

Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ G;

Identity: there exists an elemente ∈ G (called the identity ofG) such thatx ∗ e = e ∗ x = x for
all x ∈ G;

Inverses: for every elementx ∈ G there exists an elementx−1 ∈ G (called the inverse ofx) such
thatx ∗ x−1 = x−1 ∗ x = e.

Note: We often write· instead of∗ or leave it out completely.

Definition 1.2
A groupG is said to beabelianif the binary operation∗ is commutative, i.e. ifx ∗ y = y ∗ x for all
x, y ∈ G. The operation∗ is often replaced by+ for abelian groups, i.e.x ∗ y is writtenx + y
We then say that the group is “written additively” (as opposed to being “written multiplicatively”).

Example 1.3
The following are examples of groups:

• The setZ of integers with the operation of addition (this is abelian);

• the set GLn(R) of invertible (n × n)-matrices with real entries, with the operation of matrix
multiplication, forms a group (forn > 1 this is not abelian).

• Let G be the set of remainders of all the integers on division byn, e.g.G = {0, 1, . . . , n−1}.
Let a ∗ b be the operation of taking the integer suma + b and reducing it modulon. Then
(G, ∗) is a group (this is abelian).
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Definition 1.4
A multiplicative groupG is said to becyclic if there is an elementa ∈ G such that for anyb ∈ G
there is some integerj with b = aj . Such an element is called a generator of the cyclic group, and
we writeG = 〈a〉.

Note we may have more than one generator, e.g. either1 or−1 can be used to generate the additive
groupZ.

Definition 1.5
For a setS, a subsetR of S × S is called anequivalence relationonS if it satisfies:

• (s, s) ∈ R for all s ∈ S (reflexive)

• If (s, t) ∈ R then(t, s) ∈ R (symmetric)

• If (s, t), (t, u) ∈ R then(s, u) ∈ R (transitive).

An equivalence relationR on S induces apartition of S. If we collect all elements ofS equiv-
alent to a fixeds ∈ S, we obtain theequivalence classof s, denoted by

[s] = {t ∈ S : (s, t) ∈ R}.

The collection of all equivalence classes forms a partitionof S, and[s] = [t] ⇔ (s, t) ∈ R.

Definition 1.6
For arbitrary integersa,b and positive integern, we say thata is congruentto b modulon if the
differencea − b is a multiple ofn, i.e. a = b + kn for some integerk. We writea ≡ bmod n for
this.

It is easily checked that “congruence modulon” is an equivalence relation on the setZ of
integers. Consider the equivalence classes into which the relation partitionsZ. These are the sets:

[a] = {m ∈ Z : m ≡ amodn}

= {m ∈ Z : m = a + kn for somek ∈ Z}.

E.g. forn = 4 we have:
[0] = {. . . ,−8,−4, 0, 4, 8, . . .};
[1] = {. . . ,−7,−3, 1, 5, 9, . . .};
[2] = {. . . ,−6,−2, 2, 6, 10, . . .};
[3] = {. . . ,−5,−1, 3, 7, 11, . . .}.

We may define on the set{[0], [1], . . . , [n−1]} a binary operation, which we shall write as+ (though
it is not ordinary addition) by

[a] + [b] := [a + b]

wherea andb are any elements of the sets[a] and[b] respectively, anda + b is the ordinary sum of
a andb. Can show (exercise) that this is well-defined, i.e. does notdepend on choice of representa-
tives.

Theorem 1.7
Let n ∈ N. The set{[0], [1], . . . , [n − 1]} of equivalence classes modulon forms a group under the
operation+ given by[a] + [b] := [a + b]. It is called the group of integers modulon and is denoted
Zn. It is cyclic with [1] as a generator.

Proof. See Exercise Sheet 1. �
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Definition 1.8
A group is calledfinite (respectively,infinite) if it contains finitely (respectively, infinitely) many
elements. The number of elements of a finite groupG is called its order, written|G|.

Definition 1.9
A subsetH of the groupG is asubgroupof G if H is itself a group with respect to the operation of
G, this is writtenH ≤ G. The (cyclic) subgroup consisting of all powers of some elementa ∈ G is
denoted〈a〉 and called the subgroupgenerated bya. If | 〈a〉 | is finite, it is called theorder ofa, it is
the smallest natural numberi such thatai = e.

Next, we generalize the notion of congruence, as follows.

