Chapter 2

Some field theory

4 Field Extensions

Definition 4.1

Let F be a field. A subset K that is itself a field under the operations of F is called a subfield of F. The field F is called an extension field of K. If $K \neq F, K$ is called a proper subfield of F.

Definition 4.2

A field containing no proper subfields is called a prime field.
For example, \mathbb{F}_{p} is a prime field, since any subfield must contain the elements 0 and 1 , and since it is closed under addition it must contain all other elements, i.e. it must be the whole field.

Definition 4.3

The intersection of all subfields of a field F is itself a field, called the prime subfield of F.

Remark 4.4

The prime subfield of F is a prime field, as defined above (see Exercise sheet).

Theorem 4.5

The prime subfield of a field F is isomorphic to \mathbb{Q} if F has characteristic 0 and is isomorphic to \mathbb{F}_{p} if F has characteristic p.

Proof. Denote by $P(F)$ the prime subfield of F. Let F be a field of characteristic 0 ; then the elements $n 1_{F}(n \in \mathbb{Z})$ are all distinct, and form a subring of F isomorphic to \mathbb{Z}. The set

$$
Q(F)=\left\{m 1_{F} / n 1_{F}: m, n \in \mathbb{Z}, n \neq 0\right\}
$$

is a subfield of F isomorphic to \mathbb{Q}. Any subfield of F must contain 1 and 0 and so must contain $Q(F)$, so $Q(F) \subseteq P(F)$. Since $Q(F)$ is itself a subfield of F, we also have $P(F) \subseteq Q(F)$, so in fact $Q(F)$ is the prime subfield of F. If F has characteristic p, a similar argument holds with the set

$$
Q(F)=\left\{0 \cdot\left(1_{F}\right), 1 \cdot\left(1_{F}\right), 2 \cdot\left(1_{F}\right), \ldots,(p-1) \cdot 1_{F}\right\}
$$

and this is isomorphic to \mathbb{F}_{p}.

Definition 4.6

- Let K be a subfield of the field F and M any subset of F. Then the field $K(M)$ is defined to be the intersection of all subfields of F containing both K and M; i.e. it is the smallest subfield of F containing both K and M. It is called the extension field obtained by adjoining the elements of M.
- For finite $M=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, we write $K(M)=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
- If $M=\{\alpha\}$, then $L=K(\alpha)$ is called a simple extension of K and α is called a defining element of L over K.

The following type of extension is very important in the theory of fields in general.

Definition 4.7

- Let K be a subfield of F and $\alpha \in F$. If α satisfies a nontrivial polynomial equation with coefficients in K, i.e. if

$$
a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha_{1}+a_{0}=0
$$

for some $a_{i} \in K$ not all zero, then α is algebraic over K.

- An extension L of K is called algebraic over K (or an algebraic extension of K) if every element in L is algebraic over K.

Example 4.8

- The element $\sqrt[3]{3} \in \mathbb{R}$ is algebraic over \mathbb{Q}, since it is a root of the polynomial $x^{3}-3 \in \mathbb{Q}[x]$.
- The element $i \in \mathbb{C}$ is algebraic over \mathbb{R}, since it is a root of $x^{2}+1 \in \mathbb{R}[x]$.
- The element $\pi \in \mathbb{R}$ is not algebraic over \mathbb{Q}. An element which is not algebraic over a field F is said to be transcendental over F.

Given $\alpha \in F$ which is algebraic over some subfield K of F, it can be checked (exercise!) that the set $J=\{f \in K[x]: f(\alpha)=0\}$ is an ideal of $F[x]$ and $J \neq(0)$. By Theorem 3.4, it follows that there exists a uniquely determined monic polynomial $g \in K[x]$ which generates J, i.e. $J=(g)$.

Definition 4.9

If α is algebraic over K, then the uniquely determined monic polynomial $g \in K[x]$ generating the ideal $J=\{f \in K[x]: f(\alpha)=0\}$ of $K[x]$ is called the minimal polynomial of α over K. We refer to the degree of g as the degree of α over K.

The key properties of the minimal polynomial are summarised in the next theorem. The third property is the one most useful in practice.

Theorem 4.10

Let $\alpha \in F$ be algebraic over a subfield K of F, and let g be the minimal polynomial of α. Then
(i) g is irreducible in $K[x]$;
(ii) For $f \in K[x]$, we have $f(\alpha)=0$ if and only if g divides f;
(iii) g is the monic polynomial of least degree having α as a root.

