
Chapter 2

Some field theory

4 Field Extensions
Definition 4.1
Let F be a field. A subsetK that is itself a field under the operations ofF is called asubfieldof F .
The fieldF is called anextension fieldof K. If K 6= F , K is called apropersubfield ofF .

Definition 4.2
A field containing no proper subfields is called aprime field.

For example,Fp is a prime field, since any subfield must contain the elements0 and1, and since it
is closed under addition it must contain all other elements,i.e. it must be the whole field.

Definition 4.3
The intersection of all subfields of a fieldF is itself a field, called theprime subfieldof F .

Remark 4.4
The prime subfield ofF is a prime field, as defined above (see Exercise sheet).

Theorem 4.5
The prime subfield of a fieldF is isomorphic toQ if F has characteristic0 and is isomorphic toFp

if F has characteristicp.

Proof. Denote byP (F ) the prime subfield ofF . Let F be a field of characteristic0; then the
elementsn1F (n ∈ Z) are all distinct, and form a subring ofF isomorphic toZ. The set

Q(F ) = {m1F /n1F : m,n ∈ Z, n 6= 0}

is a subfield ofF isomorphic toQ. Any subfield ofF must contain1 and0 and so must contain
Q(F ), soQ(F ) ⊆ P (F ). SinceQ(F ) is itself a subfield ofF , we also haveP (F ) ⊆ Q(F ), so in
factQ(F ) is the prime subfield ofF . If F has characteristicp, a similar argument holds with the set

Q(F ) = {0 · (1F ), 1 · (1F ), 2 · (1F ), . . . , (p − 1) · 1F },

and this is isomorphic toFp. �

Definition 4.6
• Let K be a subfield of the fieldF andM any subset ofF . Then the fieldK(M) is defined

to be the intersection of all subfields ofF containing bothK andM ; i.e. it is the smallest
subfield ofF containing bothK andM . It is called the extension field obtained byadjoining
the elements ofM .
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16 CHAPTER 2. SOME FIELD THEORY

• For finiteM = {α1, . . . , αn} , we writeK(M) = K(α1, . . . , αn).

• If M = {α}, thenL = K(α) is called asimple extensionof K andα is called adefining
elementof L overK.

The following type of extension is very important in the theory of fields in general.

Definition 4.7
• Let K be a subfield ofF andα ∈ F . If α satisfies a nontrivial polynomial equation with

coefficients inK, i.e. if

anαn + an−1α
n−1 + · · · + a1α1 + a0 = 0

for someai ∈ K not all zero, thenα is algebraic overK.

• An extensionL of K is calledalgebraic overK (or analgebraic extension ofK) if every
element inL is algebraic overK.

Example 4.8
• The element3

√
3 ∈ R is algebraic overQ, since it is a root of the polynomialx3 − 3 ∈ Q[x].

• The elementi ∈ C is algebraic overR, since it is a root ofx2 + 1 ∈ R[x].

• The elementπ ∈ R is not algebraic overQ. An element which is not algebraic over a fieldF
is said to betranscendentaloverF .

Givenα ∈ F which is algebraic over some subfieldK of F , it can be checked (exercise!) that
the setJ = {f ∈ K[x] : f(α) = 0} is an ideal ofF [x] andJ 6= (0). By Theorem 3.4, it follows that
there exists a uniquely determined monic polynomialg ∈ K[x] which generatesJ , i.e. J = (g).

Definition 4.9
If α is algebraic overK, then the uniquely determined monic polynomialg ∈ K[x] generating the
idealJ = {f ∈ K[x] : f(α) = 0} of K[x] is called theminimal polynomialof α overK. We refer
to the degree ofg as thedegree ofα overK.

The key properties of the minimal polynomial are summarisedin the next theorem. The third
property is the one most useful in practice.

Theorem 4.10
Let α ∈ F be algebraic over a subfieldK of F , and letg be the minimal polynomial ofα. Then

(i) g is irreducible inK[x];

(ii) For f ∈ K[x], we havef(α) = 0 if and only if g dividesf ;

(iii) g is the monic polynomial of least degree havingα as a root.

Proof. (i) Since g has the rootα, it has positive degree. Supposeg = h1h2 in K[x] with
1 ≤ deg(hi) < deg(g) (i = 1, 2). This implies0 = g(α) = h1(α)h2(α), and so one ofh1 or h2

must lie inJ and hence is divisible byg, a contradiction.
(ii) Immediate from the definition ofg.
(iii) Any monic polynomial inK[x] havingα as a root must be a multiple ofg by (ii), and so is
either equal tog or has larger degree thang. �

Example 4.11
• The element3

√
3 ∈ R is algebraic overQ since it is a root ofx3 − 3 ∈ Q[x]. Sincex3 − 3 is

irreducible overQ, it is the minimal polynomial of3
√

3 overQ, and hence3
√

3 has degree3
overQ.
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• The elementi =
√
−1 ∈ C is algebraic over the subfieldR of C, since it is a root of the

polynomialx2 + 1 ∈ R[x]. Sincex2 + 1 is irreducible overR, it is the minimal polynomial
of i overR, and hencei has degree2 overR.