Theorem 1.10
If H is a subgroup ofG, then the relationRH on G defined by(a, b) ∈ RH if and only if a = bh
for someh ∈ H (additively,a = b + h for someh ∈ H) is an equivalence relation. The relation is
calledleft congruence moduloH.

The equivalence classes are called theleft cosets ofH in G; each has size|H|. Right congruence
and right cosets are defined analogously.

Note that when(G, ∗) = (Z,+) andH = 〈n〉, we get back our previous definition of congru-
ence, sincea ≡ bmod n ⇔ a = b + h for someh ∈ 〈n〉.

Definition 1.11
The indexof H in G (denoted by[G : H]) is the number of left cosets ofH in G, and is equal to
the number of right cosets ofH in G.

Theorem 1.12
The order of a finite groupG is equal to the product of the order of any subgroupH and the index
of H in G. In particular, the order ofH divides the order ofG and the order of any elementa ∈ G
divides the order ofG.

Proof. Exercise �

We can easily describe subgroups and orders for cyclic groups. In what follows,φ is Euler’s
function; i.e.φ(n) := the number of integersk with 1 ≤ k ≤ n which are relatively prime ton. If
the integern has the prime factorizationpk1

1 pk2

2 . . . pkr

r , then

φ(n) = n(1 −
1

p1
)(1 −

1

p2
) · · · (1 −

1

pr

).

So, for example,φ(7) = 6 andφ(30) = 2 · 3 · 5 · 1
2 ·

2
3 ·

4
5 = 8. See Example Sheet for more details.

Theorem 1.13
(i) Every subgroupS of a cyclic groupG = 〈a〉 is cyclic.

(ii) In a finite cyclic group〈a〉 of orderm, the elementak generates a subgroup of orderm
gcd(k,m) .

(iii) For any positive divisord of m, 〈a〉 contains precisely one subgroup of orderd and precisely
one subgroup of indexd.

(iv) Let f be a positive divisor ofm. Then〈a〉 containsφ(f) elements of orderf .

(v) A finite cyclic group〈a〉 of orderm containsφ(m) generators, namely the powersar with
gcd(r,m) = 1.
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Proof.

(i) If S = {e}, thenS is cyclic with generatore. Otherwise, letk be the least positive integer
for which ak ∈ S. We will show: S =

〈

ak
〉

. Clearly
〈

ak
〉

⊆ S. Now, take an arbitrary
s ∈ S, thens = an for somen ∈ Z. By the division algorithm for integers, there exist
q, r ∈ Z with 0 ≤ r < k such thatn = qk + r. Thenan = aqk+r = (ak)q · ar, implying
ar ∈ S. If r > 0, this contradicts the minimality ofk, so we must haver = 0 and hence
s = an = (ak)q ∈

〈

ak
〉

.

(ii) Set d := gcd(k,m). The order ofak is the least positive integern such thatakn = e. This
identity holds if and only ifm divideskn, i.e. if and only if m

d
dividesn. The least positiven

with this property isn = m
d

.

(iii) Exercise: see Exercise Sheet 1.

(iv) Let | 〈a〉 | = m andm = df . By (ii), the elementak is of orderf if and only ifgcd(k,m) = d.
So the number of elements of orderf is equal to the number of integersk with 1 ≤ k ≤ m
andgcd(k,m) = d. Equivalently, writingk = dh with 1 ≤ h ≤ f , the condition becomes
gcd(h, f) = 1. There are preciselyφ(f) suchh.

(v) The first part follows from (iv), since the generators of〈a〉 are precisely the elements of order
m. The second part follows from (ii).

�

Definition 1.14
• A subgroupH of G is normal⇔ its left and right cosets coincide.

We writeH ⊳ G in that case.

• For a normal subgroupH, the set of (left) cosets ofH in G forms a group, denotedG/H.
The operation is

(aH)(bH) := (ab)H.

Definition 1.15
A mappingf : G → H of the groupG into the groupH is called ahomomorphismof G into H
if f preserves the operation ofG, i.e. (gk)f = (gf) · (kf) for all g, k ∈ G. If f is a bijective
homomorphism it is called anisomorphismand we sayG andH are isomorphic and writeG ∼= H.
An isomorphism ofG onto itself is called anautomorphismof G.

Definition 1.16
Thekernelof the homomorphismf : G → H of the groupG into the groupH is the set (actually,
normal subgroup)

ker(f) := {a ∈ G : af = eH}.