Proof. (i) Since g has the root α, it has positive degree. Suppose $g=h_{1} h_{2}$ in $K[x]$ with $1 \leq \operatorname{deg}\left(h_{i}\right)<\operatorname{deg}(g)(i=1,2)$. This implies $0=g(\alpha)=h_{1}(\alpha) h_{2}(\alpha)$, and so one of h_{1} or h_{2} must lie in J and hence is divisible by g, a contradiction.
(ii) Immediate from the definition of g.
(iii) Any monic polynomial in $K[x]$ having α as a root must be a multiple of g by (ii), and so is either equal to g or has larger degree than g.

Example 4.11

- The element $\sqrt[3]{3} \in \mathbb{R}$ is algebraic over \mathbb{Q} since it is a root of $x^{3}-3 \in \mathbb{Q}[x]$. Since $x^{3}-3$ is irreducible over \mathbb{Q}, it is the minimal polynomial of $\sqrt[3]{3}$ over \mathbb{Q}, and hence $\sqrt[3]{3}$ has degree 3 over \mathbb{Q}.
- The element $i=\sqrt{-1} \in \mathbb{C}$ is algebraic over the subfield \mathbb{R} of \mathbb{C}, since it is a root of the polynomial $x^{2}+1 \in \mathbb{R}[x]$. Since $x^{2}+1$ is irreducible over \mathbb{R}, it is the minimal polynomial of i over \mathbb{R}, and hence i has degree 2 over \mathbb{R}.

5 Field extensions as vector spaces

Let L be an extension field of K. An important observation is that L may be viewed as a vector space over K. The elements of L are the "vectors" and the elements of K are the "scalars".

We briefly recall the main properties of a vector space.

Definition 5.1

A vector space V over F is a non-empty set of objects (called vectors) upon which two operations are defined

- addition: there is some rule which produces, from any two objects in V, another object in V (denote this operation by +)
- scalar multiplication: there is some rule which produces, from an element of F (a scalar) and an object in V , another object in V
and these objects and operations obey the Vector Space Axioms:

1. $x+y=y+x$ for all $x, y \in V$
2. $(x+y)+z=x+(y+z)$ for all $x, y, z \in V$
3. there exists an object $0 \in V$ such that $x+0=x$ for all $x \in V$
4. for every $x \in V$ there exists an object $-x$ such that $x+(-x)=0$
5. $\lambda(x+y)=\lambda x+\lambda y$ for all $x, y \in V$ and all scalars $\lambda \in F$
6. $(\lambda+\mu) x=\lambda x+\mu x$ for all $x \in V$ and all scalars $\lambda, \mu \in F$
7. $(\lambda \mu) x=\lambda(\mu x)$ for all $x \in V$ and all scalars $\lambda, \mu \in F$
8. $1 x=x$ for all $x \in V$

Definition 5.2

- A basis of a vector space V over F is defined as a subset $\left\{v_{1}, \ldots, v_{n}\right\}$ of vectors in V that are linearly independent and span V. If v_{1}, \ldots, v_{n} is a list of vectors in V, then these vectors form a basis if and only if every $v \in V$ can be uniquely written as

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

where a_{1}, \ldots, a_{n} are elements of the base field F.

- A vector space will have many different bases, but there are always the same number of basis vectors in each. The number of basis vectors in any basis is called the dimension of V over F.
- Suppose V has dimension n over F. Then any sequence of more than n vectors in V is linearly dependent.

To see that the vector space axioms hold for a field L over a subfield K, note that the elements of L form an abelian group under addition, and that any "vector" $\alpha \in L$ may be multiplied by an $r \in K$ (a "scalar") to get $r \alpha \in L$ (this is just multiplication in L). Finally, the laws for multiplication by scalars hold since, for $r, s \in L$ and $\alpha, \beta \in K$ we have $r(\alpha+\beta)=r \alpha+r \beta,(r+s) \alpha=r \alpha+s \alpha$, $(r s) \alpha=r(s \alpha)$ and $1 \alpha=\alpha$.

Example 5.3

Take $L=\mathbb{C}$ and let K be its subfield \mathbb{R}. Then we can easily check that \mathbb{C} is a vector space over \mathbb{R}. Since we know from school that $\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}$, it is clear that a basis is given by $\{1, i\}$.