5 Field extensions as vector spaces

Let L be an extension field ofK. An important observation is thatL may be viewed as a vector
space overK. The elements ofL are the “vectors” and the elements ofK are the “scalars”.

We briefly recall the main properties of a vector space.

Definition 5.1
A vector spaceV overF is a non-empty set of objects (called vectors) upon which twooperations
are defined

• addition: there is some rule which produces, from any two objects inV , another object inV
(denote this operation by+)

• scalar multiplication: there is some rule which produces, from an element of F (a scalar) and
an object in V, another object inV

and these objects and operations obey the Vector Space Axioms:

1. x + y = y + x for all x, y ∈ V

2. (x + y) + z = x + (y + z) for all x, y, z ∈ V

3. there exists an object0 ∈ V such thatx + 0 = x for all x ∈ V

4. for everyx ∈ V there exists an object−x such thatx + (−x) = 0

5. λ(x + y) = λx + λy for all x, y ∈ V and all scalarsλ ∈ F

6. (λ + µ)x = λx + µx for all x ∈ V and all scalarsλ, µ ∈ F

7. (λµ)x = λ(µx) for all x ∈ V and all scalarsλ, µ ∈ F

8. 1x = x for all x ∈ V

Definition 5.2
• A basis of a vector spaceV overF is defined as a subset{v1, . . . , vn} of vectors inV that

are linearly independent and spanV . If v1, . . . , vn is a list of vectors inV , then these vectors
form a basis if and only if everyv ∈ V can beuniquelywritten as

v = a1v1 + · · · + anvn

wherea1, . . . , an are elements of the base fieldF .

• A vector space will have many different bases, but there are always the same number of basis
vectors in each. The number of basis vectors in any basis is called thedimensionof V over
F .

• SupposeV has dimensionn over F . Then any sequence of more thann vectors inV is
linearly dependent.
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To see that the vector space axioms hold for a fieldL over a subfieldK, note that the elements of
L form an abelian group under addition, and that any “vector”α ∈ L may be multiplied by anr ∈ K
(a “scalar”) to getrα ∈ L (this is just multiplication inL). Finally, the laws for multiplication by
scalars hold since, forr, s ∈ L andα, β ∈ K we haver(α + β) = rα + rβ, (r + s)α = rα + sα,
(rs)α = r(sα) and1α = α.

Example 5.3
TakeL = C and letK be its subfieldR. Then we can easily check thatC is a vector space overR.
Since we know from school thatC = {a + bi : a, b ∈ R}, it is clear that a basis is given by{1, i}.

Definition 5.4
Let L be an extension field ofK. If L is finite-dimensional as a vector space overK, thenL is said
to be afinite extensionof K. The dimension of the vector spaceL overK is called thedegreeof L
overK and written[L : K].

Example 5.5
From above,C is a finite extension ofR of degree2.

Theorem 5.6
If L is a finite extension ofK andM is a finite extension ofL, thenM is a finite extension ofK
with

[M : K] = [M : L][L : K].

Proof. Let [M : L] = m, [L : K] = n; let {α1, . . . , αm} be a basis ofM over L and let
{β1, . . . , βn} be a basis ofL overK. We shall use them to form a basis ofM overK of appropriate
cardinality.

Every α ∈ M can be expressed as a linear combinationα = γ1α1 + · · · + γmαm for some
γ1, . . . , γm ∈ L. Writing eachγi as a linear combination of theβj ’s we get

α =
m∑

i=1

γiαi =
m∑

i=1

(
n∑

j=1

rijβj)αi =
m∑

i=1

n∑

j=1

rijβjαi

with coefficientsrij ∈ K. We claim that themn elementsβjαi form a basis ofM overK. Clearly
they spanM ; it suffices to show that they are linearly independent overK.