The image off is the set (actually, subgroup)

im(f) := {af : a ∈ G}.

Theorem 1.17
[First Isomorphism Theorem] Letf : G → H be a homomorphism of groups. Thenkerf is a
normal subgroup ofG and

G/kerf ∼= imf by the isomorphismg ker(f) 7→ gf.

Proof. Omitted. �

Example 1.18
TakeG := Z, H := Zn andf : a 7→ [a]. Thenf is a homomorphism withker(f) = 〈n〉 and
im(f) = Zn, and so the First Isomorphism Theorem says thatZ/ 〈n〉 andZn are isomorphic as
groups.
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2 Rings and fields

Definition 2.1
A ring (R,+, ∗) is a setR, together with two binary operations, denoted by+ and∗, such that

• R is anabelian groupwith respect to+;

• R is closed under∗;

• ∗ is associative, that is(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ R;

• thedistributive lawshold, that is, for alla, b, c ∈ R we havea ∗ (b + c) = (a ∗ b) + (a ∗ c)
and(b + c) ∗ a = (b ∗ a) + (c ∗ a).

Typically, we use0 to denote the identity element of the abelian groupR with respect to addition,
and−a to denote the additive inverse ofa ∈ R.

Definition 2.2
• A ring is called aring with identityif the ring has a multiplicative identity (usually denotede

or 1).

• A ring is calledcommutativeif ∗ is commutative.

• A ring is called anintegral domainif it is a commutative ring with identitye 6= 0 in which
ab = 0 impliesa = 0 or b = 0 (i.e. no zero divisors).

• A ring is called adivision ring(or skew field) if the non-zero elements form a group under∗.

• A commutative division ring is called afield.

Example 2.3
• the integers(Z,+, ∗) form an integral domain but not a field;

• the rationals(Q,+, ∗), reals(R,+, ∗) and complex numbers(C,+, ∗) form fields;

• the set of2 × 2 matrices with real entries forms a non-commutative ring with identity w.r.t.
matrix addition and multiplication.

• the groupZn with addition as before and multiplication defined by[a][b] := [ab] is a commu-
tative ring with identity[1].

So, in summary: a field is a setF on which two binary operations, called addition and multipli-
cation, are defined, and which contains two distinguished elementse and0 with 0 6= e. Moreover,
F is an abelian group with respect to addition, having0 as the identity element, and the non-zero
elements ofF (often writtenF ∗) form an abelian group with respect to multiplication having e as
the identity element. The two operations are linked by the distributive laws.

Theorem 2.4
Every finite integral domain is a field.

Proof. Let R be a finite integral domain, and let its elements ber1, r2, . . . , rn. Consider a fixed
non-zero elementr ∈ R. Then the productsrr1, rr2, . . . , rrn must be distinct, sincerri = rrj

implies r(ri − rj) = 0, and sincer 6= 0 we must haveri − rj = 0, i.e. ri = rj. Thus, these
products are precisely then elements ofR. Each element ofR is of the formrri; in particular, the
identity e = rri for some1 ≤ i ≤ n. SinceR is commutative, we also haverir = e, and sori is
the multiplicative inverse ofr. Thus the non-zero elements ofR form a commutative group, andR
is a field. �
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Definition 2.5
• A subsetS of a ringR is called asubringof R if S is closed under+ and∗ and forms a ring

under these operations.

• A subsetJ of a ringR is called anideal if J is a subring ofR and for alla ∈ J andr ∈ R
we havear ∈ J andra ∈ J .

• Let R be a commutative ring with an identity. Then the smallest ideal containing an element
a ∈ R is (a) := {ra : r ∈ R}. We call(a) theprincipal idealgenerated bya.

Definition 2.6
An integral domain in which every ideal is principal is called aprincipal ideal domain(PID).

Example 2.7
Z is a PID.

An idealJ of R defines a partition ofR into disjoint cosets (with respect to+), residue classes
moduloJ . These form a ring w.r.t. the following operations:

(a + J) + (b + J) = (a + b) + J,

(a + J)(b + J) = ab + J.

This ring is called theresidue class ringand is denotedR/J .