Definition 5.4

Let L be an extension field of K. If L is finite-dimensional as a vector space over K, then L is said to be a finite extension of K. The dimension of the vector space L over K is called the degree of L over K and written $[L: K]$.

Example 5.5

From above, \mathbb{C} is a finite extension of \mathbb{R} of degree 2 .

Theorem 5.6

If L is a finite extension of K and M is a finite extension of L, then M is a finite extension of K with

$$
[M: K]=[M: L][L: K] .
$$

Proof. Let $[M: L]=m,[L: K]=n$; let $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ be a basis of M over L and let $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ be a basis of L over K. We shall use them to form a basis of M over K of appropriate cardinality.

Every $\alpha \in M$ can be expressed as a linear combination $\alpha=\gamma_{1} \alpha_{1}+\cdots+\gamma_{m} \alpha_{m}$ for some $\gamma_{1}, \ldots, \gamma_{m} \in L$. Writing each γ_{i} as a linear combination of the β_{j} 's we get

$$
\alpha=\sum_{i=1}^{m} \gamma_{i} \alpha_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} r_{i j} \beta_{j}\right) \alpha_{i}=\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i j} \beta_{j} \alpha_{i}
$$

with coefficients $r_{i j} \in K$. We claim that the $m n$ elements $\beta_{j} \alpha_{i}$ form a basis of M over K. Clearly they span M; it suffices to show that they are linearly independent over K.

Suppose we have

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} s_{i j} \beta_{j} \alpha_{i}=0
$$

where the coefficients $s_{i j} \in K$. Then

$$
\sum_{i=1}^{m}\left(\sum_{j=1}^{n} s_{i j} \beta_{j}\right) \alpha_{i}=0
$$

and since the α_{i} are linearly independent over L we must have

$$
\sum_{j=1}^{n} s_{i j} \beta_{j}=0
$$

for $1 \leq i \leq m$. Now, since the β_{j} are linearly independent over K, it follows that all the $s_{i j}$ are 0 , as required.

Theorem 5.7

Every finite extension of K is algebraic over K.

Proof. Let L be a finite extension of K and let $[L: K]=m$. For $\alpha \in L$, the $m+1$ elements $1, \alpha, \ldots, \alpha^{m}$ must be linearly dependent over K, i.e. must satisfy $a_{0}+a_{1} \alpha+\cdots a_{m} \alpha^{m}=0$ for some $a_{i} \in K$ (not all zero). Thus α is algebraic over K.

Remark 5.8

The converse of Theorem 5.7 is not true, however. See the Exercise sheet for an example of an algebraic extension of \mathbb{Q} which is not a finite extension.

We now relate our new vector space viewpoint to the residue class rings considered previously.

Theorem 5.9

Let F be an extension field of K and $\alpha \in F$ be algebraic of degree n over K and let g be the minimal polynomial of α over K. Then
(i) $K(\alpha)$ is isomorphic to $K[x] /(g)$;
(ii) $[K(\alpha): K]=n$ and $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}$ is a basis of $K(\alpha)$ over K;
(iii) Every $\beta \in K(\alpha)$ is algebraic over K and its degree over K is a divisor of n.

Proof. (i) Consider the "evaluation at α " mapping $\tau: K[x] \rightarrow K(\alpha)$, defined by

$$
\tau(f)=f(\alpha) \text { for } f \in K[x]
$$

it is easily shown that this is a homomorphism. Then

$$
\operatorname{ker} \tau=\{f \in K[x]: f(\alpha)=0\}=(g)
$$

by the definition of the minimal polynomial. Let S be the image of τ, i.e. the set of polynomial expressions in α with coefficients in K. By the First Isomorphism Theorem for rings we have $S \cong K[x] /(g)$. Since g is irreducible, by Theorem 3.8, $K[x] /(g)$ is a field and so S is a field. Since $K \subseteq S \subseteq K(\alpha)$ and $\alpha \in S$, we have $S=K(\alpha)$ by the definition of $K(\alpha)$, and (i) follows.
(ii) Spanning set: Since $S=K(\alpha)$, any $\beta \in K(\alpha)$ can be written in the form $\beta=f(\alpha)$ for some polynomial $f \in K[x]$. By the division algorithm, $f=q g+r$ for some $q, r \in K[x]$ and $\operatorname{deg}(r)<\operatorname{deg}(g)=n$. Then