Suppose we have
m∑

i=1

n∑

j=1

sijβjαi = 0

where the coefficientssij ∈ K. Then

m∑

i=1

(
n∑

j=1

sijβj)αi = 0,

and since theαi are linearly independent overL we must have

n∑

j=1

sijβj = 0

for 1 ≤ i ≤ m. Now, since theβj are linearly independent overK, it follows that all thesij are0,
as required. �

Theorem 5.7
Every finite extension ofK is algebraic overK.
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Proof. Let L be a finite extension ofK and let[L : K] = m. Forα ∈ L, them + 1 elements
1, α, . . . , αm must be linearly dependent overK, i.e. must satisfya0 + a1α + · · · amαm = 0 for
someai ∈ K (not all zero). Thusα is algebraic overK. �

Remark 5.8
The converse of Theorem 5.7 is not true, however. See the Exercise sheet for an example of an
algebraic extension ofQ which is not a finite extension.

We now relate our new vector space viewpoint to the residue class rings considered previously.

Theorem 5.9
Let F be an extension field ofK andα ∈ F be algebraic of degreen over K and letg be the
minimal polynomial ofα overK. Then

(i) K(α) is isomorphic toK[x]/(g);

(ii) [K(α) : K] = n and{1, α, . . . , αn−1} is a basis ofK(α) overK;

(iii) Every β ∈ K(α) is algebraic overK and its degree overK is a divisor ofn.

Proof. (i) Consider the “evaluation atα” mappingτ : K[x] → K(α), defined by

τ(f) = f(α) for f ∈ K[x];

it is easily shown that this is a homomorphism. Then

kerτ = {f ∈ K[x] : f(α) = 0} = (g)

by the definition of the minimal polynomial. LetS be the image ofτ , i.e. the set of polynomial
expressions inα with coefficients inK. By the First Isomorphism Theorem for rings we have
S ∼= K[x]/(g). Sinceg is irreducible, by Theorem 3.8,K[x]/(g) is a field and soS is a field. Since
K ⊆ S ⊆ K(α) andα ∈ S, we haveS = K(α) by the definition ofK(α), and (i) follows.
(ii) Spanning set: SinceS = K(α), any β ∈ K(α) can be written in the formβ = f(α) for
some polynomialf ∈ K[x]. By the division algorithm,f = qg + r for someq, r ∈ K[x] and
deg(r) < deg(g) = n. Then

β = f(α) = q(α)g(α) + r(α) = r(α),

and soβ is a linear combination of1, α, . . . , αn−1 with coefficients inK.
L.I.: if a0 + a1α + · · · + an−1α

n−1 = 0 for somea0, . . . , an−1 ∈ K, then the polynomialh =
a0 +a1x+ · · ·+an−1x

n−1 ∈ K[x] hasα as a root, and is thus a multiple of its minimal polynomial
g. Sincedeg(h) < n = deg(g), this is possible only ifh = 0, i.e. a0 = · · · = an−1 = 0. Thus the
elements1, α, . . . , αn−1 are linearly independent overK.
(iii) K(α) is a finite extension ofK by (ii), and soβ ∈ K(α) is algebraic overK by Theorem 5.7.
Moreover,K(β) is a subfield ofK(α). If d is the degree ofβ overK, thenn = [K(α) : K] =
[K(α) : K(β)][K(β) : K] = [K(α) : K(β)]d, i.e. d dividesn. �

Remark 5.10
This theorem tells us that the elements of the simple extension K(α) of K are polynomial expres-
sions inα, and anyβ ∈ K(α) can be uniquely expressed in the formβ = a0+a1α+· · ·+an−1α

n−1

for someai ∈ K.

Example 5.11
Consider the simple extensionR(i) of R. We saw earlier thati has minimal polynomialx2 + 1 over
R.

SoR(i) ∼= R[x]/(x2 + 1), and{1, i} is a basis forR(i) overR. So

R(i) = {a + bi : a, b ∈ R} = C.
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Example 5.12
Consider the simple extensionQ( 3

√
3) of Q. We saw earlier that3

√
3 has minimal polynomialx3−3

overQ.
SoQ( 3

√
3) ∼= Q[x]/(x3 − 3), and{1, 3

√
3, ( 3

√
3)2} is a basis forQ( 3

√
3) overQ. So

Q(
3
√

3) = {a + b
3
√

3 + c(
3
√

3)2 : a, b, c ∈ Q}.
Note that we have been assuming that bothK andα are embedded in some larger fieldF . Next,

we will consider constructing a simple algebraic extensionwithout reference to a previously given
larger field, i.e. “from the ground up”.

The next result, due to Kronecker, is one of the most fundamental results in the theory of fields:
it says that, given any non-constant polynomial over any field, there exists an extension field in
which the polynomial has a root.

Theorem 5.13 (Kronecker)
Let f ∈ K[x] be irreducible over the fieldK. Then there exists a simple algebraic extension ofK
with a root off as a defining element.

Proof.