Example 2.8
The residue class ringZ/(n)
Here,(n) is the principal ideal generated by the integern (same setnZ as the subgroup〈n〉 but now
with two operations). As in the group case, we denote the residue class ofa modulon by [a], as well
as bya + (n). The elements ofZ/(n) are[0] = 0 + (n), [1] = 1 + (n), . . . , [n− 1] = n− 1 + (n).

Theorem 2.9
Z/(p), the ring of residue classes of the integers modulo the principal ideal generated by a primep,
is a field.

Proof. By Theorem 2.4, it is enough to show thatZ/(p) is an integral domain. Now,[a][b] =
[ab] = [0] if and only if ab = kp for somek ∈ Z. Sincep is prime,p dividesab if and only if p
divides one of the factors. So, either[a] = [0] or [b] = [0], soZ/(p) contains no zero divisors. �

These are our first examples offinite fields!

Example 2.10
Here are the addition and multiplication tables for the fieldZ/(3):

+ 0 + (3) 1 + (3) 2 + (3)

0 + (3) 0 + (3) 1 + (3) 2 + (3)
1 + (3) 1 + (3) 2 + (3) 0 + (3)
2 + (3) 2 + (3) 0 + (3) 1 + (3)

,

∗ 0 + (3) 1 + (3) 2 + (3)

0 + (3) 0 + (3) 0 + (3) 0 + (3)
1 + (3) 0 + (3) 1 + (3) 2 + (3)
2 + (3) 0 + (3) 2 + (3) 1 + (3)

.

Remark 2.11
As you will prove in Exercise Sheet 1, the above result does not hold if p is replaced by a composite
n.

Definition 2.12
A mappingφ : R → S (R,S rings) is called aring homomorphismif for any a, b ∈ R we have

φ(a + b) = φ(a) + φ(b) andφ(ab) = φ(a)φ(b).
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A ring homomorphism preserves both+ and∗ and induces a homomorphism of the additive group
of R into that ofS. Concepts such as kernel and image are defined analogously tothe groups case.
We have a ring version of the First Isomorphism Theorem:

Theorem 2.13 (First Isomorphism Theorem for Rings)
If φ is a ring homomorphism from a ringR onto a ringS then the factor ringR/kerφ and the ring
S are isomorphic by the map

r + kerφ 7→ φ(r).

We can use mappings to transfer a structure from an algebraicsystem to a set without structure.
Given a ringR, a setS and a bijective mapφ : R → S, we can useφ to define a ring structure onS
that convertsφ into an isomorphism. Specifically, fors1 = φ(r1) ands2 = φ(r2), define

s1 + s2 to beφ(r1 + r2), ands1s2 to beφ(r1)φ(r2).

This is called the ring structureinduced byφ; any extra properties ofR are inherited byS.
This idea allows us to obtain a more convenient representation for the finite fieldsZ/(p).

Definition 2.14
For a primep, let Fp be the set{0, 1, . . . , p−1} of integers, and letφ : Z/(p) → Fp be the mapping
defined byφ([a]) = a for a = 0, 1, . . . , p− 1. ThenFp endowed with the field structure induced by
φ is a finite field, called theGalois field of orderp.

From above, the mappingφ becomes an isomorphism, soφ([a] + [b]) = φ([a]) + φ([b]) and
φ([a][b]) = φ([a])φ([b]). The finite fieldFp has zero element0, identity element1 and its structure
is that ofZ/(p). So, computing with elements ofFp now means ordinary arithmetic of integers with
reduction modulop.

Example 2.15
• F2: the elements of this field are0 and1. The operation tables are:

+ 0 1

0 0 1
1 1 0

,

∗ 0 1

0 0 0
1 0 1

• We haveZ/(5), isomorphic toF5 = {0, 1, 2, 3, 4}, where the isomorphism is given by[0] 7→
0, . . . , [4] 7→ 4. The operation tables are:

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

,

∗ 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Definition 2.16
If R is an arbitrary ring and there exists a positive integern such thatnr = 0 for everyr ∈ R
(i.e. r added to itselfn times is the zero element) then the least such positive integer n is called the
characteristicof R, andR is said to have positive characteristic. If no such positiveintegern exists,
R is said to have characteristic0.

Example 2.17
• F2 andF5 have characteristic2 and5 respectively.
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• Q andR have characteristic0.

Theorem 2.18
A ring R 6= {0} of positive characteristic with an identity and no zero divisors must have prime
characteristic.