$$
\beta=f(\alpha)=q(\alpha) g(\alpha)+r(\alpha)=r(\alpha)
$$

and so β is a linear combination of $1, \alpha, \ldots, \alpha^{n-1}$ with coefficients in K.
L.I.: if $a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}=0$ for some $a_{0}, \ldots, a_{n-1} \in K$, then the polynomial $h=$ $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in K[x]$ has α as a root, and is thus a multiple of its minimal polynomial g. Since $\operatorname{deg}(h)<n=\operatorname{deg}(g)$, this is possible only if $h=0$, i.e. $a_{0}=\cdots=a_{n-1}=0$. Thus the elements $1, \alpha, \ldots, \alpha^{n-1}$ are linearly independent over K.
(iii) $K(\alpha)$ is a finite extension of K by (ii), and so $\beta \in K(\alpha)$ is algebraic over K by Theorem 5.7. Moreover, $K(\beta)$ is a subfield of $K(\alpha)$. If d is the degree of β over K, then $n=[K(\alpha): K]=$ $[K(\alpha): K(\beta)][K(\beta): K]=[K(\alpha): K(\beta)] d$, i.e. d divides n.

Remark 5.10

This theorem tells us that the elements of the simple extension $K(\alpha)$ of K are polynomial expressions in α, and any $\beta \in K(\alpha)$ can be uniquely expressed in the form $\beta=a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}$ for some $a_{i} \in K$.

Example 5.11

Consider the simple extension $\mathbb{R}(i)$ of \mathbb{R}. We saw earlier that i has minimal polynomial $x^{2}+1$ over \mathbb{R}.

So $\mathbb{R}(i) \cong \mathbb{R}[x] /\left(x^{2}+1\right)$, and $\{1, i\}$ is a basis for $\mathbb{R}(i)$ over \mathbb{R}. So

$$
\mathbb{R}(i)=\{a+b i: a, b \in \mathbb{R}\}=\mathbb{C}
$$

Example 5.12

Consider the simple extension $\mathbb{Q}(\sqrt[3]{3})$ of \mathbb{Q}. We saw earlier that $\sqrt[3]{3}$ has minimal polynomial $x^{3}-3$ over \mathbb{Q}.

So $\mathbb{Q}(\sqrt[3]{3}) \cong \mathbb{Q}[x] /\left(x^{3}-3\right)$, and $\left\{1, \sqrt[3]{3},(\sqrt[3]{3})^{2}\right\}$ is a basis for $\mathbb{Q}(\sqrt[3]{3})$ over \mathbb{Q}. So

$$
\mathbb{Q}(\sqrt[3]{3})=\left\{a+b \sqrt[3]{3}+c(\sqrt[3]{3})^{2}: a, b, c \in \mathbb{Q}\right\}
$$

Note that we have been assuming that both K and α are embedded in some larger field F. Next, we will consider constructing a simple algebraic extension without reference to a previously given larger field, i.e. "from the ground up".

The next result, due to Kronecker, is one of the most fundamental results in the theory of fields: it says that, given any non-constant polynomial over any field, there exists an extension field in which the polynomial has a root.

Theorem 5.13 (Kronecker)

Let $f \in K[x]$ be irreducible over the field K. Then there exists a simple algebraic extension of K with a root of f as a defining element.

Proof.

- Consider the residue class ring $L=K[x] /(f)$, which is a field since f is irreducible. Its elements are the residue classes $[h]=h+(f)$, with $h \in K[x]$.
- For any $a \in K$, think of a as a constant polynomial in $K[x]$ and form the residue class [a]. The mapping $a \mapsto[a]$ gives an isomorphism from K onto a subfield K^{\prime} of L (exercise: check!), so K^{\prime} may be identified with K. Thus we can view L as an extension of K.
- For every $h=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in K[x]$, we have

$$
\begin{aligned}
{[h] } & =\left[a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right] \\
& =\left[a_{0}\right]+\left[a_{1}\right][x]+\cdots+\left[a_{m}\right][x]^{m} \\
& =a_{0}+a_{1}[x]+\cdots+a_{m}[x]^{m}
\end{aligned}
$$

(making the identification $\left[a_{i}\right]=a_{i}$). So, every element of L can be written as a polynomial in $[x]$ with coefficients in K. Since any field containing K and $[x]$ must contain these expressions, L is a simple extension of K obtained by adjoining $[x]$.