• Consider the residue class ringL = K[x]/(f), which is a field sincef is irreducible. Its
elements are the residue classes[h] = h + (f), with h ∈ K[x].

• For anya ∈ K, think of a as a constant polynomial inK[x] and form the residue class
[a]. The mappinga 7→ [a] gives an isomorphism fromK onto a subfieldK ′ of L (exercise:
check!), soK ′ may be identified withK. Thus we can viewL as an extension ofK.

• For everyh = a0 + a1x + · · · + amxm ∈ K[x], we have

[h] = [a0 + a1x + · · · + amxm]

= [a0] + [a1][x] + · · · + [am][x]m

= a0 + a1[x] + · · · + am[x]m

(making the identification[ai] = ai). So, every element ofL can be written as a polyno-
mial in [x] with coefficients inK. Since any field containingK and [x] must contain these
expressions,L is a simple extension ofK obtained by adjoining[x].

• If f = b0 + b1x + · · · + bnxn, then

f([x]) = b0 + b1[x] + · · · + bn[x]n = [f ] = [0],

i.e. [x] is a root off andL is a simple algebraic extension ofK.

�

Example 5.14
Consider the prime fieldF3 and the polynomialx2 + x + 2 ∈ F3[x], irreducible overF3. Takeθ to
be a “root” off , in the sense thatθ is the residue class[x] = x + (f) ∈ L = F3[x]/(f). Explicitly,
we have:

f(θ) = f([x]) = f(x + (f))

= (x + (f))2 + (x + (f)) + (2 + (f))

= x2 + x + 2 + (f)

= f + (f)

= 0 + (f)

= [0].
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The other root off in L is 2θ+2, sincef(2θ+2) = θ2+θ+2 = 0. By Theorem 5.9, the simple
algebraic extensionL = F3(θ) consists of the nine elements0, 1, 2, θ, θ+1, θ+2, 2θ, 2θ+1, 2θ+2.

Example 5.15
Consider the polynomialf = x2+x+1 ∈ F2[x], irreducible overF2. Letθ be the root[x] = x+(f)
of f ; then the simple algebraic extensionL = F2(θ) consists of the four elements0, 1, θ, θ+1. (The
other root isθ + 1). The tables for addition and multiplication are preciselythose of Example 3.9,
now appropriately relabelled. We give the addition table:

+ 0 1 θ θ + 1

0 0 1 θ θ + 1
1 1 0 θ + 1 θ
θ θ θ + 1 0 1

θ + 1 θ + 1 θ 1 0

.

Note that, in the above examples, adjoining either of two roots of f would yield the same
extension field.

Theorem 5.16
Let F be an extension field of the fieldK andα, β ∈ F be two roots of a polynomialf ∈ K[x] that
is irreducible overK. ThenK(α) andK(β) are isomorphic under an isomorphism mappingα to
β and keeping the elements ofK fixed.

Proof. By Theorem 5.9 both are isomorphic to the fieldK[x]/(f) since the irreduciblef is the
minimal polynomial of bothα andβ. �

Given a polynomial, we now want an extension field which contains all its roots.

Definition 5.17
Let f ∈ K[x] be a polynomial of positive degree andF an extension field ofK. Then we say that
f splits inF if f can be written as a product of linear factors inF [x], i.e. if there exist elements
α1, . . . , αn ∈ F such that

f = a(x − α1) · · · (x − αn)

wherea is the leading coefficient off . The fieldF is called asplitting fieldof f overK if it splits
in F and ifF = K(α1, . . . , αn).

So, a splitting fieldF of a polynomialf overK is an extension field containing all the roots of
f , and is “smallest possible” in the sense that no subfield ofF contains all roots off . The following
result answers the questions: can we always find a splitting field, and how many are there?

Theorem 5.18 (Existence and uniqueness of splitting field)
(i) If K is a field andf any polynomial of positive degree inK[x], then there exists a splitting

field of f overK.

(ii) Any two splitting fields off overK are isomorphic under an isomorphism which keeps the
elements ofK fixed and maps roots off into each other.

So, we may therefore talk ofthe splitting field off overK. It is obtained by adjoining toK
finitely many elements algebraic overK, and so we can show (exercise!) that it is a finite extension
of K.
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Example 5.19
Find the splitting field of the polynomialf = x2 + 2 ∈ Q[x] overQ.

The polynomialf splits inC, where it factors as(x − i
√

2)(x + i
√

2). However,C itself is not
the splitting field forf . It turns out to be sufficient to adjoin just one of the complexroots off to
Q. The fieldK = Q(i

√
2) contains both of the roots off , and no smaller subfield has this property,

soK is the splitting field forF .

Splitting fields will be central to our characterization of finite fields, in the next chapter.