Proof. SinceR contains non-zero elements,R has characteristicn ≥ 2. If n were not prime, we
could writen = km with k,m ∈ Z, 1 < k,m < n. Then0 = ne = (km)e = (ke)(me), so either
ke = 0 or me = 0, sinceR has no zero divisors. Hence eitherkr = (ke)r = 0 for all r ∈ R or
mr = (me)r = 0 for all r ∈ R, contradicting the definition ofn as the characteristic. �

Corollary 2.19
A finite field has prime characteristic.

Proof. From Theorem 2.18, we need only show that a finite fieldF has a positive characteristic.
Consider the multiplese, 2e, 3e, . . . of the identity. SinceF contains only finitely many elements,
there must exist integersk andm with 1 ≤ k < m such thatke = me, i.e. (k − m)e = 0, and thus
(k − m)f = (k − m)ef = 0f = 0 for all f ∈ F soF has a positive characteristic. �

Example 2.20
The fieldZ/(p) (equivalently,Fp) has characteristicp.

Theorem 2.21 (Freshmen’s Exponentiation)
Let R be a commutative ring of prime characteristicp. then

(a + b)p
n

= apn

+ bpn

and(a − b)p
n

= apn

− bpn

for a, b ∈ R andn ∈ N.

Proof. It can be shown (see Exercise Sheet 1) that
(

p

i

)

=
p(p − 1) · · · (p − i + 1)

1 · 2 · · · i
≡ 0mod p

for all i ∈ Z with 0 < i < p. By the Binomial Theorem,

(a + b)p = ap +

(

p

1

)

ap−1b + · · · +

(

p

p − 1

)

abp−1 + bp = ap + bp

and induction onn establishes the first identity. The second identity followssince

apn

= ((a − b) + b)p
n

= (a − b)p
n

+ bpn

.

�

3 Polynomials

Let R be an arbitrary ring. Apolynomial overR is an expression of the form

f =

n
∑

i=0

aix
i = a0 + a1x + · · · + anxn,

wheren is a non-negative integer, thecoefficientsai (0 ≤ i ≤ n) are elements ofR, andx is a
symbol not belonging toR, called anindeterminateoverR.
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Definition 3.1
Let f =

∑n
i=0 aix

i = a0 + a1x + · · · + anxn be a polynomial overR which is not the zero
polynomial, so we can supposean 6= 0. Thenn is called thedegreeof f . By convention,deg(0) =
−∞. Polynomials of degree0 are calledconstant polynomials. If the leading coefficient off is 1
(the identity ofR) thenf is called amonicpolynomial.

Given two polynomialsf and g, we can writef =
∑n

i=0 aix
i and g =

∑n
i=0 bix

i (taking
coefficients zero if necessary to ensure the samen). We define their sum to be

f + g =

n
∑

i=0

(ai + bi)x
i

and their product to be

fg =

2n
∑

k=0

ckx
k, whereck =

∑

i+j=k,0≤i≤n,0≤j≤n

aibj.

Note that the degree of the product of two non-zero polynomials f andg is equal to the sum of the
degrees off andg.

Theorem 3.2
With the above operations, the set of polynomials overR forms a ring. It is called thepolynomial
ring overR and denoted byR[x]. Its zero element is thezero polynomial, all of whose coefficients
are zero.

Proof. Exercise. �

Let F denote a (not necessarily finite) field. From now on, we consider polynomials over fields.
We say that the polynomialg ∈ F [x] dividesf ∈ F [x] if there exists a polynomialh ∈ F [x]

such thatf = gh.

Theorem 3.3 (Division Algorithm)
Let g 6= 0 be a polynomial inF [x]. Then for anyf ∈ F [x], there exist polynomialsq, r ∈ F [x]
such that

f = qg + r, wheredeg(r) < deg(g).

Using the division algorithm, we can show that every ideal ofF [x] is principal:

Theorem 3.4
F [x] is a principal ideal domain. In fact, for every idealJ 6= (0) of F [x] there is a uniquely
determined monic polynomialg ∈ F [x] such thatJ = (g).

Proof. Let I be an ideal inF [x]. If I = {0}, thenI = (0). If I 6= {0}, choose a non-zero
polynomialk ∈ I of smallest degree. Letb be the leading coefficient ofk, and setm = b−1k. Then
m ∈ I andm is monic. We will show:I = (m). Clearly,(m) ⊆ I. Now takef ∈ I; by the division
algorithm there are polynomialsq, r with f = qm + r where eitherr = 0 or deg(r) < deg(m).
Now, r = f − qm ∈ I. If r 6= 0, we contradict the minimality ofm; so we must haver = 0, i.e. f
is a multiple ofm andI = (m).