- If $f=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$, then

$$
f([x])=b_{0}+b_{1}[x]+\cdots+b_{n}[x]^{n}=[f]=[0]
$$

i.e. $[x]$ is a root of f and L is a simple algebraic extension of K.

Example 5.14

Consider the prime field \mathbb{F}_{3} and the polynomial $x^{2}+x+2 \in \mathbb{F}_{3}[x]$, irreducible over \mathbb{F}_{3}. Take θ to be a "root" of f, in the sense that θ is the residue class $[x]=x+(f) \in L=\mathbb{F}_{3}[x] /(f)$. Explicitly, we have:

$$
\begin{aligned}
f(\theta)=f([x]) & =f(x+(f)) \\
& =(x+(f))^{2}+(x+(f))+(2+(f)) \\
& =x^{2}+x+2+(f) \\
& =f+(f) \\
& =0+(f) \\
& =[0] .
\end{aligned}
$$

The other root of f in L is $2 \theta+2$, since $f(2 \theta+2)=\theta^{2}+\theta+2=0$. By Theorem 5.9 , the simple algebraic extension $L=\mathbb{F}_{3}(\theta)$ consists of the nine elements $0,1,2, \theta, \theta+1, \theta+2,2 \theta, 2 \theta+1,2 \theta+2$.

Example 5.15

Consider the polynomial $f=x^{2}+x+1 \in \mathbb{F}_{2}[x]$, irreducible over \mathbb{F}_{2}. Let θ be the $\operatorname{root}[x]=x+(f)$ of f; then the simple algebraic extension $L=\mathbb{F}_{2}(\theta)$ consists of the four elements $0,1, \theta, \theta+1$. (The other root is $\theta+1$). The tables for addition and multiplication are precisely those of Example 3.9, now appropriately relabelled. We give the addition table:

+	0	1	θ	$\theta+1$
0	0	1	θ	$\theta+1$
1	1	0	$\theta+1$	θ
θ	θ	$\theta+1$	0	1
$\theta+1$	$\theta+1$	θ	1	0

Note that, in the above examples, adjoining either of two roots of f would yield the same extension field.

Theorem 5.16

Let F be an extension field of the field K and $\alpha, \beta \in F$ be two roots of a polynomial $f \in K[x]$ that is irreducible over K. Then $K(\alpha)$ and $K(\beta)$ are isomorphic under an isomorphism mapping α to β and keeping the elements of K fixed.

Proof. By Theorem 5.9 both are isomorphic to the field $K[x] /(f)$ since the irreducible f is the minimal polynomial of both α and β.

Given a polynomial, we now want an extension field which contains all its roots.

Definition 5.17

Let $f \in K[x]$ be a polynomial of positive degree and F an extension field of K. Then we say that f splits in F if f can be written as a product of linear factors in $F[x]$, i.e. if there exist elements $\alpha_{1}, \ldots, \alpha_{n} \in F$ such that

$$
f=a\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

where a is the leading coefficient of f. The field F is called a splitting field of f over K if it splits in F and if $F=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

So, a splitting field F of a polynomial f over K is an extension field containing all the roots of f, and is "smallest possible" in the sense that no subfield of F contains all roots of f. The following result answers the questions: can we always find a splitting field, and how many are there?

Theorem 5.18 (Existence and uniqueness of splitting field)

(i) If K is a field and f any polynomial of positive degree in $K[x]$, then there exists a splitting field of f over K.
(ii) Any two splitting fields of f over K are isomorphic under an isomorphism which keeps the elements of K fixed and maps roots of f into each other.

So, we may therefore talk of the splitting field of f over K. It is obtained by adjoining to K finitely many elements algebraic over K, and so we can show (exercise!) that it is a finite extension of K.

Example 5.19

Find the splitting field of the polynomial $f=x^{2}+2 \in \mathbb{Q}[x]$ over \mathbb{Q}.
The polynomial f splits in \mathbb{C}, where it factors as $(x-i \sqrt{2})(x+i \sqrt{2})$. However, \mathbb{C} itself is not the splitting field for f. It turns out to be sufficient to adjoin just one of the complex roots of f to \mathbb{Q}. The field $K=\mathbb{Q}(i \sqrt{2})$ contains both of the roots of f, and no smaller subfield has this property, so K is the splitting field for F.

Splitting fields will be central to our characterization of finite fields, in the next chapter.

