Chapter 2

Some field theory

4 Field Extensions

Definition 4.1
Let F' be a field. A subsek that is itself a field under the operationsiofis called asubfieldof F.
The field F' is called arextension fielef K. If K # F, K is called aproper subfield ofF'.

Definition 4.2
A field containing no proper subfields is calleg@me field

For examplelF,, is a prime field, since any subfield must contain the elemgatsd1, and since it
is closed under addition it must contain all other elemargsjt must be the whole field.

Definition 4.3
The intersection of all subfields of a fieldis itself a field, called th@rime subfieldf F.

Remark 4.4
The prime subfield of" is a prime field, as defined above (see Exercise sheet).

Theorem 4.5
The prime subfield of a field is isomorphic taQ if F' has characteristie and is isomorphic t&',
if F' has characteristig.

Proof. Denote byP(F) the prime subfield of". Let I’ be a field of characteristi@; then the
elements:1 (n € Z) are all distinct, and form a subring éf isomorphic toZ. The set

Q(F)={mlp/nlp:m,n € Z,n # 0}

is a subfield ofF" isomorphic toQ. Any subfield of ¥ must containl and0 and so must contain
Q(F), s0Q(F) C P(F). SinceQ(F) is itself a subfield ofF", we also haveP(F') C Q(F), so in
factQ(F) is the prime subfield of. If F' has characteristig, a similar argument holds with the set

Q(F) ={0-(Ar),1-(1r),2-(AF),...,(p=1) - 1r},
and this is isomorphic t&,,. u

Definition 4.6
e Let K be a subfield of the field” and M any subset of". Then the fieldK (M) is defined
to be the intersection of all subfields 6f containing bothK and M; i.e. it is the smallest
subfield of " containing bothi and M. It is called the extension field obtained agljoining
the elements of\/.
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16 CHAPTER 2. SOME FIELD THEORY

e Forfinite M = {ay,...,a,} ,wewrite K(M) = K(aq,...,ap).

o If M = {a}, thenL = K(«) is called asimple extensionf K and« is called adefining
elemenof L over K.

The following type of extension is very important in the theof fields in general.

Definition 4.7
e Let K be a subfield off" anda € F. If « satisfies a nontrivial polynomial equation with
coefficients ink, i.e. if

@™+ ap 10"+ fajog +ag=0
for someq; € K not all zero, theny is algebraic overk.

e An extensionL of K is calledalgebraic overK (or analgebraic extension oK) if every
element inL is algebraic ovels.

Example 4.8
e The element/3 € R is algebraic ovef), since it is a root of the polynomiaf® — 3 € Q[x].

e The element € C is algebraic oveR, since it is a root of:? + 1 € R[z].

e The elementr € R is not algebraic ove®). An element which is not algebraic over a fidld
is said to beranscendentabver F'.

Givena € F which is algebraic over some subfield of F', it can be checked (exercise!) that
the set/ = {f € K|z| : f(o) = 0} isan ideal ofF'[z] and.J # (0). By Theorem 3.4, it follows that
there exists a uniquely determined monic polynorgial K [x] which generated, i.e. J = (g).

Definition 4.9

If v is algebraic ovel, then the uniquely determined monic polynonja¢ K|[z] generating the
idealJ = {f € K[x] : f(«) = 0} of K[x] is called theminimal polynomiabf « over K. We refer
to the degree of as thedegree ofx over K.

The key properties of the minimal polynomial are summariseithe next theorem. The third
property is the one most useful in practice.

Theorem 4.10
Leta € F be algebraic over a subfield of F', and letg be the minimal polynomial of. Then

(i) g isirreducible inK[z];
(i) For f € K[x], we havef(«) = 0 if and only if g divides f;
(iii) g is the monic polynomial of least degree havin@s a root.

Proof. (i) Since g has the rooty, it has positive degree. Suppoge= hjihs in K[x] with
1 < deg(h;) < deg(g) (¢ = 1,2). This impliesO = g(«) = h;i(a)ha(a), and so one oh; or hy
must lie inJ and hence is divisible by, a contradiction.

(i) Immediate from the definition of.

(iii) Any monic polynomial in K [z] having« as a root must be a multiple gfby (ii), and so is
either equal tg or has larger degree than [ |

Example 4.11
e The elementy/3 < R is algebraic ovef since it is a root of:3 — 3 € Q[z]. Sincex? — 3 is
irreducible overQ, it is the minimal polynomial oft/3 overQ, and hence/3 has degreé
overQ.
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e The element = /—1 € C is algebraic over the subfield of C, since it is a root of the
polynomialz? 4+ 1 € R[z]. Sincexz? + 1 is irreducible oveiR, it is the minimal polynomial
of i overRR, and hencé has degreé overR.

5 Field extensions as vector spaces

Let L be an extension field oK. An important observation is thdt may be viewed as a vector
space oveks. The elements of, are the “vectors” and the elementsigfare the “scalars”.
We briefly recall the main properties of a vector space.

Definition 5.1
A vector spacéd’ over F' is a non-empty set of objects (called vectors) upon whichaperations
are defined

e addition: there is some rule which produces, from any twectsjinV’, another object i/
(denote this operation by)

e scalar multiplication: there is some rule which producesyfan element of F (a scalar) and
an object in V, another object i

and these objects and operations obey the Vector Space 8xiom

lLx+y=y+aforallz,yeV

2. (z+y)+z=z+(y+z) forallz,y,z €V

3. there exists an objedte V such thatt + 0 =z forallz € V

4. for everyz € V there exists an objeetx such thate + (—x) = 0
5 Mz+y) =M+ yforallz,y € V and all scalars\ € F’

6. AN+ p)z = Az + pxforallz € V and all scalars,, u € F

7. (Ap)z = A(ux) for all z € V and all scalars\, u € F'

8 lz=gforallz €V

Definition 5.2
e A basis of a vector spacE over F' is defined as a subséty, ..., v,} of vectors inV that
are linearly independent and spen|f v4, ..., v, is a list of vectors i/, then these vectors

form a basis if and only if every € V' can beuniquelywritten as
V=a1v1 + -+ apUy
whereaq, ..., a, are elements of the base figld

e A vector space will have many different bases, but there laraya the same number of basis
vectors in each. The number of basis vectors in any basidléidhe dimensionof V' over
F.

e Supposel has dimensiom over F'. Then any sequence of more tharvectors inV is
linearly dependent.
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To see that the vector space axioms hold for a flettber a subfield<, note that the elements of
L form an abelian group under addition, and that any “vecto€' L may be multiplied by an € K
(a “scalar”) to getrar € L (this is just multiplication inL). Finally, the laws for multiplication by
scalars hold since, for, s € L anda, 5 € K we haver(a + ) = ra+r3, (r + s)a = ra + sa,
(rs)a =r(sa) andla = a.

Example 5.3
TakeL = C and letK be its subfieldR. Then we can easily check th@tis a vector space ové.
Since we know from school th&t = {a + bi : a,b € R}, itis clear that a basis is given |y, i}.

Definition 5.4

Let L be an extension field dk . If L is finite-dimensional as a vector space ofgrthenL is said
to be afinite extensiorf K. The dimension of the vector spateover K is called thedegreeof L
over K and written[L : K.

Example 5.5
From above(C is a finite extension oR of degree2.

Theorem 5.6
If L is a finite extension o andM is a finite extension olL, thenM is a finite extension of
with

[M:K]=[M:L|[L:K].

Proof. Let[M : L] = m,[L : K] = n; let{ay,...,a,} be a basis of\/ over L and let

{B1,...,0,} be abasis of. over K. We shall use them to form a basis/df over K of appropriate
cardinality.

Everya € M can be expressed as a linear combinatioa- y1a1 + - - - + Yma,, for some
,---,Ym € L. Writing eachry; as a linear combination of th&’s we get

m

= yai=y (> ribjai=y Y rib
=1

i=1 j=1 i=1 j=1

with coefficientsr;; € K. We claim that thenn elements3;«; form a basis of\/ over K. Clearly
they spanlM; it suffices to show that they are linearly independent dver

Suppose we have
Z Z sijﬁjai =0

i=1 j=1
where the coefficients;; € K. Then

n

Z(Z sijBj)a; = 0,

i=1 j=1

and since they; are linearly independent ovérwe must have

n
>_sigh =0
j=1
for 1 < i < m. Now, since the3; are linearly independent ové¥, it follows that all thes;; are0,

as required. [ |

Theorem 5.7
Every finite extension oK is algebraic ovek .
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Proof. Let L be a finite extension oK and let[L : K] = m. Fora € L, them + 1 elements

1,a,...,a™ must be linearly dependent ovAr, i.e. must satisfyig + a1 + - - - a, @™ = 0 for
somea; € K (not all zero). Thusy is algebraic overs. [ |
Remark 5.8

The converse of Theorem 5.7 is not true, however. See theciBgesheet for an example of an
algebraic extension @ which is not a finite extension.

We now relate our new vector space viewpoint to the residagsalings considered previously.

Theorem 5.9
Let F' be an extension field df anda € F be algebraic of degree over K and letg be the
minimal polynomial ofx over K. Then

(i) K(«) is isomorphic toK[z]/(g);
(i) [K(a): K] =mnand{l,a,...,a" '} is a basis o (o) overK;
(iii) Every 8 € K(«) is algebraic ovek and its degree ovek is a divisor ofn.

Proof. (i) Consider the “evaluation at” mappingr : K[z] — K («), defined by
7(f) = f(e) for f € Klz];

it is easily shown that this is a homomorphism. Then

kerr = {f € K[z] : f(o) =0} = (9)

by the definition of the minimal polynomial. Lef be the image of, i.e. the set of polynomial
expressions iy with coefficients inK. By the First Isomorphism Theorem for rings we have
S = Klx]/(g). Sinceg is irreducible, by Theorem 3.8 [z]|/(¢g) is a field and s& is a field. Since
K C S C K(a)anda € S, we haveS = K («) by the definition ofK («), and (i) follows.

(i) Spanning set: Sincé = K(«a), any3 € K(«) can be written in the formt = f(«) for
some polynomialf € K|[z]. By the division algorithm,f = qg + r for someq,r € KJz] and
deg(r) < deg(g) = n. Then

B = fla) = q(@)g(a) +r(a) = r(a),

and sog is a linear combination of, «, . . . , o~ with coefficients ink .

L.L:if ag + ara + -+ + ap_1a™t = 0 for someay, ...,a,—1 € K, then the polynomiah =
ag+arz+---+a, 12" € K[z] hasa as a root, and is thus a multiple of its minimal polynomial
g. Sincedeg(h) < n = deg(g), this is possible only i = 0,i.e.ap = --- = a,—1 = 0. Thus the
elementdl, a,...,a" ! are linearly independent ovés.

(i) K(«) is afinite extension ofC by (ii), and so5 € K («) is algebraic ove by Theorem 5.7.
Moreover, K (3) is a subfield of(«). If d is the degree off over K, thenn = [K(«a) : K] =
[K(a): K(B)][K(f) : K] = [K(«) : K(B)]d, i.e. d dividesn. |

Remark 5.10

This theorem tells us that the elements of the simple exdarisi«) of K are polynomial expres-
sions ina, and any3 € K («) can be uniquely expressed in the fobme= ag+aja+- - -+a, 10"
for somea; € K.

Example 5.11
Consider the simple extensid@®{i) of R. We saw earlier thathas minimal polynomiat? + 1 over
R.

SoR(i) = R[z]/(z? + 1), and{1, i} is a basis folR (i) overR. So

R(i) ={a+bi:a,be R} =C.
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Example 5.12
Consider the simple extensi@(v/3) of Q. We saw earlier tha{/3 has minimal polynomiat?® — 3
overQ.

SoQ(V/3) = Qlx]/(z* — 3), and{1, /3, (¥/3)?} is a basis forQ(+/3) overQ. So

Q(V3) = {a+bV3+¢(V3)* : a,b,c € Q}.

Note that we have been assuming that bigtanda are embedded in some larger fidld Next,
we will consider constructing a simple algebraic extensidhout reference to a previously given
larger field, i.e. “from the ground up”.

The next result, due to Kronecker, is one of the most fundaaheesults in the theory of fields:

it says that, given any non-constant polynomial over anyl fitdere exists an extension field in
which the polynomial has a root.

Theorem 5.13 (Kronecker)
Let f € K[x] be irreducible over the field. Then there exists a simple algebraic extensiok of
with a root of f as a defining element.

Proof.

e Consider the residue class ridg= K|[z]/(f), which is a field sincef is irreducible. Its
elements are the residue clasfgs= h + (f), with h € K[z].

e For anya € K, think of a as a constant polynomial iK' [z] and form the residue class
[a]. The mapping: — [a] gives an isomorphism frork” onto a subfieldk” of L (exercise:
check!), soK’ may be identified with. Thus we can view. as an extension df .

e Foreveryh =ag + a1z + -+ - + apx™ € K[z], we have
[h] = [ag+arx+ -+ apa™]
= lao] + [aa][z] + - - + [am][z]™
= apt+aifz] +- - +ap[z]™
(making the identificatioria;] = a;). So, every element of can be written as a polyno-

mial in [x] with coefficients inK. Since any field containing’ and[z] must contain these
expressions[ is a simple extension dk obtained by adjoiningz].

° Iff:b0+b1:c+---+bnx”,then
f([2]) = bo + baz] + - - + by [2]" = [f] = [0],
i.e. [z] is aroot off and L is a simple algebraic extension &f.

|
Example 5.14
Consider the prime fielffs and the polynomiak? 4 = + 2 € F3[z], irreducible oveifs. Take to
be a “root” of f, in the sense thais the residue class;| = = + (f) € L = Fs[z]/(f). Explicitly,
we have:

f0)=f(z]) = flz+(f))

= @+ )+ @+))+2+()
= ¥ +z+2+(f)

= f+(f)

= 0+ (f)

= [0
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The other root off in L is20+2, sincef(20+2) = §2+60+2 = 0. By Theorem 5.9, the simple
algebraic extensioh = [F5(¢) consists of the nine elemertisl, 2,60, 0+1,0+2,20,20+1,20+2.

Example 5.15

Consider the polynomigl = 22 +z+1 € Fy[z], irreducible ovels. Letd be the roofz] = z+(f)
of f; then the simple algebraic extensibn= Fs () consists of the four elemenis1,d,6+1. (The
other root is# + 1). The tables for addition and multiplication are precisilgse of Example 3.9,
now appropriately relabelled. We give the addition table:

+ | o 1 0 6+1
0 0 1 S
1 1 0 6+1 0
0 6 6+1 0 1
f+1|60+1 0 1 0

Note that, in the above examples, adjoining either of twasad f would yield the same
extension field.

Theorem 5.16

Let F be an extension field of the field and«, 3 € F' be two roots of a polynomigl € K |[z| that
is irreducible overX. ThenK («) andK (3) are isomorphic under an isomorphism mappintp
6 and keeping the elements Hf fixed.

Proof. By Theorem 5.9 both are isomorphic to the fiéldz]/( f) since the irreduciblg is the
minimal polynomial of bothw and . [ |

Given a polynomial, we now want an extension field which cimstall its roots.

Definition 5.17

Let f € K[z] be a polynomial of positive degree aftlan extension field ofC. Then we say that
f splits in F'if f can be written as a product of linear factorsHifx], i.e. if there exist elements
ai,...,a, € F such that

f=alx—a1) (v —ay)

wherea is the leading coefficient of. The fieldF’ is called asplitting fieldof f over K if it splits
in Fandif F' = K(aq,...,a,).

So, a splitting fieldF’ of a polynomialf over K is an extension field containing all the roots of
f,and is “smallest possible” in the sense that no subfield obntains all roots of . The following
result answers the questions: can we always find a splittahg, &nd how many are there?

Theorem 5.18 (Existence and uniqueness of splitting field)
(i) If K is a field andf any polynomial of positive degree i [x], then there exists a splitting
field of f overK.

(i) Any two splitting fields of f over K are isomorphic under an isomorphism which keeps the
elements oK fixed and maps roots df into each other.

So, we may therefore talk dhe splitting field of f over K. It is obtained by adjoining td<
finitely many elements algebraic ovAr, and so we can show (exercise!) that it is a finite extension
of K.
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Example 5.19
Find the splitting field of the polynomiaf = 22 + 2 € Q[z] overQ.

The polynomialf splits inC, where it factors agr — iv/2)(z + iv/2). However,C itself is not
the splitting field forf. It turns out to be sufficient to adjoin just one of the compleats of f to
Q. The fieldK = Q(iv/2) contains both of the roots gf, and no smaller subfield has this property,
so K is the splitting field forF'.

Splitting fields will be central to our characterization ofife fields, in the next chapter.