We now show uniqueness: ifm1 ∈ F [x] is another monic polynomial withI = (m1), then
m = c1m1 andm1 = c2m with c1, c2 ∈ F [x]. Thenm = c1c2m, i.e. c1c2 = 1, and soc1, c2 are
constant polynomials. Since bothm andm1 are monic, we must havem = m1. �

We next introduce an important type of polynomial.
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Definition 3.5
A polynomial p ∈ F [x] is said to beirreducible over Fif p has positive degree andp = bc with
b, c ∈ F [x] implies that eitherb or c is a constant polynomial. A polynomial which does allow a
non-trivial factorization overF is calledreducible overF .

Note that the fieldF under consideration is all-important here, e.g. the polynomial x2 + 1 is irre-
ducible inR[x] but reducible inC[x], where it factors as(x + i)(x − i).

Theorem 3.6 (Unique Factorization)
Any polynomialf ∈ F [x] of positive degree can be written in the form

f = ape1

1 . . . pek

k

wherea ∈ F , p1, . . . , pk are distinct monic irreducibles inF [x] ande1, . . . , ek are positive integers.
This factorization is unique up to the order in which the factors occur; it is called thecanonical
factorizationof f in F [x].

Proof. Omitted. �

Example 3.7
Find all irreducible polynomials overF2 of degree3.

First, note that a non-zero polynomial inF2[x] must be monic. The degree3 polynomials are of
the formx3 + ax2 + bx + c, where each coefficient is0 or 1, i.e. there are23 = 8 of them. Such
a polynomial is reducible overF2 precisely if it has a divisor of degree1. Compute all products
(x + a0)(x

2 + b1x + b0) to obtain all reducible degree3 polynomials overF2. There are6 of these,
leaving2 irreducibles:x3 + x + 1 andx3 + x2 + 1.

Theorem 3.8
Forf ∈ F [x], the residue class ringF [x]/(f) is a field if and only iff is irreducible overF .

Proof. Details omitted. For those who know some ring theory this is immediate since, for a PID
S, S/(c) is a field if and only ifc is a prime element ofS. Here, the prime elements of the PIDR[x]
are precisely the irreducible polynomials. �

We will be very interested in the structure of the residue class ringF [x]/(f), for arbitrary non-
zero polynomialf ∈ F [x]. To summarize,

• F [x]/(f) consists of residue classesg + (f) (also denoted[g]) with g ∈ F [x].

• Two residue classesg+(f) andh+(f) are identical if and only ifg ≡ hmod f , i.e. precisely
if g − h is divisible byf . This is equivalent to:g andh have the same remainder on division
by f .

• Each residue classg + (f) contains a unique representativer ∈ F [x] with deg(r) < deg(f),
namely the remainder wheng is divided byf . The process of moving fromg to r is called
reduction modf . (Exercise: uniqueness?)

• Hence the distinct residue classes comprisingF [x]/(f) are precisely the residue classesr +
(f), wherer runs through all polynomials inF [x] with deg(r) < deg(f).

• In particular, ifF = Fp anddeg(f) = n, then the number of elements ofFp/(f) is equal to
the number of polynomials inFp/(f) of degree< n, namelypn.

Example 3.9
• Let f = x ∈ F2[x]. The fieldF2[x]/(x) has21 = 2 elements, namely0 + (x) and1 + (x).

This field is isomorphic toF2.
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• Let f = x2 + x + 1 ∈ F2[x]. ThenF2[x]/(f) is a finite field of22 = 4 elements:{0 +
(f), 1 + (f), x + (f), x + 1 + (f)}. Its behaviour under addition and multiplication is shown
below (remember our field has characteristic2). When performing field operations note that,
since we replace each occurrence off by 0, the polynomial representative for each residue
class has degree less than2.

+ 0 + (f) 1 + (f) x + (f) x + 1 + (f)

0 + (f) 0 + (f) 1 + (f) x + (f) x + 1 + (f)
1 + (f) 1 + (f) 0 + (f) x + 1 + (f) 0 + (f)
x + (f) x + (f) x + 1 + (f) 0 + (f) 1 + (f)

x + 1 + (f) x + 1 + (f) x + (f) 1 + (f) 0 + (f)

,

∗ 0 + (f) 1 + (f) x + (f) x + 1 + (f)

0 + (f) 0 + (f) 0 + (f) 0 + (f) 0 + (f)
1 + (f) 0 + (f) 1 + (f) x + (f) x + 1 + (f)
x + (f) 0 + (f) x + (f) x + 1 + (f) 1 + (f)

x + 1 + (f) 0 + (f) x + 1 + (f) 1 + (f) x + (f)

.

Note that, in the multiplication table,

(x + (f))(x + (f)) = x2 + (f) = f − x − 1 + (f) = x + 1 + (f),

(x + (f))(x + 1 + (f)) = x2 + x + (f) = f − 1 + (f) = 1 + (f),

(x + 1 + (f))(x + 1 + (f)) = x2 + 1 + (f) = f − x + (f) = x + (f).

Comparing these tables to those ofZ4 we see that the fieldF2[x]/(f) is not isomorphic toZ4,
which is not a field since inZ4 we have2 · 2 = 0.

What is the multiplicative order ofx+(f) in F2[x]/(f)? The multiplicative group of this field
has order22−1 = 3, so the order must be1 or 3. Clearlyx+(f) 6= 1+(f), so the order must
be3. Check:(x+(f))3 = (x+(f))(x2 +(f)) = x(x+1)+(f) = x2 +x+(f) = 1+(f).

• Let f = x2 + 2 ∈ F3[x]. We find thatF3[x]/(f) is a ring of9 elements which is not even an
integral domain, let alone a field. Its elements are{0 + (f), 1 + (f), 2 + (f), x + (f), x +
1 + (f), x + 2 + (f), 2x + (f), 2x + 1 + (f), 2x + 2 + (f)}. To see that it is not an integral
domain, note that(x + 1 + (f))(x − 1 + (f)) = x2 − 1 + (f) = x2 + 2 + (f) = 0 + (f),
but neitherx + 1 + (f) norx − 1 + (f) are zero.

Definition 3.10
An elementa ∈ F is called aroot (or zero) of the polynomialf ∈ F [x] if f(a) = 0.

Example 3.11
(i) The elements2, 3 ∈ Q are roots ofx2 − 5x + 6 ∈ Q[x].
(ii) The polynomialx2 + 1 ∈ Q[x] has no roots inQ, but two roots±i ∈ C.

Definition 3.12
If f = a0 + a1x + a2x

2 + · · · + anxn ∈ F [x], then thederivativef ′ of f is defined byf ′ =
a1 + 2a2x + · · · + nanxn−1 ∈ F [x].

This obeys the familiar rules:
(f + g)′ = f ′ + g′

and
(fg)′ = fg′ + f ′g.
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Theorem 3.13
An elementa ∈ F is a root of the polynomialf ∈ F [x] if and only if x − a dividesf .

Proof. Using the Division Algorithm, we can write

f = q · (x − a) + c

with q ∈ F [x] andc ∈ F . Substitutingx = a, we getf(a) = c, hencef = q · (x − a) + f(a). The
theorem follows from this identity. �

Definition 3.14
Let a ∈ F be a root off ∈ F [x]. If k is a positive integer such thatf is divisible by(x − a)k but
not (x − a)k+1, thenk is called themultiplicity of a. If k ≥ 2 thena is called amultiple rootof f .

Theorem 3.15
An elementa ∈ F is a multiple root off ∈ F [x] if and only if it is a root of bothf and its derivative
f ′.

Proof. Exercise �

Example 3.16
Consider the polynomialf = x3−7x2 +16x−12 ∈ Q[x]. It factors as(x−2)2(x−3), so its roots
are2 (with multiplicity 2) and3 (with multiplicity 1). Here,f ′ = 3x2 − 14x + 16 which factors as
(x − 2)(3x − 8), so we can verify that2 is also a root off ′.

The following observation is very important.

Theorem 3.17
If F is a field andf ∈ F [x] has degreen, thenF contains at mostn roots off .

Proof. Outline: SupposeF containsn + 1 distinct rootsa1, . . . , an+1 of f . By Theorem 3.13,
we can show that this impliesf = (x − a1)(x − a2) · · · (x − an+1)g for some polynomialg,
contradictingdeg(f) = n. �


